NDVATEK

Features

■ Tone/Pulse switchable

- 32-digit redial memory
- 32-digit save memory (DL version)
- 3 emergency memory banks (16 digits each)
- 10 indirect memory banks (16 digits each)

■ Flash, Pause, $\mathrm{P} \rightarrow \mathrm{T}$ can be saved as a digit in memory

- Chain dialing allowed
- None or (0) or $(0,9)$ or $(0,168)$ or all digits dialing inhibition (diode option) for PABX system or long distance dialing lock out
■ Pause time 2.2/3.6 sec selectable (diode option)
- 3 pulse dialing number systems $\mathrm{N} / \mathrm{N}+1 / 10-\mathrm{N}$ (diode option)

General Description

The NT91315XL series are single-chip silicon gate CMOS integrated circuits with on-chip oscillators to be used with a 3.58 MHz crystal or ceramic resonator. They provide dialing pulse (DP) or dual tone multi-frequency (DTMF) dialing. A 24-key ($5 \times 5-1$) matrix keyboard is used for either DP or DTMF mode. In on-chip RAM, up to

Pin Configurations

a. NT91315AL

b. NT91315BL

- Dialing rate 10pps, M/B ratio $2 / 3$ \& $1 / 2$ selectable/dialing rate 10pps \& 20pps selectable, M/B ratio $1 / 2$ (diode option)
■ Hands-Free control function with debouncing (BL, CL \& DL version)
- Hold function with debouncing (CL \& DL version)
- Key-tone output for dialing access (DL version)

■ One-key redial (DL version)
■ Flash time $600 \mathrm{~ms}, 300 \mathrm{~ms}, 100 \mathrm{~ms}$ (DL version)

- Power-up reset circuit provided

■ Key release debouncing
■ 32-step synthetic tone output for low DTMF output harmonic distortion
■ 16/18/20/22-pin packages

32 digits can be saved for both redial and save functions, and up to 16 digits can be saved for 3 direct emergency and 10 indirect dialing memory banks. In DTMF mode, a small minimum tone duration and minimum inter-tone pause allows for rapid dialing. Maximum tone duration depends on the key depression time in manual dialing.

c. NT91315CL

Keyboard Assignments

	C1	C2	C3	GND	C4
R1	1	2	3	ST	RD
R2	4	5	6	A/L	P
R3	7	8	9	F1	F2
R4	*/T	0	\#	RD/P	F3
	M1	M2	M3		SAVE

Flash time, F1: 600 ms (default), F2: 300 ms , F3: 100 ms Diode options (switch closed):
D1. Lock 0
D2. Pause time 2.2 sec
D3. Flash time 300 ms for F1
D4. Lock 0, 9
D5. Pulse dialing $10-\mathrm{N}$
D6. Pulse dialing $\mathrm{N}+1$
D7. Lock 0, 168
D8. Flash time 100 ms for F1
D9. Dialing rate $10 \mathrm{pps} \& 20 \mathrm{pps}$ selectable, M / B ratio 1/2
D10. Lock all digits

Block Diagram

Absolute Maximum Ratings*

Supply Voltage (VDD)-0.3V to +6.0 V
Input Voltage (VIN) Vss - 0.3V to VDD +0.3 V
Output Voltage (Vout)Vss - 0.3V to VDD +0.3 V
Output Voltage (Vout)($\overline{\text { DP }}, \overline{\text { XMUTE }}) \ldots \ldots . . .<1.2 \mathrm{~V}$
Tone Output Current (ITONE) $<50 \mathrm{~mA}$
Power Dissipation (Pd) $<500 \mathrm{~mW}$
Operating Temperature (Top) $20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature (Tstg) $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

* Comments

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Electrical Characteristics (VDD $=2.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$, $\mathrm{Fosc}=3.579 \mathrm{MHz}$, $\operatorname{Top}=25^{\circ} \mathrm{C}$, unless otherwise specified.)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions		Test CKT.	
Operating Voltage	VDD	2.0		5.5	V	PULSE mode		A	
		2.0		5.5		TONE mode			
Memory Retention Voltage	$\mathrm{V}_{\text {MR }}$	0.8			V			-	
Memory Retention Current	I_{MR}			0.5	$\mu \mathrm{A}$	$\mathrm{VDD}=1.0 \mathrm{~V}$, All outputs unlo		-	
Operating Current	$\mathrm{I}_{\text {DDP }}$			1.0	mA	PULSE mode	All outputs unloaded	A	
	$I_{\text {DDT }}$			2.0		TONE mode			
Standby Current	$\mathrm{I}_{\text {Sc }}$		0.3	0.5	$\mu \mathrm{A}$	$\overline{\mathrm{HK}}=\mathrm{VDD}=1.5 \mathrm{~V}$	All outputs unloaded No key selected		
				20		$\overline{\mathrm{HK}}=\mathrm{Vss}$			
Input Voltage	V_{H}	0.8		1	VdD	---			
	V_{IL}	0		0.2					
$\overline{\mathrm{R} 1}-\overline{\mathrm{R} 4}$ Input Current	IR		16		$\mu \mathrm{A}$			C	
Tone Out Voltage	V Oc		720		mVp.p	Column	$\begin{aligned} & \mathrm{VDD}=2.5 \mathrm{~V} \\ & \mathrm{RL}=5 \mathrm{~K} \end{aligned}$	D	
	$\mathrm{V}_{\text {OR }}$		560			Row			
$\overline{\mathrm{HFI}}$ Pull Low Current	$I_{\text {HFI }}$		2.4		$\mu \mathrm{A}$	$\mathrm{VDD}=2.5 \mathrm{~V}(\mathrm{No}$ HFI pin connec	to OV	C	

NQVATEK
NT91315XL Series

DC Electrical Characteristics (continued)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions	Test CKT.
HFO, HDO Source Current	IOH1	0.25	0.85		mA	$\mathrm{VDD}=2.5 \mathrm{~V}$ $\mathrm{VOH}=\mathrm{VDD}-0.4 \mathrm{~V}$	B
HFO, HDO, $\overline{\mathrm{KT}}$, $\overline{\text { XMUTE Sink Current }}$	IOL1	0.8	2.5		mA	$\mathrm{VDD}=2.5 \mathrm{~V}$ $\mathrm{VoL}=0.4 \mathrm{~V}$	B
$\overline{\mathrm{DP}}$ Sink Current	IOL2	0.8	2.2		mA	$\mathrm{VoL}=0.4 \mathrm{~V}$	B
Distortion	DIS\%		1	5	$\%$	$*$ (See note below)	

*Note:
DIS\% $=\frac{100 *\left(\mathrm{~V}_{1}{ }^{2}+\mathrm{V}_{2}{ }^{2}+\ldots+\mathrm{Vn}^{2}\right)^{1 / 2}}{\left(\mathrm{~V}_{\mathrm{IL}}{ }^{2}+\mathrm{V}_{\mathrm{HH}}{ }^{2}\right)^{1 / 2}}$

1. $\mathrm{V}_{1} \ldots \mathrm{Vn}$ are the intermodulation or the harmonic frequencies in the 500 Hz to 3400 Hz band.
2. V_{IL} and V_{H} are the individual frequency components of the DTMF signal.

AC Characteristics (Vdd $=2.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$, $\mathrm{Fosc}=3.579 \mathrm{MHz}$, $\mathrm{Top}=25^{\circ} \mathrm{C}$, unless otherwise specified.)

NQVATEK

AC Characteristics (continued)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
Key-in Tone Duration	$\mathrm{T}_{\text {KTD }}$		27		ms	
Key-in Tone Frequency	$\mathrm{F}_{\text {KT }}$		437		Hz	
Minimum Tone Duration Time	$\mathrm{T}_{\text {MFD }}$		94		ms	
Min. Tone inter-digit Pause	$\mathrm{T}_{\text {IIDP }}$		96		ms	
Redial Tone Duration	$\mathrm{T}_{\text {RFDR }}$		94		ms	
Redial Tone inter-digit Duration	$\mathrm{T}_{\text {TIDPR }}$		96		ms	
Memory Tone Duration	$\mathrm{T}_{\text {RFDM }}$		94		ms	
Memory Tone inter-digit Duration	$\mathrm{T}_{\text {TIDPM }}$		96		ms	
Hold-in Debounce	THD		23		ms	
Hold-release Debounce	$\mathrm{T}_{\text {HRD }}$		295		ms	
Hands-Free in Debounce	$\mathrm{T}_{\text {HFID }}$		22		ms	
Hands-Free release Debounce	$\mathrm{T}_{\text {HFRD }}$		24		ms	

Comparisions of Specified vs. Actual Tone Frequencies

R/C	Spec.	Actual	Error(\%)	Unit	Conditions
R1	697	699.2	+0.32	Hz	Fosc $=3.579 \mathrm{MHz}$
R2	770	766.3	-0.48	Hz	
R3	852	847.5	-0.53	Hz	
R4	941	948.1	+0.74	Hz	
C1	1,209	1,216.0	+0.58	Hz	
C2	1,336	1,331.8	-0.31	Hz	
C3	1,477	1,472.0	-0.34	Hz	

Pin Descriptions

Pin No.				Designation	I/O	Description
NT91315AL	NT91315BL	NT91315CL	NT91315DL			
1	2	2	2	$\overline{\mathrm{HK}}$	1	Hook switch input This inverter input pin detects the state of the hook switch contact. "Off Hook" is represented by a Vss condition. "On Hook" is represented by a VdD condition
2	3	3	3	MODE IN	I, Z	TRI-STATE mode select pin The two types the NT91315XL are listed as follows (diode options) a. Without diode added
						MODE Tone/ Dial M/B IN Pulse Rate Ratio
						Vdd Pulse 10 pps $2 / 3$
						Vss ${ }^{\text {T }}$ Tone
						Floating Pulse 10 pps $1 / 2$
						b. With diode added
						MODE Tone/ Dial M/B IN Pulse Rate Ratio
						Vdd Pulse 10 pps $1 / 2$
						Vss ${ }^{\text {T }}$ Tone
						Floating Pulse 20pps $1 / 2$
						The mode selection pin checks for tone/pulse dialing as each digit is entered. In the PULSE mode, the dialing rate is checked, along with the make/break ratio, at the entry of the first key

NQVATEK

Pin Descriptions (continued)

Pin No.				Designation	I/O	Description
NT91315AL	NT91315BL	NT91315CL	NT91315DL			
$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { OSCI } \\ & \text { OSCO } \end{aligned}$	I	Oscillator Input and Output pins The time base for the NT91315XL is a crystal controlled on-chip oscillator. It is completed by connecting a 3.58 MHz crystal or ceramic resonator between the OSCl and OSCO pins
5	6	6	6	Vss		Power supply pins
6	7	7	7	VdD		These devices are designed to operate from 2.0 V to 5.5 V
7	8	8	8	TONE	0	Tone dialing output When a valid keystroke is detected in DTMF mode, appropriate low group and high group frequencies are generated, which hybridize the dual tone output. Tone output is in the OFF state when in PULSE mode
8	9	9	9	$\overline{\text { XMUTE }}$	0	Dialing transmission mute output This is an N-channel open drain output. The XMUTE is normally OFF. During pulse or DTMF dialing, this output is ON
9	10	12	14	$\overline{\mathrm{DP}}$	0	Dialing pulse output This is an N-channel open drain output. The normal output will be ON during break and OFF during make in the PULSE DIALING mode
10	11	13	15	$\overline{\mathrm{C} 1}$		
11	12	14	16	C2		
12	13	15	17	C3		
13	14	16	18	$\overline{\mathrm{R} 1}$		
14	15	17	19	$\overline{\mathrm{R} 2}$		
15	16	18	20	$\overline{\mathrm{R} 3}$		
16	17	19	21	$\overline{\mathrm{R} 4}$		
(N.A.)	(N.A.)	(N.A.)	11	C4		

Pin Descriptions (continued)

Pin No.				Designation	I/O	Description				
NT91315AL	NT91315BL	NT91315CL	NT91315DL							
(N.A.)	(N.A.)	10	10	HDO	O	HOLD output pin This inverter output pin will stay high when HOLD function is active				
(N.A.)	(N.A.)	11	13	HDI	1	The HOLD function will be toggled when this pin goes from high to low in the OFF HOOK state				
(N.A.)	(N.A)	(N.A.)	12	$\overline{\mathrm{KT}}$	O	Key-in tone output This N-channel open drain pin sends out a "beep" tone for each PULSE mode and each store state key entry, as well as for entries of accepted function keys (ST, F, A/L, R/P, SAVE and memory keys). Tone output frequency is 437 Hz and tone duration is 27 ms				
(N.A.)	1	1	1	HFO	0	Hands-Free Control I/O pins These pins enable and disable the Hands-Free Control function. When input pin $\overline{\mathrm{HFI}}$ goes low, the Hands-Free Control state is toggled on. The status of the Hands-Free Control state is listed in the following table:				
						Current State		Next States		
						$\begin{array}{\|c} \hline \begin{array}{c} \text { Hook } \\ \text { sw. } \end{array} \end{array}$	HFO	Input	HFO	Dialing?
						-	Low	$\overline{\mathrm{HFI}} \downarrow$	High	Yes
	18	20	22	$\overline{\mathrm{HFI}}$	I	On Hook	High	$\overline{\mathrm{HFI}} \downarrow$	Low	No
						Off Hook	High	$\overline{\mathrm{HFI}} \downarrow$	Low	Yes
						$\begin{aligned} & \text { On } \\ & \text { Hook } \end{aligned}$	-	Off	Low	Yes
						$\begin{aligned} & \text { Off } \\ & \text { Hook } \end{aligned}$	Low	On Hook	Low	No
						Off Hook	High	On Hook	High	Yes

Operating Procedures

Symbol Definitions:

In the description below, signals are defined in terms of the key or switch which is activated.

Off Hook	eans the phone is off the hook.
On Hook	means the phone is on the hook
D1 rep	sents the first digit dialed in a string of digits.
Dn (Dk	k) represents the last digit dialed in a string of digits.

$D n+1$ (Dk+1) represents the beginning of a new string of digits.

ST	is the Store key.
A/L	is the Auto/Location key
F	is the Flash key.
RD/P	is the Redial/Pause key
RD	is the Redial key.
P	is the Pause key.
Mi	is the Emergency key.
	is the Save

Functional Descriptions:

1. Normal Dialing

Off Hook D1 ... Dn
Dial out D1 . . D Dn in either PULSE or TONE mode according to the state of input pin "MODE IN". The redial memory will be D1 ... Dn. (The number of dialing digits is unlimited, but redial memory is limited to 32 digits.)
2. Flash Dialing
Off Hook F D1 . . Dn
$\overline{\mathrm{DP}}$ will break for $96 / 297 / 640 \mathrm{~ms}$ and pause for an additional 824 ms . It will then dial out D1 . . . Dn, which will be stored in redial memory.

The F key is unavailable until D 1 . . . Dk is dialed out. Dialing F Dk+1 ... Dn uses the same process as the previous case. The redial memory will be Dk+1. . . Dn.

Off Hook F

DP will break for 96/297/640ms.
Redial memory remains unchanged.
3. Memory Dialing

Off Hook	$(\mathrm{A} / \mathrm{L})$	$\mathrm{Mn}(\mathrm{n}=1,2,3)$ or Off Hook	
A / L	Dn	$(\mathrm{Dn}$	$=0-9)$

Dials out digits in direct memory Mn or indirect memory Dn (up to 16 digits). Redial memory remains unchanged.

Notes:

a. In both PULSE and TONE modes, there can be up to 16 digits in a memory location. The tone/pulse attribute is also recorded. In memory dialing, the "MODE IN" pin state does not affect the tone/pulse attribute in memory.
b. The F key can be stored only as the first key in memory, not in any other position.
4. Chain Dialing
a.

Off		D	Dk	Mi	$(\mathrm{i}=1,2,3)$
A/L	Dm	(Dm	-9)	Dk+1	Dn

b. $\begin{aligned} & \text { Off Hook } \\ & (i=1,2,3) \\ & \end{aligned}$

Dials out the digits in redial memory, pauses for $2.2 / 3.6 \mathrm{sec}$, then dials D1 . . Dn , and finally the digits in Mi . The redial memory is unchanged.

Note:
Memory keys can be accepted at any time during chain dialing, whether or not the dialing process is completed.
5. Mix Dialing

Only PULSE mode to TONE mode is switchable. This is achieved by either changing the MODE IN state, or by depressing the ${ }^{* / T}$ key in PULSE mode. TONE mode to PULSE mode switching is not allowed.

6. Memory Storage

a. Direct memory storage

ST	D1		n	Mi		ST		D1	
Dn	ST	Mi	or	ST		D1			Dn
A/L	Mi	ST	D			Dn	ST		A/L
Mi	$(\mathrm{i}=1,2,3)$.								

b. Indirect memory storage

c. Quick storage

d. Redial memory storage

Note: ST RD/P ST Mi will take RD / P as a pause key.
e. Store after dialing

Notes:

a. Storage is processed in Off-Hook state only.
b. In PULSE mode, the key tone is active as valid key input. In TONE mode, D1 . . . Dn ST ST Mi , only the last three keys can produce key tones, but ST D1 ... Dn ST A/L
Dj has key tones with every key entry whether in PULSE or TONE mode.
c. ("MODE IN " = VDD or floated) ST D1 . . Dk

Store pulse digits D 1 . . . $\mathrm{Dk}, \mathrm{P} \rightarrow \mathrm{T}$, and tone digits $D k+1$. . Dn in indirect memory $D \mathrm{Dj}$.
d. In memory storage, the chip will retain the tone/pulse attribute automatically. In memory dialing, the "MODE IN" state is ignored.
e. Memory storage can proceed either before dialing out a number, or after a dialing sequence is completed.
f. During memory storage, $\overline{\text { XMUTE }}, \overline{\mathrm{DP}}$ remains in the OFF state, and all outputs remain unchanged except the key tone.
g. Memory storage will not alter the digits in redial memory.
7. Save Operation
a. Save dialing

Off Hook SAVE
Dials out the digits in SAVE. (up to 32 digits)
b. Save storage

Off Hook	D1	\ldots	Dn
D1		SAVE	
		Dn	will be dialed out and stored in

ST	D1	Dn	SAVE	
D1	Dn	will	stored in	SAVE

ST RD SAVE or ST (RD) ST SAVE
The digits in redial will be stored in SAVE.
c. Save to memory

ST SAVE (ST) Mi
Stores the digits in SAVE to Mi.

$$
\mathrm{ST} \text { SAVE (ST }) \mathrm{Dj}
$$

Stores the digits in SAVE to $A / L D$
9. One-key Redial

dialed out. RD will break 2.2 sec and pause for 824
ms , then redial D1 . . Dn.
10. Hold Operation
a. When in OFF HOOK state, pressing HOLD key will toggle hold function.
b. When hands-free function is active, pressing HOLD key will activate hold function and release hands-free function.
c. When hold function is active, pressing $\overline{\mathrm{HFI}}$ key will hands-free function activate and release hold function.
d. Picking up receiver will release hold function.

Timing Waveforms

1. Timing Waveforms in PULSE Mode:

Тнк: Pick-Up Pause, 824ms
Td: Delay time or Key valid to dialing signal out, typically 2 ms
TIDP: Inter-digit pause time
Tкто: Key-in tone duration
T_{KD} : Debouncing time
Note: " $\overline{\mathrm{HK}}$ " or "HFO" indicates that the chip is active when hook switch $\overline{\mathrm{HK}}$ goes low or Hands-Free control output HFO goes high.

Timing Waveforms (continued)

2. Timing Waveforms in TONE Mode:

(I) Normal Dialing

(ii) After (I), Redialing

Timing Waveforms (continued)

3. Timing Waveforms for Switching Mode Operation:

(i) By mode selection pin switches

(ii) By */T key entry

Timing Waveforms (continued)
4. Timing Dialing (DTMF mode used as example):

5. Memory Dial (DTMF mode used as example):
(1, 2, 3, 4 stored in M1)

Timing Waveforms (continued)
6. Chain Dialing (DTMF mode used as example):
(1, 2, 3, 4 stored in M1)

Ordering Information

Pin No.	Key Tone	Holds-Free Control	Hold Function	Package
NT91315AL	N.A	N.A	N.A	16 L DIP
NT91315BL	N.A	A	N.A	18 L DIP
NT91315CL	N.A	A	A	20 L DIP
NT91315DL	A	A	A	22 L DIP

N.A: Not Available

A: Available

Package Inforamtion

DIP 16L Outline Dimensions unit: inches/mm

Symbol	Dimensions in inches	Dimensions in mm
A	0.175 Max.	4.45 Max.
A1	0.010 Min.	0.25 Min.
A2	0.130 ± 0.010	3.30 ± 0.25
B	$\begin{array}{r} 0.018+0.004 \\ -0.002 \end{array}$	$\begin{array}{r} 0.46+0.10 \\ -0.05 \end{array}$
B1	$\begin{array}{r} 0.060+0.004 \\ -0.002 \end{array}$	$\begin{gathered} 1.52+0.10 \\ -0.05 \end{gathered}$
C	$\begin{gathered} 0.010+0.004 \\ -0.002 \end{gathered}$	$\begin{gathered} 0.25+0.10 \\ -0.05 \end{gathered}$
D	0.750 Typ. (0.770 Max.)	19.05 Typ. (19.56 Max.)
E	0.300 ± 0.010	7.62 ± 0.25
E1	0.250 Typ. (0.262 Max.)	6.35 Typ. (6.65 Max.)
e_{1}	0.100 ± 0.010	2.54 ± 0.25
L	0.130 ± 0.010	3.30 ± 0.25
α	$0^{\circ} \sim 15^{\circ}$	$0^{\circ} \sim 15^{\circ}$
$\mathrm{e}_{\text {A }}$	0.345 ± 0.035	8.76 ± 0.89
S	0.040 Max.	1.02 Max.

Notes:

1. The maximum value of dimension D includes end flash.
2. Dimension E_{1} does not include resin fins.
3. Dimension S includes end flash.

Pacakge Information

DIP 18L Outline Dimensions unit: inches/mm

Symbol	Dimensions in inches	Dimension in mm
A	0.175 Max.	4.45 Max.
A1	0.010 Min.	0.25 Min.
A2	0.130 ± 0.010	3.30 ± 0.25
B	$\begin{gathered} 0.018+0.004 \\ -0.002 \end{gathered}$	$\begin{gathered} 0.46+0.10 \\ -0.05 \end{gathered}$
B1	$\begin{array}{r} 0.060+0.004 \\ -0.002 \end{array}$	$\begin{gathered} 1.52+0.10 \\ -0.05 \end{gathered}$
C	$\begin{array}{r} 0.010+0.004 \\ -0.002 \end{array}$	$\begin{gathered} 0.25+0.10 \\ -0.05 \end{gathered}$
D	0.900 Typ. (0.920 Max.)	22.86 Typ. (23.37 Max.)
E	0.300 ± 0.010	7.62 ± 0.25
E_{1}	0.250 Typ. (0.262 Max.)	6.35 Typ. (6.65 Max.)
e_{1}	0.100 ± 0.010	2.54 ± 0.25
L	0.130 ± 0.010	3.30 ± 0.25
α	$0^{\circ} \sim 15^{\circ}$	$0^{\circ} \sim 15^{\circ}$
e_{A}	0.345 ± 0.035	8.76 ± 0.89
S	0.055 Max.	1.40 Max.

Notes

1. The maximum value of dimension D includes end flash.
2. Dimension E_{1} does not include resin fins.
3. Dimension S includes end flash.

Package Information

DIP 20L Outline Dimensions unit: inches/mm

Symbol	Dimensions in inches	Dimensions in mm
A	0.175 Max.	4.45 Max.
A1	0.010 Min.	0.25 Min.
A2	0.130 ± 0.010	3.30 ± 0.25
B	$\begin{array}{r} 0.018+0.004 \\ -0.002 \end{array}$	$\begin{gathered} 0.46+0.10 \\ -0.05 \end{gathered}$
B1	$\begin{array}{r} 0.060+0.004 \\ -0.002 \end{array}$	$\begin{gathered} 1.52+0.10 \\ -0.05 \end{gathered}$
C	$\begin{array}{r} 0.010+0.004 \\ -0.002 \end{array}$	$\begin{gathered} 0.25+0.10 \\ -0.05 \end{gathered}$
D	1.026 Typ. (1.046 Max.)	26.06 Typ. (26.57 Max.)
E	0.300 ± 0.010	7.62 ± 0.25
E1	0.250 Typ. (0.262 Max.)	6.35 Typ. (6.65 Max.)
e_{1}	0.100 ± 0.010	2.54 ± 0.25
L	0.130 ± 0.010	3.30 ± 0.25
α	$0^{\circ} \sim 15^{\circ}$	$0^{\circ} \sim 15^{\circ}$
$\mathrm{e}_{\text {A }}$	0.345 ± 0.035	8.76 ± 0.89
S	0.078 Max.	1.98 Max.

Notes

1. The maximum value of dimension D includes end flash.
2. Dimension E_{1} does not include resin fins.
3. Dimension S includes end flash.

Package Information

DIP 22L Outline Dimensions
unit: inches/mm

Symbol	Dimensions in inches	Dimensions in mm
A	0.190 Max.	4.83 Max.
A1	0.010 Min.	0.25 Min.
A2	0.130 ± 0.010	3.30 ± 0.25
B	$\begin{array}{r} 0.018+0.004 \\ -0.002 \end{array}$	$\begin{gathered} 0.46+0.10 \\ -0.05 \end{gathered}$
B1	$\begin{array}{r} 0.060+0.004 \\ -0.002 \end{array}$	$\begin{gathered} 1.52+0.10 \\ -0.05 \end{gathered}$
C	$\begin{array}{r} 0.010+0.004 \\ -0.002 \end{array}$	$\begin{gathered} 0.25+0.10 \\ -0.05 \end{gathered}$
D	1.090 Typ. (1.110 Max.)	27.69 Typ. (28.19 Max.)
E	0.400 ± 0.010	10.16 ± 0.25
E1	0.350 Typ. (0.362 Max.)	8.89 Typ. (9.19 Max.)
e_{1}	0.100 ± 0.010	2.54 ± 0.25
L	0.130 ± 0.010	3.30 ± 0.25
α	$0^{\circ} \sim 15^{\circ}$	$0^{\circ} \sim 15^{\circ}$
$\mathrm{e}_{\text {A }}$	0.445 ± 0.035	11.30 ± 0.89
S	0.060 Max.	1.52 Max.

Notes:

1. The maximum value of dimension D includes end flash.
2. Dimension E_{1} does not include resin fins.
3. D nensi on S i ncl udes end fl ash.
