Datasheet - production data

Features

- 16 constant current output channels
- Output current: from 3 mA to 40 mA
- Current programmable through external resistor
- 7-bit global current gain adjustment in two ranges
- 12/16-bit PWM grayscale brightness control
- Programmable output turn-on/off time
- Error detection mode (both open and shortedLED)
- Programmable shorted-LED detection thresholds
- Auto power saving/auto-wakeup
- Selectable SDO synchronization on the CLK falling edge
- Gradual output delay (selectable)
- Supply voltage: 3 V to 5.5 V
- Thermal shutdown and overtemperature alert
- Up to 30 MHz 4 -wires interface
- 20 V current generator rated voltage

Description

The ALED1642GW is a monolithic, low voltage, low current power 16-bit shift register designed for LED panel displays. The ALED1642GW guarantees 20 V output driving capability allowing the user to connect several LEDs in series. In the output stage, sixteen regulated current sources provide from 3 mA to 40 mA constant current to drive the LEDs. The current is programmed through an external resistor and can be adjusted by 7 -bit current gain register in two subranges. The brightness can be adjusted separately for each channel through a 12/16-bit grayscale control.

A programmable turn-on and turn-off time (four different values are available) improves the system low noise generation performances.
In the ALED1642GW is available the open/short error detection mode. The auto power shutdown and auto power-on feature (this feature is selectable) allow the device to save power without any external intervention.
Thermal management is equipped with overtemperature data alert and the output thermal shutdown $\left(170^{\circ} \mathrm{C}\right)$. The high clock frequency is up to 30 MHz and it makes the device suitable for high data rate transmission. A selectable gradual output delay reduces the inrush current whereas the selectable SDO synchronization feature works when the device is used in daisy chain configuration. The supply voltage range is between 3 V and 5.5 V .

Applications

- Full color/monochrome displays
- Dashboard (backlighting led indicators)
- Automotive Interior lighting

Contents

1 Pin description 6
2 Absolute maximum ratings 7
3 Thermal characteristics 8
4 Electrical characteristics 8
5 Switching characteristics 12
6 Simplified internal block diagram 15
6.1 Equivalent circuits of inputs and outputs 15
7 Digital blocks 16
8 Configuration register 18
8.1 Gain control (from CFG 0 to 5) and current ranges (CFG- 6) 19
8.2 Error detection mode (CFG-7) 21
8.3 Error detection conditions 24
8.4 Auto-wakeup/auto power shutdown (CFG-10) 24
8.5 Programmable turn-on/turn-off time (CFG-11/12) 24
8.6 SDO delay (CFG-13) 26
8.7 Gradual output delay (CFG-14) 26
8.8 PWM counter setting and brightness register (CFG-15) 27
9 Thermal flag 29
10 Dropout voltage 30
11 Package mechanical data 31
12 Packaging mechanical data 33
13 Ordering information 35
14 Revision history 36

List of tables

Table 1. Pin description 6
Table 2. Absolute maximum ratings 7
Table 3. Thermal characteristics 8
Table 4. Electrical characteristics 8
Table 5. Switching characteristics 12
Table 6. Programmable TON/TOFF (output rise and fall time) 13
Table 7. Digital key summary 16
Table 8. Configuration register 18
Table 9. Example of current ranges. 20
Table 10. Gain steps for the current range selected by REXT $=11 \mathrm{~kW}$ 20
Table 11. Diagnostic thresholds 24
Table 12. Minimum dropout voltage for some current values 30
Table 13. TSSOP24 exposed pad mechanical data 32
Table 14. TSSOP24 tape and reel mechanical data 34
Table 15. Ordering information 35
Table 16. Document revision history 36

List of figures

Figure 1. TSSOP24EP pinout 6
Figure 2. Typical chip-to-chip accuracy 11
Figure 3. Typical application schematic 11
Figure 4. Timing for clock, serial in, serial out, latch enable and outputs. 14
Figure 5. ALED1642GW simplified block diagram. 15
Figure 6. Input and output equivalent circuits 15
Figure 7. Digital keys 17
Figure 8. Channel data and write switch 17
Figure 9. Channel current vs. gain register value 21
Figure 10. Error detection action sequence 22
Figure 11. Error detection power-on timing 22
Figure 12. Configuration register reading sequence 23
Figure 13. Configuration register reading sequence (zoom) 23
Figure 14. Configuration register reading sequence - SDO delay actives 23
Figure 15. Configuration register reading sequence - SDO delay actives (zoom) 23
Figure 16. Output TON (current rise time) CFG - $12=\mathrm{CFG}-11=0$. 25
Figure 17. Output TOFF (current fall time) CFG $-12=$ CFG $-11=0$. 25
Figure 18. Output TON (current rise time) CFG -12 = CFG - $11=1$ 25
Figure 19. Output TOFF (current fall time) CFG $-12=\mathrm{CFG}-11=1$ 25
Figure 20. SDO delay 26
Figure 21. Gradual output delay 27
Figure 22. PWCLK counter and comparator 28
Figure 23. Brightness register setting 28
Figure 24. Thermal flag status 29
Figure 25. Typical channel dropout voltage vs. output current (VDD $=3.3 \mathrm{~V}$) 30
Figure 26. TSSOP24 exposed pad dimensions 31
Figure 27. TSSOP24 tape and reel dimensions 33

1 Pin description

Figure 1. TSSOP24EP pinout

Table 1. Pin description

TSSOP24EP	Symbol	Name and function
1	GND	Ground terminal
2	SDI	Serial data input terminal
3	CLK	Clock input terminal
4	LE	Latch input terminal
$5-20$	OUT0-OUT15	Output terminals
21	PWCLK	Clock input for PWM counter
22	SDO	Serial data output terminal
23	R-EXT	Terminal for external resistor for constant current programming
24	VDD	Supply voltage terminal

2 Absolute maximum ratings

Stressing the device above the ratings listed in the Table 2 may cause the device permanent damage. Operating under conditions above those indicated in the operating section is not implied. Exposure to absolute maximum rating conditions for extended periods may affect the device reliability.

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{DD}	Supply voltage	0 to 7	V
$\mathrm{~V}_{\text {OUT }}$	Output voltage	-0.5 to 20	V
$\mathrm{I}_{\text {OUT }}$	Output current	50	mA
$\mathrm{~V}_{\mathrm{i}}$	Input voltage	-0.4 to $\mathrm{V}_{\mathrm{DD}}+0.4$	V
$\mathrm{I}_{\mathrm{GND}}$	GND terminal current	1400	mA
ESD	Electrostatic discharge protection HBM human body model	± 2	kV

3 Thermal characteristics

Table 3. Thermal characteristics

Symbol	Parameter		Value
T_{a}	Operative free-air temperature range ${ }^{(1)}$	-40 to +150	
$\mathrm{~T}_{\mathrm{OPR}}$	Operative junction temperature range	-40 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{STG}}$	Storage ambient temperature range	-55 to +150	
$\mathrm{R}_{\text {thj }} \mathrm{amb}$	Thermal resistance junction-ambient	$\mathrm{TSSOP}^{24 E P}{ }^{(2)}$	37.5

1. This data must be considered in adequate power dissipation conditions, the junction temperature must be maintained below $150^{\circ} \mathrm{C}$.
2. The exposed pad should be soldered directly to the PCB to get the thermal benefits.

4 Electrical characteristics

$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=-40$ to $125^{\circ} \mathrm{C}$, unless otherwise specified.

Table 4. Electrical characteristics

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
V_{DD}	Supply voltage		3		5.5	V
$\mathrm{V}_{\text {OUT }}$	Output voltage	Out 0-out 15	-	-	19	
V_{IH}	Input voltage		$0.7 \mathrm{x} \mathrm{V}_{\text {DD }}$	-	$V_{\text {DD }}$	
$\mathrm{V}_{\text {IL }}$			GND	-	$0.3 \times \mathrm{V}_{\text {DD }}$	
V_{OL}	Serial data output voltage (SDO)	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=3 \text { to } 5.5 \mathrm{~V} \\ \mathrm{I}=+/-1 \mathrm{~mA} \end{gathered}$	-	-	0.4	
V_{OH}			$\mathrm{V}_{\mathrm{DD}}-0.4$	-	-	
Ioleak	Output leakage current	$\mathrm{V}_{\text {OUT }}=19 \mathrm{~V}$, all outputs OFF	-	-	0.5	$\mu \mathrm{A}$
$V_{\text {uvlo }}$	UVLO threshold (rising)			2.7	2.9	V
	UVLO threshold (falling)		2.2	2.3		
$\mathrm{Hy}_{\text {uvlo }}$	UVLO hysteresis			400		mV

Table 4. Electrical characteristics (continued)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
${ }^{\Delta} \mathrm{OLC}^{\text {a }}$	Output current precision channel-to-channel (all outputs ON$)^{(1)(2)}$	$\begin{gathered} \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} ;\left(\mathrm{l}_{\text {OUT }}=3 \mathrm{~mA}\right) \\ \mathrm{R}_{\text {EXT }}=11 \mathrm{k} \Omega \\ \text { CFG-0...CFG-5 }=" 000000 " \\ \text { CFG- } 6=" 0 " \end{gathered}$	-	-	± 4	\%
$\Delta^{\text {OL2 }}$		$\begin{gathered} \hline \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V} ;\left(\mathrm{l}_{\text {OUT }}=20 \mathrm{~mA}\right) \\ \mathrm{R}_{\text {EXT }}=11 \mathrm{k} \Omega \\ \text { CFG- } \ldots \mathrm{CFG}-5=" 011010 " \\ \text { CFG- } 6=" 1 " \end{gathered}$	-	-	± 3	
$\Delta^{\text {OL3 }}$		$\begin{gathered} \mathrm{V}_{\text {OUT }}=0.8 \mathrm{~V} ;\left(\mathrm{l}_{\text {OUT }}=36 \mathrm{~mA}\right) \\ \mathrm{R}_{\text {EXT }}=11 \mathrm{k} \Omega \\ \text { CFGG-0..CFG- } 5=" 111111 " \\ \text { CFG- } 6=" 1 " \end{gathered}$	-	-	± 3	
$\Delta_{\text {OL2a }}$	Output current precision device-to-device (all outputs ON) ${ }^{(1)}$	$\begin{gathered} \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V} ;\left(\mathrm{l}_{\text {OUT }}=20 \mathrm{~mA}\right) \\ \mathrm{R}_{\text {EXT }}=11 \mathrm{k} \Omega \\ \text { CFGG-0..CFG- } 5=" 011010 " \\ \text { CFG- } 6=" 1 " \end{gathered}$	-	-	± 6	\%
\%/dV $\mathrm{O}_{\text {OUT }}$	Output current vs. output voltage regulation ${ }^{(3)}$	$\begin{gathered} \text { VOUT from } 1 \mathrm{~V} \text { to } 3 \mathrm{~V} ;\left(\mathrm{l}_{\text {OUT }}=\right. \\ 36 \mathrm{~mA}) \mathrm{R}_{\text {EXT }}=11 \mathrm{k} \Omega \\ \text { CFG-0...CFG-5 }=" 111111 " \\ \text { CFG- } 6=" 1 " \end{gathered}$	-	± 0.1	-	\%/V
\%/dV ${ }_{\text {DD }}$	Output current vs. supply voltage regulation ${ }^{(4)}$	$\begin{gathered} \mathrm{V}_{\text {DD }} \text { from } 3 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=0.8 \mathrm{~V} ;\left(\mathrm{l}_{\text {OUT }}=36 \mathrm{~mA}\right) \\ \mathrm{R}_{\text {EXT }}=11 \mathrm{k} \Omega \\ \text { CFGG-0...CFG- } 5=" 111111 " \\ \text { CFG- } 6=" 1 " \end{gathered}$	-	± 1	-	
Rup	Pull-up resistor for PWCLK pin		400	500	650	K Ω
Rdw	Pull-down resistor for LE pin		400	500	650	
ImD(OFF1)	Supply current (OFF)	$\mathrm{R}_{\mathrm{EXT}}=11 \mathrm{k} \Omega$ OUT 0 to $15=$ OFF CFG = default	-	-	6	mA
$\mathrm{I}_{\mathrm{DD}}(\mathrm{ON} 1)$	Supply current (ON)	$\begin{gathered} \hline \mathrm{R}_{\text {EXT }}=11 \mathrm{k} \Omega ; \mathrm{I}_{\text {OUT }}=20 \mathrm{~mA} \\ \text { OUT } 0 \text { to } 15=\mathrm{ON} \\ \text { CFG-0...CFG- } 5=" 011010 " \\ \text { CFG- } 6=" 1 " \end{gathered}$	-		8	
$\mathrm{I}_{\mathrm{DD}}(\mathrm{ON} 2)$		$\begin{gathered} \mathrm{R}_{\text {EXT }}=11 \mathrm{k} \Omega ; \mathrm{I}_{\text {OUT }}=36 \mathrm{~mA} \\ \text { OUT } 0 \text { to } 15=\mathrm{ON} \\ \text { CFG-0...CFG- } 5=" 111111 " \\ \text { CFG- } 6=" 1 " \end{gathered}$	-		10	
IDD (auto OFF)	Supply current (auto OFF)	$\begin{gathered} \mathrm{R}_{\text {EXT }}=11 \mathrm{k} \Omega ; \\ \text { OUT } 0 \text { to } 15=\text { OFF } \\ \text { CFG-0...CFG- } 5=" 111111 " \\ \text { CFG- } 6=" 1 " \end{gathered}$	-	200	500	$\mu \mathrm{A}$

Table 4. Electrical characteristics (continued)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
$\mathrm{T}_{\text {flg }}$	Thermal flag			150		${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {sd }}$	Thermal shutdown ${ }^{(5)}$			170		
$\mathrm{T}_{\text {sd-hy }}$	Thermal shutdown hysteresis ${ }^{(5)}$			15	20	

1. Tested with just one output loaded.
2. ((loutn-loutavg1-15)/ loutavg1-15) $\times 100$.
3.

$$
\Delta(\% / \mathrm{V})=\frac{(\text { Ioutn @ Voutn }=3.0 \mathrm{~V})-(\text { Ioutn @ Voutn }=1.0 \mathrm{~V})}{(\text { Ioutn @ Voutn }=1.0 \mathrm{~V})} \times \frac{100}{3-1}
$$

4.

$$
\Delta(\% / \mathrm{V})=\frac{(\text { Ioutn @ V dd }=5.5 \mathrm{~V})-(\text { Ioutn @ Vdd }=3.0 \mathrm{~V})}{(\text { Ioutn } @ \mathrm{Vdd}=3.0 \mathrm{~V})} \times \frac{100}{5.5-3}
$$

5. Not tested, guaranteed by design.

Figure 2. Typical chip-to-chip accuracy

Figure 3. Typical application schematic

5 Switching characteristics

$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$, unless otherwise specified.
Table 5. Switching characteristics ${ }^{(1)(2)}$

Symbol	Parameter		Conditions	Min.	Typ.	Max.	Unit
$\mathrm{f}_{\mathrm{Clk}}$	Clock frequency		Cascade operation	-	-	30	z
$\mathrm{f}_{\text {pwclk }}$	PWclock frequency			-	-	30	
$\mathrm{tr}_{(\mathrm{SDO}}$	SDO rise time		$\begin{gathered} \mathrm{R}_{\text {EXT }}=11 \mathrm{k} \mathrm{\Omega} ; \mathrm{I}_{\text {OUT }}=20 \mathrm{~mA} \\ \mathrm{~V}_{\text {OUT }}=0.8 \mathrm{~V} \\ \mathrm{VIH}=\mathrm{V}_{\mathrm{DD}} ; \mathrm{VIL}=\mathrm{GND} \\ \mathrm{RL}=3.3 \mathrm{~K} \Omega ; \mathrm{CL}=10 \mathrm{pF} \\ \text { CFG-0 } \ldots \mathrm{CFG}-5=" 011010 " \\ \text { CFG- } 6=" 1 " \end{gathered}$	-	5	-	ns
${ }^{\text {tf }}$ (SDO)	SDO fall time			-	5	-	
tPLHLE	LE - OUTn ${ }^{(3)}$	Propagation delay time ("L to "H")	$\begin{gathered} \mathrm{R}_{\text {EXT }}=11 \mathrm{k} \Omega ; \mathrm{I}_{\text {OUT }}=20 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{OUT}}=0.8 \mathrm{~V} \\ \mathrm{VIH}=\mathrm{V}_{\mathrm{DD}} ; \mathrm{VIL}=\mathrm{GND} \\ \mathrm{RL}=50 \Omega ; \mathrm{CL}=10 \mathrm{pF} \\ \text { CFG-0...CFG-5 = "011010" } \\ \text { CFG-6 = "1" } \end{gathered}$	-	200	-	
tPLH	$\begin{gathered} \hline \text { CLK - SDO } \\ \text { CFG-13 = '0' } \end{gathered}$			8	15	25	
tPHLLE	LE - OUTn ${ }^{(3)}$	Propagation delay time ("H" to "L")		-	100	-	
tPHL	$\begin{aligned} & \hline \text { CLK - SDO } \\ & \text { CFG-13 = } 0 \text { ' } \end{aligned}$			8	15	25	
tw(CLK)	CLK	Pulse width		20	-	-	
t_{W} (PWCLK)	PWCLK			20	-	-	
tw(L)	LE			20	-	-	
$\mathrm{t}_{\mathrm{gr-d}}$	Gradual delay ch-to-ch				10		
$t_{\text {su(L) }}$	Setup time for LE			5	-	-	
$t_{\text {h(L) }}$	Hold time for LE			5	-	-	
$\mathrm{t}_{\text {su(}{ }^{\text {d }} \text {) }}$	Setup time for SDI			5	-	-	
$t_{\text {h(}}$ ($)$	Hold time for SDI			10	-	-	
tclkr ${ }^{(4)}$	Maximum CLK rise time			-	-	5	$\mu \mathrm{s}$
tclkf ${ }^{(4)}$	Maximum CLK fall time			-	-	5	
$\mathrm{I}_{\text {out-ov }}$	Output current turn-on overshoot		$\begin{gathered} \mathrm{V}_{\text {OUT }}=0.6 \text { to } 3 \mathrm{~V} \\ \mathrm{CL}=10 \mathrm{pF} ; \mathrm{I}_{\text {OUT }}=3 \text { to } 36 \mathrm{~mA} \end{gathered}$	-	-	10	\%
$t_{n-e r r}$	Normal error detection minimum output ON time			-	-	1	$\mu \mathrm{s}$

Table 5. Switching characteristics ${ }^{(1)(2)}$

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
$t_{\text {shutdown }}$	Auto power shutdown time (auto OFF)	From LE falling edge to $R_{\text {EXT }}$ voltage reference at -10%	-	100	-	ns
$\mathrm{t}_{\text {wakeup }}$	Auto-wakeup	From LE falling edge to $R_{\text {EXT }}$ voltage reference at 90%	-	3	-	$\mu \mathrm{s}$

1. All table limits are guaranteed by design.
2. Not tested in production.
3. CFG $-11=0$ and CFG $-12=0$ (output $\mathrm{tr}=30 \mathrm{~ns}$; output $\mathrm{tf}=20 \mathrm{~ns}$); CFG-14=1 (no output gradual delay).
4. If devices are connected in cascade and tclkr or tclkf is large, it may be critical to achieve the timing required for data transfer between two cascaded devices.

Table 6. Programmable $\mathrm{T}_{\mathrm{ON}} / \mathrm{T}_{\mathrm{OFF}}$ (output rise and fall time)

Configuration bits (CFG-12 - CFG-11)	Conditions	Typ. (20\% to 80\%)		Unit
		Turn-on	Turn-off	
0-0	$\begin{gathered} \mathrm{R}_{\text {EXT }}=11 \mathrm{k} \Omega ; \mathrm{I}_{\mathrm{OUT}}=20 \mathrm{~mA} \\ \mathrm{~V}_{\text {OUT }}=0.8 \mathrm{~V} \\ \mathrm{VIH}=\mathrm{V}_{\mathrm{DD}} ; \mathrm{VIL}=\mathrm{GND} \\ \mathrm{RL}=50 \Omega ; \mathrm{CL}=10 \mathrm{pF} \\ \text { CFG- } 0 \ldots \mathrm{CFG}-5=" 011010 " \\ \text { CFG- } 6=" 1 " \end{gathered}$	30 ns	20 ns	ns
0-1		100 ns	40 ns	
1-0		140 ns	80 ns	
1-1		180 ns	150 ns	

Figure 4. Timing for clock, serial in, serial out, latch enable and outputs

The correct sampling of the data depends on the stability of the data at SDI on the rising edge of the clock signal and it is assured by a proper data setup and hold time ($\mathrm{t}_{\text {SU(D) }}$ and $\left.t_{h(D)}\right)$, as shown in Figure 4. The same figure shows the propagation delay from CLK to SDO $\left(t_{\text {PLH }} / t_{\text {PHL }}\right)$. Figure 4 describes also the minimum duration of CLK, LE pulses ($\mathrm{t}_{\mathrm{W}(\mathrm{CLK}}$) and $t_{W(L)}$ respectively and the propagation delay from LE to OUT_{n} ($\mathrm{t}_{\text {PLHLE }}$ and $\mathrm{t}_{\text {PHLLE }}$) in the hypothesis that all channels have already been enabled by PWM counter.

6 Simplified internal block diagram

Figure 5. ALED1642GW simplified block diagram

6.1 Equivalent circuits of inputs and outputs

LE and PWCLK input terminals have pull-down and pull-up connection respectively. CLK and SDI must be connected to the external circuit to fix the logic level.

Figure 6. Input and output equivalent circuits

7 Digital blocks

The data input arrives through the serial Interface at each CLK rising edge. The LE signal is used to latch the loaded data and also to address data loading to the appropriate register, thermal flag reading and error detection. The access to the different registers or functions of the device (configuration register, brightness register or current gain, error detection, etc.) is achieved by using different digital keys, defined as a number of CLK pulses during which the LE signal is asserted. The available digital keys are listed in Table 7 and Figure 7. A typical channel data input is shown in Figure 8.

Table 7. Digital key summary

Number	\# CLK rising edge when the LE is "1"	Command description
1	$1-2$	Write switch (to turn on/off output channels)
2	$3-4$	Brightness data latch
3	$5-6$	Brightness global latch
4	7	Write configuration register
5	8	Read configuration register
6	9	Start open error detection mode
7	10	Start short error detection mode
8	11	Start combined error detection mode
9	13	End error detection mode
10	14	Thermal error reading
11	15	Reserved
12		Reserved

Figure 7. Digital keys

Figure 8. Channel data and write switch

8 Configuration register

The configuration register is used to enable or disable some device features, to program some parameters and to change other settings. The access to this register (read or write) is managed to find a description for each bit as described in Table 8. The default value of the configuration register (when the device is switched on or after a reset) is " 0 " for all bits. To change anything in the configuration register, a 16-bit digital word must be sent (CFG-0 represents LSB, CFG -15 the MSB).

Table 8. Configuration register

Bit	Definition	R/W	Description					Default
CFG-0	Current gain adjustment	R/W	6-bit DAC allows adjusting the device output current in 64 steps for each range (defined by CFG-6)					0
CFG-1								0
CFG-2								0
CFG-3								0
CFG-4								0
CFG-5								0
CFG-6	Current range	R/W	"0" low current range "1" high current range					0
CFG-7	Error detection mode	R/W	"0" normal mode " 1 " reserved mode					0
CFG-8	Shorted-LED detection thresholds	R/W	Programmable output shorted-LED detection thresholds		CFG-9	CFG-8	Th. volt.	0
					0	0	1.8 V	
					0	1	2.5 V	
CFG-9		R/W			1	0	3 V	0
					1	1	3.5 V	
CFG-10	Auto OFF shutdown	R/W	"0" device always O "1" auto power shut	down activ	e (auto			0
CFG-11	Output turnon/off time	R/W	Programmable output rise and fall time (20\% to 80\%)	CFG-12	CFG-11	Turn-on	Turn-off	0
				0	0	30 ns	20 ns	
				0	1	100 ns	40 ns	
CFG-12		R/W		1	0	140 ns	80 ns	0
				1	1	180 ns	150 ns	
CFG-13	SDO delay	R/W	If " 0 " no delay is present on SDO If " 1 " the data are shifted out and they are synchronized with the falling edge of the CLK signal					0

Table 8. Configuration register (continued)

Bit	Definition	R/W	Description	Default
CFG-14	Gradual output delay	R/W	"0" a progressive delay is applied to output (10 ns per channel) "1" no delay is applied to output	0
CFG-15	$12 / 16$ PWM counter	R/W	" 0 " to select 16-bit brightness register (65536 grayscale rightness steps). "1" to select 12-bit brightness register (4096 grayscale brightness steps)	0

8.1 Gain control (from CFG 0 to 5) and current ranges (CFG-6)

The LED current can be programmed using an external resistor connected to GND from $R_{\text {EXT }}$ pin and can be fixed using the dedicated bits of the configuration register (from CFG 0 to CFG - 5 bits define the gain, while CFG - 6 bit defines the current range within the which the gain can be adjusted). The device can regulate the current up to 36 mA and down to 0.5 mA . The accuracy of the LED current depends on the selected range and it is guaranteed in the ranges indicated in the static electrical characteristics only (see Table 3 and 9). When the device is switched on, the selected current range and the resistor connected to the REXT pin fix the default LED current:

$$
I_{O L_{-} \text {default }}=\frac{V_{R E F}}{R_{E X T}} \cdot K
$$

Where $\mathrm{V}_{\text {REF }}=1.23 \mathrm{~V}$ is the voltage of the $\mathrm{R}_{\mathrm{EXT}}$ pin and K is the mirroring current ratio, whose value depends on the selected current range:

- $\mathrm{K}=28$ with low current range selected (CFG-6 = "0")
- $K=80$ with high current range selected (CFG - $6=11 ")$

The relation between the programmed current and the current gain settings is the following:

$$
I_{o L}=\left(I_{o L-d e f a u l t}+G \cdot \Delta I_{\text {setp }}\right)
$$

where G is the current gain value (decimal value) defined by the dedicated bits of the current gain register. The current gain is managed by 6-bits of the configuration register (CFG-0 to CFG-5, CFG-0 is LSB and CFG-5 is MSB) and can be adjusted within two ranges (selectable through the bit CFG - 6) over 64 steps. The width of each step depends on the default current ($I_{o l}$ default $)$ as well as the selected $\mathrm{R}_{\text {EXT }}$. Finally, each step is as follows:

$$
\Delta I_{\text {step }}=\frac{I_{O L_{-} \text {default }}}{21}
$$

The Table 9 shows an example of the current setting with an external resistance $\left(R_{\text {EXT }}\right)=11$ $\mathrm{K} \Omega$:

Table 9. Example of current ranges

	$\mathbf{R}_{\text {EXT }}[\mathrm{K} \Omega]$	CFG-6	CFG-0 to CFG-5	LED current ${ }^{(1)}[\mathrm{mA}]$	Accuracy
Low range	11	0	000000	3.1 mA	$\pm 4 \%$ ch-to-ch
	11	0	111111	12.5 mA	-
High range	11	1	000000	8.9 mA	
	11	1	011010	20 mA	$\pm 3 \%$ ch-to-ch

1. The indicated values may be slightly different on the current device.

The Table 10 shows an example of current setting and gain control with $R_{\text {EXT }}=11 \mathrm{k} \Omega$, see also Figure 9.

Table 10. Gain steps for the current range selected by $R_{\text {EXT }}=11 \mathbf{k} \Omega$

Low range	CFG-6	CFG(0 to 5)	LED current ${ }^{(\mathbf{1})}$ [mA]
	0	000000	3.131
	0	000001	3.280
	\ldots	\ldots	\ldots
High range	0	111111	12.524
	1	000000	8.945
	1	000001	9.371
	\ldots	\ldots	\ldots
	1	111111	35.782

1. The indicated values may be slightly different on the current device.

The external programming resistance must be connected as close as possible to the related device pins ($R_{\text {EXT }}$ and GND) to reduce as minimum as possible the routing length and prevent reference noise injection and electromagnetic interferences. Moreover, a direct connection to the device GND pin reduces the possible output current variation when the total device ground current changes (load effect).

Figure 9. Channel current vs. gain register value

8.2 Error detection mode (CFG-7)

Stopping the normal activity of the display and turning on all driver channels allows the error detection to be performed and failed LED or display defects to be checked.

The error detection is active when the CFG -7 bit of the configuration register is " 0 ". The diagnostics is performed as shown in Figure 10:

- The LED has to be selected turning on the relative channel on the switch register (powering on or off the output channels); the brightness register value for this channel cannot be zero.
- The normal error detection has to be selected in the configuration register (CFG-7= "0"). The appropriate digital key to choose the type of detection (open, short or combined) must be sent (see Table 7).
- After the error detection starts, the channel under testing has to be turned on at least 1 $\mu \mathrm{s}$ (the LED is at the nominal current). Please note that, the output power-on depends on PWCLK signal and in several applications this signal is not synchronized with the serial interface clock (CLK pin). Therefore, to be sure that, between the detection start and the detection end, the output power-on is 1μ s and moreover, that last power-on, in the interval, starts at least 0.5μ s before the detection end pattern (see Figure 11), it is suggested that the error detection should be performed just after the device startup (brightness counter reset) with all channels ON, before applying PWCLK signal..
- The result of the detection (" 0 " indicates a fault condition) is shifted out from SDO in 16 clock pulses after the "detection end command" is provided, first output bit represents channel 15 (error data can be read in a way similar to configuration register data reading as shown on Figure 12, 13, 14 and 15).

Figure 10. Error detection action sequence

Figure 11. Error detection power-on timing

Figure 12. Configuration register reading sequence

Figure 14. Configuration register reading sequence - SDO delay actives

Figure 13. Configuration register reading sequence (zoom)

Figure 15. Configuration register reading sequence - SDO delay actives (zoom)

8.3 Error detection conditions

During the error detection phases for each channel, the following checks have to be performed:

- The output current in open detection mode (digital key: 9 CLK rising edges when LE is "1")
- The output voltage in short detection (digital key: 10 CLK rising edges when LE is "1")
- Both parameters (output voltage and current) in combined error detection mode (digital key: 11 CLK rising edges when LE is "1").

The thresholds for the error diagnostics are listed in Table 11:
Table 11. Diagnostic thresholds

Error detection modes		Checked malfunction	CFG-9	CFG-8	Thresholds (V)			
		Min.			Typ.	Max.		
Open detection			Open line or output short to GND	x	X	-	$\mathrm{l}_{\mathrm{OUT}} \leq 0.5 \times \mathrm{l}_{\mathrm{OUT}}$ programmed	-
Short detection		Short on LED or short to V-LED	0	0	1.15	$\mathrm{V}_{\text {OUT }} \geq 1.8$	2.05	
			0	1	2.25	$\mathrm{V}_{\text {OUT }} \geq 2.5$	2.75	
			1	0	2.75	$\mathrm{V}_{\text {OUT }} \geq 3.0$	3.25	
			1	1	3.25	$\mathrm{V}_{\text {OUT }} \geq 3.5$	3.80	

8.4 Auto-wakeup/auto power shutdown (CFG-10)

This feature reduces the power consumption when all outputs are OFF. It is active when the CFG -10 bit of configuration register is "1". The auto power shutdown (auto OFF) starts when the data latched is " 0 " for all channels, and device is active again (wakeup) at the first latched data string including at least one bit = "1" (at least one channel ON). Timings for shutdown and wakeup are present in the dynamics feature table. While the auto power shutdown is active, the device ignores any other command except the channel power-on.

8.5 Programmable turn-on/turn-off time (CFG-11/12)

The device gives the possibility to program the turn-on and turn-off time of the current generators. Four different values can be selected using CFG-12 and CFG-11 bits of the configuration register (see Table 8) to fit the application requirements: 30/20 ns (00), 100/40 $\mathrm{ns}(01), 140 / 80 \mathrm{~ns}(10)$ and $180 / 150 \mathrm{~ns}(11)$. The selected value refers to T_{ON} (current rise time) and $\mathrm{T}_{\text {OFF }}$ (current fall time).

Figure 16. Output $T_{O N}$ (current rise time) CFG - Figure 17. Output $T_{O F F}$ (current fall time) CFG -

Figure 18. Output T_{ON} (current rise time) CFG - Figure 19. Output $\mathrm{T}_{\mathrm{OFF}}$ (current fall time) CFG -

12 = CFG-11 = 1

12 = CFG-11 = 1

8.6 SDO delay (CFG-13)

Usually in SDO terminal, data are shifted out the rising edge of CLK signal (with a propagation delay of about 15 ns - signal (a) in Figure 20). The device has the possibility to shift data out the falling edge of the CLK signal (with few ns of propagation delay - signal (b) in Figure 20). This feature is active when CFG -13 bit of the configuration register is "1". Default setting for this bit is " 0 " hence the SDO delay is not activated by default. This feature is particularly useful when some devices are connected in daisy chain configuration with mismatched propagation delays, between CLK and SDO data path (board routing).

Figure 20. SDO delay

8.7 Gradual output delay (CFG-14)

The gradual output delay consists of turning on gradually the current generators avoiding to turn on all channels at the same time.

When PWM counter enables the device channels, the outputs can be turned on simultaneously or with a progressive delay. Thanks to configuration register CFG-14 bit, the user can decide to put a delay among outputs (10 ns from each channel to the next one, around 150 ns between first and last channel). The typical output timing is shown in Figure 21. This feature prevents the inrush current and reduces the bypass capacitor value.

Figure 21. Gradual output delay

8.8 PWM counter setting and brightness register (CFG-15)

The brightness of each channel can be adjusted through a 12/16-bit PWM grayscale brightness control according to the PWM counter selection (configuration register CFG -15 bit). Brightness data is loaded by the SDI pin in a 16-bit shift register. Once 16-bit has been loaded (first input bit of brightness word is MSB, $16^{\text {th }}$ bit is LSB), the digital word is moved to the corresponding temporary buffer (first word is the brightness of channel 15, the last one is for channel 0) using the appropriate key shown in Table 7 ("data latch"). One "data latch" key must follow each 16-bit brightness word except the last one. When the last brightness word is loaded (channel 0 brightness data), the key indicated as "global latch" in Table 7 must be used. This action moves the word from the shift register to the temporary buffer through the OUT0 and, at the same time, transfers all data of the 16 temporary buffers (16 x16-bit string) to the corresponding brightness registers (see also Figure 23).
The PWM signals are generated by comparing the content of the brightness registers to a 16 -bit or 12 -bit counter, according to the CFG-15 bit status. The counter's clock source is provided to the PWCLK pin. In case of selection of 12-bit PWM counter, the four most significant bits of each brightness data word are ignored. However, each of sixteen brightness data words must be 16-bit long.The brightness register default value is " 0 ", unless this value is changed, the LED brightness is minimum. Figure 22 shows this function in the schematic.

PWCLK must be a square wave signal, duty cycle is not important but the minimum width has to be above 20 ns , max. frequency has to be 30 MHz (pay attention the minimum output ON time). Just after the device startup (brightness counter reset), before applying PWCLK signal, all channels are in power-on condition if the brightness register values are not zeroed.

Figure 22. PWCLK counter and comparator

Figure 23. Brightness register setting

$9 \quad$ Thermal flag

The device has a thermal control logic providing a flag status when the internal temperature exceeds $150{ }^{\circ} \mathrm{C}$ (if temperature increases over $170{ }^{\circ} \mathrm{C}$ a thermal shutdown protects the device). This status can be read running the digital key "thermal error reading", holding the LE high for 13 CLK rising edges (see Figure 24). If thermal alert is asserted, a 16-bit string = " 1 " is sent by SDO. The error data is uploaded into EDR register and this error notification is ready to be streamed through SDO to next 16 CLK rising edges. Hence, thermal flag status can be:

Device temperature	SDO
under $150^{\circ} \mathrm{C}$	$" 0000000000000000 "$
over $150^{\circ} \mathrm{C}$	$" 1111111111111111 "$

Figure 24. Thermal flag status

10 Dropout voltage

In order to correctly regulate the channel current, a minimum output voltage ($\mathrm{V}_{\mathrm{DROP}}$) across each current generator must be guaranteed.
The Figure 25 and Table 12 show the minimum $V_{\text {DROP }}$ related to the regulated current; these measurements have been recorded with just one output ON. When more than one output is active the drop voltage increases. At 36 mA per channel, the minimum output voltage must be increased about 200 mV .

A $V_{\text {DROP }}$, lower than the minimum recommended, implies the regulation of a current lower than the expected one. However an excess of $\mathrm{V}_{\text {DROP }}$ increases the power dissipation.

Figure 25. Typical channel dropout voltage vs. output current ($\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$)

Table 12. Minimum dropout voltage for some current values

Output current [mA]	Minimum $\mathbf{V}_{\text {DROP }} @ \mathbf{V}_{\mathrm{DD}}=3.3 \mathrm{~V}[\mathrm{mV}]$
3	70
9	180
12	250
20	410
36	730
40	820
45	955
50	1070

11 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK ${ }^{\circledR}$ is an ST trademark.

Figure 26. TSSOP24 exposed pad dimensions

Table 13. TSSOP24 exposed pad mechanical data

Dim.	mm		
	Min.	Typ.	Max.
A			1.20
A1			0.15
A2	0.80	1.00	1.05
b	0.19		0.30
c	0.09	7.80	0.20
D	7.70	5.00	7.90
D1	4.80	6.40	5.2
E	6.20	4.40	6.60
E1	3.30	3.20	4.50
E2	3.00	0.65	3.40
e	0.45	0.60	
L		1.00	0.75
L1	0		8
k			0.10
aaa			

12 Packaging mechanical data

Figure 27.TSSOP24 tape and reel dimensions

Table 14. TSSOP24 tape and reel mechanical data

Dim.	mm		
	Min.	Typ.	Max.
A		-	330
C	12.8	-	13.2
D	20.2	-	
N	60	-	22.4
T		-	7
Ao	8.8	-	8.4
Bo	1.7	-	1.9
Ko	3.9	-	4.1
Po	11.9	-	12.1
P			

13 Ordering information

Table 15. Ordering information

Order code	Package	Packaging
ALED1642GWXTTR	TSSOP24 exposed pad	2500 parts per reel

14 Revision history

Table 16. Document revision history

Date	Revision	Changes
07-Jan-2014	1	Initial release.
03-Mar-2014	2	Modified footnote1 in Table 5: Switching characteristics. Added footnote 2 in Table 5: Switching characteristics and footnote 5 in Table 4: Electrical characteristics.
05-Jun-2014	3	Updated Table 13: TSSOP24 exposed pad mechanical data. Minor text changes.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com

