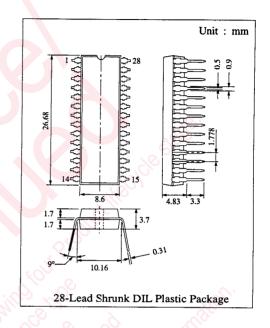
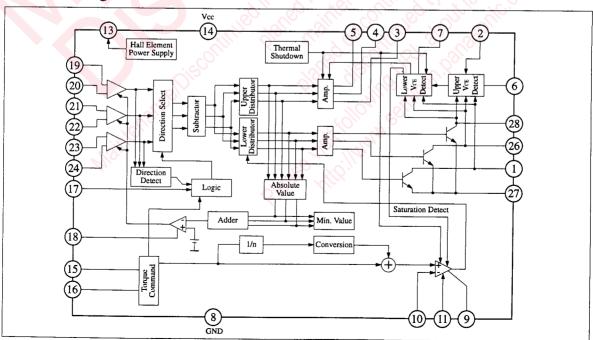
AN3826NK


VCR Capstan Motor Driver

■ Description


The AN3826NK is an integrated circuit designed as VCR capstan Hall motor drives.

Features

- Operating supply voltage range: Vcc=4.5V to 5.5V
- 3-phase full-wave 180° power-on, overlap drive
- Max. motor voltage: V_M=20V
- Max. output current Iomax=1A
- Built-in torque ripple cancellation circuit
- Built-in Hall amplifier and AGC circuit

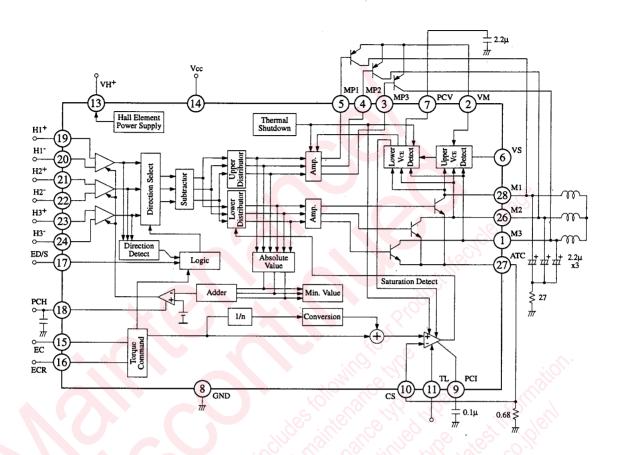
Block Diagram

■ Pin Descriptions

Pin No.	Pin Name	Typ. Waveform	Description	I/O Impedance	Equivalent Circuit
2	VM motor power		Input the motor power		
3 4 5	MP3 upper predrive output 3 MP2 upper predrive output 2 MP1 upper predrive output 1		Predrive output of the output transistor on the source side (upper)		VM 3 4 (5)
6	VS switching power control output		Output a voltage proportional to VCE of the output transistor on the source side in order to control the switching power	14.5kΩ	0-400µA
7	PCV voltage feedback system phase compensation.		Phase compensation pin for the control system of the output transistor on the source side	OU RION	PCV(7)
8	GND		Ground pin	Alo M	sec intolling
9	PCI current feedback system phase compensation) Scotlinus	Phase compensation pin for the current control system of the output transistor on the sync. side		PCI 11k 330
10	CS current detection	<u></u>	Connect to the ATC pin. Input a current value detected by a resistor	N-Sellico	2.5k 2.5k
11	TL torque limit		Sets the max. voltage of the ATC pin		(i) TL CS (ii)
13	VH ⁺ Hall element power supply		Output the supply voltage for Hall elements		Vcc 30 1.2k 8.3k VH+

■ Absolute Maximum Ratings (Ta=25°C)

Item	Symbol	Rating	Unit	Note
Supply Voltage	Vcc	6	V	
Motor Supply Voltage	V ₂	20	V	
Motor Drive Current	In	±1.5	A	n = 26, 28, 9
Output Pin Voltage	Vn	20	V	n = 26, 28, 9
Pin Voltage	Vm	Vcc	v	m = 6, 10, 11, 15, 16, 17, 19, 20, 21, 22, 23, 24
Pin 13 Current	I13	-100	mA	
Power Dissipation (Ta=70°C)	Po	1790	mW	
Operating Ambient Temperature	Topr	-20 ~ +70	°C	
Storage Temperature	Tstg	-55 ~ +150	°C	


■ Recommended Operating Range (Ta=25°C)

Item	Symbol	Range
Operating Supply Voltage Range	Vcc	4.5V ~ 5.5V

■ Electrical Characteristics (Vcc=5V, Ta=25°C)

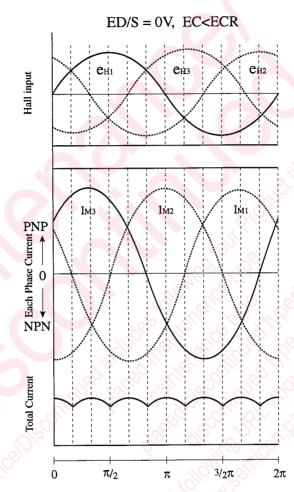
Item	Symbol	Condition	min.	typ.	max.	Unit
Supply curent	Icc	Hall element supply current excluded			15	mA
Torque command ref. voltage	ECR	(0)	2		3.5	V
Torque command voltage	EC	100 100	0.5		4	v
Torque command input offset voltage	ECoffset	10/11/10/2	-150		150	mV
Torque command dead zone	ECDZ	10/10/10/10/10/10/10/10/10/10/10/10/10/1	40		130	mV
Output idle voltage	ATCidle	162 161 101/1	71	1.10	4	mV
I/O gain	Gio	Chip all the Me	0.59	0.65	0.71	times
Maximum output voltage	ATCmax	The of the still of	0.75), 'C'	9	V
Forward command voltage	EDF	Tall all isco all	10 _D		0.9	V
Stop command voltage	EDs	be lift or till	1.3	32	3	V
Reverse command voltage	EDR	10 iso 11	3.5			V
Hall element input allowable voltage	Hin	Di On: 100 :10	1.2		4	V
Hall element input offset voltage	Hoffset	"OM, Silli	-8		8	mV
Lower output voltage (1)	VN(1)	ATC = 68mV	0.37		0.61	V
Lower output voltage (2)	VN(2)	ECR = 2.5V, EC = 0.5V			3.2	V
TL-CS offset voltage	TLoffset	TL = 600mV,	10		45	mV
Ripple cancellation rate	a	ECR-EC = 0.2V	4		18	%
Upper drive max. current	Імр	X	15			mA
Hall element supply voltage	V _H +	IvH+ = 20mA	2.6	2.85	3.2	V
Switching power control output	Vs	$V_{M-M1} = 1V$	1.5		3	V
Switching power control output gain	Gvs		1.5		2.5	times

■ Application Circuit

AN3826NK

■ Pin Descriptions (Continue)

Pin No.	Pin Name	Typ. Waveform	Description	I/O Impedance	Equivalent Circuit
14	Vcc		Input the supply voltage		
15	EC torque command input		Input a torque command voltage		Vcc Vcc #
16	ECR torque command ref. input		Input a torque command ref. voltage		7.5k 1k 1k EC 15
17	ED/S rotary direction command input		Specifies a motor rotary direction and stop with a 3-valued input	0	ED/S 17
18	PCH Hall amp. phase compensation		AGC loop phase compensation pin for the Hall amplifier	ion biogs	PCH 5.1k x2 x2 2k 2k 2k.
19 20 21 22 23 24	H1+ Hall element input H1- Hall element input H2+ Hall element input H2- Hall element input H3+ Hall element input H3- Hall element input		Input Hall element output for the motor	continued to	19 — 20 21 23 SOMA 22 typ. 24
26 28 1	M2 motor coil pin 2 M1 motor coil pin 1 M3 motor coil pin 3		Connect to the motor coil		26 (28) (1) M2 M1 M3
27	ATC total current output	~~~	Output the total current of output transistors	My Soy	ATC 27


Supplementary Explanation

Electrical Characteristic Design Reference Value (Ta=25°C)

Item	Symbol	Condition	min.	typ.	max.	Unit
Thermal protective circuit operation temperature	Ton		150	175	200	°C

Note) The above characteristic is a design reference value, not a guarantee value.

• Hall Input and Output Current Phases

Torque Direction Setting Logic A direction of generated torque is determined by the following information.

• Information from the rotary direction detection: ER

High: $H1 \rightarrow H3 \rightarrow H2$

• Brake information from the torque command

circuit : EA High : ECR<EC

• Rotary direction command: ED

 $High: H1 \rightarrow H3 \rightarrow H2$

 $H_1 \rightarrow H_3 \rightarrow H_2$ (forward rotation) at ED/S=0V

Direction of generated torque: EP
 High: Generates a torque rotating in the direction of H1→H3→H2
 EP is determined as follows, depending on ER, EA, or ED.

	ĒĀ	EA		ĒĀ
ED	Н	Н	Н	L
ED	H	L	L	L
	ER		F	ER

Torque Direction Setting Karnaugh's Diagram

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
 - Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - · Any applications other than the standard applications intended.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.
- Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of our company.

20080805