IT2100L



SMD Temperature Compensated Crystal Oscillators

SMD TCXO using analogue ASIC for compensation and two outputs capable of being independently controlled with separate Enable/Disable pins for efficient power management and clock distribution.

Product description

The I(V)T2100L series employs an analogue ASIC for the oscillator and a high order temperature compensation circuit in a 2.0 x 1.6 mm size package. Each of two outputs can be placed in power down mode through a dedicated input pin per output. During standard operation, power consumption is minimized by operating down to a supply voltage of 1.8V. The I(V)T2100L's high stability, low power consumption, small footprint and powerful compensation method makes it a TCXO ideally suited for demanding GPS mobile applications.

Applications

- GPS
- Smartphone
- Communications
- Consumer

Features

- Dual frequency output
- Independent Enable/Disable pin per output

SPECIFICATION REFERENCES

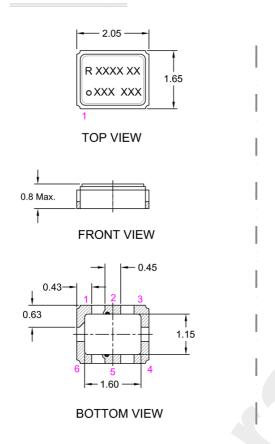
Description

- Excellent phase noise performance
- · Low start up drift rate
- · Height less than 0.8mm
- Operates at 1.8V supply

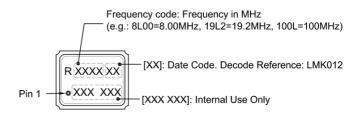
Parameter

Specifications

1.0 Line

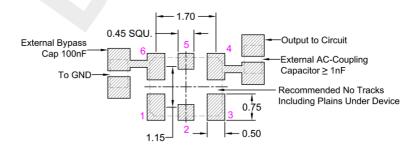

1.1	Model description	IT2100L / IVT2100L (Draft)		
1.2	RoHS compliant	Yes		
1.3	Reference number			
1.4	Rakon part number			
2.0	FREQUENCY CHARACTER	ISTICS		
Line	Parameter	Test Condition	Value	Unit
2.1	Frequency		13 to 52	MHz
2.2	Frequency calibration + reflow	Offset from nominal frequency measured at 25°C ±2°C. Two consecutive reflows as per attached profile after 2 hours relaxation at 25°C	±2 max	ppm
2.3	Frequency stability over temperature	Referenced to the midpoint between minimum and maximum frequency value over the specified temperature range. Control voltage set to midpont of control voltage (Note 1)	±0.5 to 2	ppm
2.4	Temperature range	The operating temperature range over which the frequency stability is measured	-30 to 85	°C
2.5	Frequency slope	Minimum of 1 frequency reading every 2°C over the operating temperature range (Note 1)	0.2 to 1	ppm/°C
2.6	Static temperature hysteresis	Frequency change after reciprocal temperature ramped over the operating range. Frequency measured before and after at 25°C	0.6 max	ppm
2.7	Sensitivity to supply voltage variations	Supply voltage varied ±5% at 25°C	±0.2 max	ppm
2.8	Sensitivity to load variations	±10% load change at 25°C (Note 2)	±0.2 max	ppm
2.9	Long term stability	Frequency drift over 1 year at 25°C	±1 max	ppm

3.0	POWER SUPPLY			
Line	Parameter	Test Condition	Value	Unit
3.1	Supply voltage	Nominal supply voltage range	1.8 to 3	V
3.2	Current	At maximum supply voltage (Note 2)	3 max	mA
4.0	CONTROL VOLTAGE OPT	ION (Note 3)		
Line	Parameter	Test Condition	Value	Unit
4.1	Control voltage range	The nominal control voltage value is midway between the minimum and maximum	0.5 to 2.5	V
4.2	Frequency control range	Frequency shift from minimum to maximum control voltage	10 to 20	ppm
4.3	Linearity	Deviation from straight line curve fit	10 max	%
4.4	Control voltage input resistance		500	kΩ
5.0	OSCILLATOR OUTPUT 1			
Line	Parameter	Test Condition	Value	Unit
5.1	Output waveform	DC coupled clipped sine-wave (Note 4)		
5.2	Output voltage level	At minimum supply voltage (Note 2)	0.8 min	V
5.3	Output load resistance	Nominal load of $10k\Omega$	9 to 11	kΩ
5.4	Output load capacitance	Nominal load of 10pF	9 to 11	pF
6.0	OSCILLATOR OUTPUT 2			
Line	Parameter	Test Condition	Value	Unit
6.1	Output waveform	DC coupled clipped sinewave (Note 4)		
6.2	Output voltage level	At minimum supply voltage (Note 2)	0.8 min	V
6.3	Output load resistance	Nominal load of $10k\Omega$	9 to 11	kΩ
6.4	Output load capacitance	Nominal load of 10pF	9 to 11	pF
7.0	POWER DOWN MODE (E	nable/Disable 1) & (Enable/Disable 2)		
Line	Parameter	Test Condition	Value	Unit
7.1	Power down	RF, Minimum GND	20 max	%Vcc
7.2	Normal operating mode	RF, Maximum Vcc	80 min	%Vcc
7.3	Stand-by current	Typical value $<0.01\mu\text{A}$ for output 1 and 2 disabled	2 max	μΑ
7.4	Start up time (amplitude)	Within 90% of specified output level	0.5 max	ms
7.5	Sart up time (frequency)	Within ±0.5ppm of steady state	2 max	ms

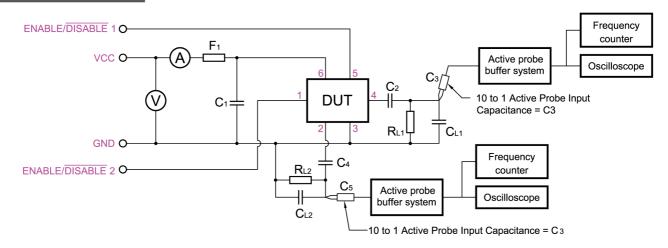

8.0	SSB PHASE NOISE					
Line	Parameter	Test Condition	Value	Unit		
8.1	SSB phase noise power density at 1Hz offset	Typical value for a 26.0MHz oscillator at 25°C -		dBc/Hz		
8.2	SSB phase noise power density at 10Hz offset	Typical value for a 26.0MHz oscillator at 25°C -86		dBc/Hz		
8.3	SSB phase noise power density at 100Hz offset	Typical value for a 26.0MHz oscillator at 25°C -109				
8.4	SSB phase noise power density at 1kHz offset	Typical value for a 26.0MHz oscillator at 25°C -132				
8.5	SSB phase noise power density at 10kHz offset	Typical value for a 26.0MHz oscillator at 25°C -148		dBc/Hz		
8.6	SSB phase noise power density at 100kHz offset	Typical value for a 26.0MHz oscillator at 25°C	-149	dBc/Hz		
9.0	ENVIRONMENTAL					
Line	Parameter	Description				
9.1	Shock	Half sine-wave acceleration of 3000g peak amplitude. Duration: 0.3ms, Velocity: 12.3ft/s [MIL-STD-202 M213] (Note 5)				
9.2	Humidity	After 48 hours at 85°C ±2°C 85% relative humidity non-condensing (Note 5)				
9.3	Thermal shock	Exposed at -40°C for 30 minutes then to 85° C for 30 minutes repeatedly for a period of 5 days (Note 5)				
9.4	Vibration	10g RMS from 30 Hz to 1500 Hz random in each of the 3 axis for 4 hours; total of 12 hours (Note 5)				
9.5	Storage temperature -40 to 85°C					
10.0	MARKING					
Line	Parameter	Description				
10.1	Туре	Engraved				
10.2	Line 1	[R], $[XXXX]^* = Frequency$ in MHz (e.g.: $8L00 = 8MHz$, $19L2 = 19.2MHz$, $100L = 100MHz$), and $[XX] = Date$ code				
10.3	Line 2	[o] = Pin 1 and [XXX XXX] = Internal code				
10.4	* Frequency code Frequency marking is only represented by the first three significant digits. For example, on an IT2100L TCXO at 16.368MHz, its frequency code marking will be 16L3					
11.0	MANUFACTURING INFO	RMATION				
Line	Parameter	ter Description				
11.1	Washing	Able to withstand aqueous washing process				
11.2	Reflow	Solder reflow process as per profile attached				
11.3	Packaging description	Packaging description Tape and reel. Standard packing quantity is 4000 per reel				
12.0	SPECIFICATION NOTES					
Line	Parameter	Description				
12.1	Note 1	e 1 Parts should be shielded from drafts causing unexpected thermal gradients. Temperature changes due to ambient air currents on the oscillator can lead to short term frequency drift				
12.2	Note 2	Specified for load stated in oscillator output section at 25°C				
12.3	Note 3	te 3 If selected, control voltage option replaces Enable/Disable				
12.4	Note 4	External AC-Coupling capacitor required. 1nF or greater recommended				
12.5	Note 5	e 5 Frequency shift ≤1ppm after environmental conditions				

Drawing Name: I(V)T2100L Model Drawing

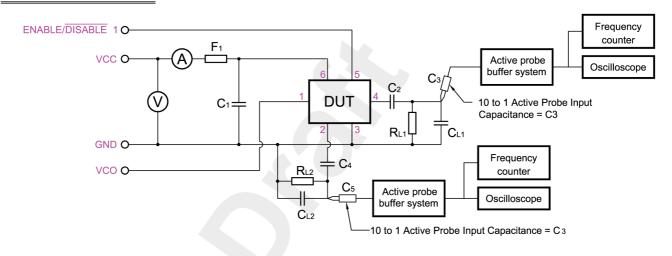
MODEL DRAWING


LID MARKING

PIN CONNECTIONS


PIN	IT21L	IVT21L
1	Enable / Disable 2	VCO
2	OUTPUT 2	OUTPUT 2
3	GND	GND
4	OUTPUT 1	OUTPUT 1
5	Enable / Disable 1	Enable / Disable 1
6	VCC	VCC

RECOMMENDED PAD LAYOUT TOP VIEW



Drawing Name: I(V)T2100L Series Test Circuit

IT21 ..L TEST CIRCUIT:

IVT21 ..L TEST CIRCUIT:

C₁: 100nF

C₂, C₄: 1nF

RL1, RL2,: 10K

 $C_{T1} = C_{L1} + C_3$; $C_{T2} = C_{L2} + C_5$

- * C₃, C₅ Oscilloscope probe capacitance.
- * C_T as stated in OSCILLATOR OUTPUT section

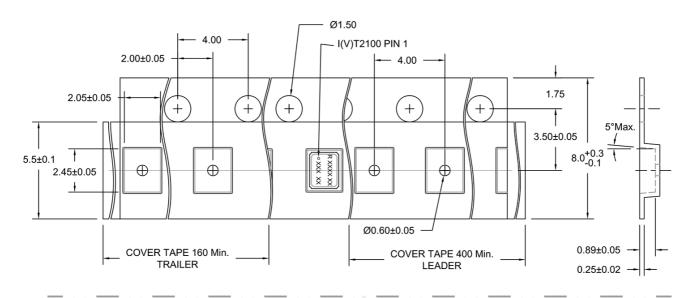
F1: A ferrite bead or a resistor between $22\Omega \sim 47\Omega$ recommended.

TITLE: I(V)T2100L SERIES TEST CIRCUIT

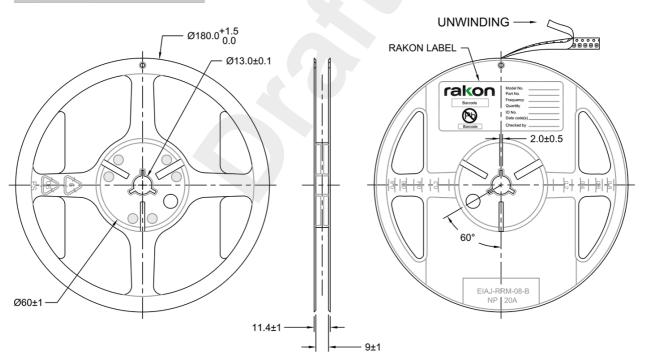
RELATED DRAWINGS:

REVISION: A

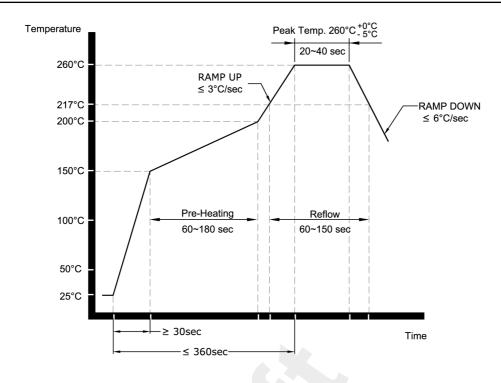
DATE: 16-Aug-11


SCALE: NTS

FILENAME: CAT620


Millimetres © 2009 Rakon Limited

Drawing Name: 2100 Series Tape and Reel Drawing


TAPE DETAIL (Scale 5:1)

REEL DETAIL (Scale 1: 2.5)

Drawing Name: Pb-Free Reflow

NOTE:

The product has been tested to withstand the Reflow Profile shown. The Reflow Profile used to solder Rakon products is determined by the solder paste Manufacturer's specification. It is recommended that the Reflow Profile used does not exceed the one shown above.

TITLE: Pb-FREE REFLOW	FILENAME	: CAT541	
RELATED DRAWINGS:	REVISION:	В	
	DATE:	05-Sep-11	rakon
	SCALE:	NTS	
	Millimetres		© 2009 Rakon Limited