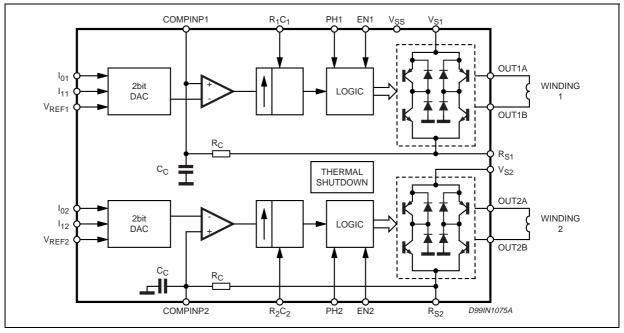


L8219

HIGH CURRENT STEPPER MOTOR DRIVER

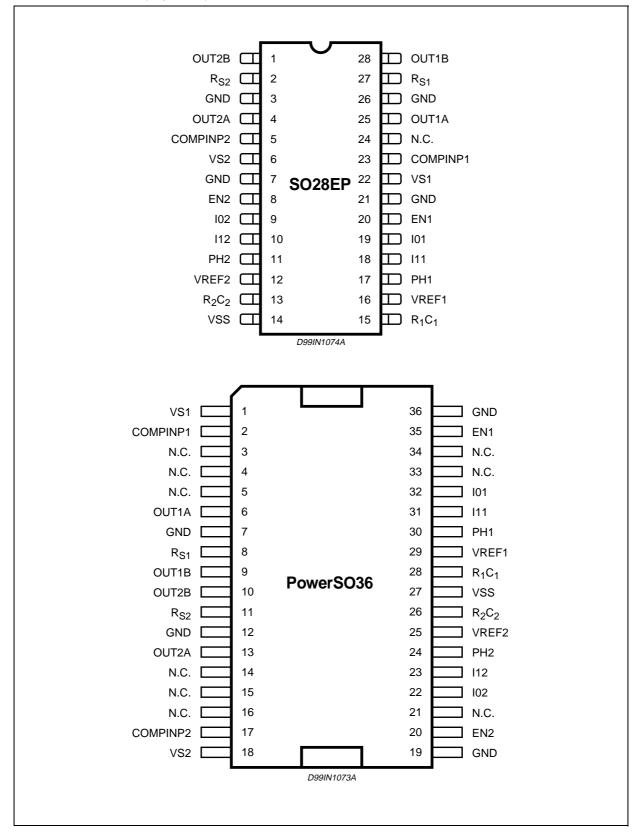
PRODUCT PREVIEW

- IMPROVED STEP ANGLE SPLITTING & TORQUE
- ABLE TO DRIVE BOTH WINDINGS OF BIPOLAR STEPPER MOTOR
- OUTPUT CURRENT UP TO 1.5A EACH WINDING
- WIDE VOLTAGE RANGE 10V TO 46V
- HALF-STEP, FULL-STEP AND MICROSTEPP-ING MODE
- BUILT-IN PROTECTION DIODES
- INTERNAL PWM CURRENT CONTROL
- LOW OUTPUT SATURATION VOLTAGE
- DESIGNED FOR UNSTABILIZED MOTOR SUPPLY VOLTAGE
- INTERNAL THERMAL SHUTDOWN
- TWO POWER PACKAGES ARE AVAILABLE:
 - SO28EP Exposed Pad
 - PowerSO36


DESCRIPTION

The L8219 is a bipolar monolithic integrated circuits intended to control and drive both winding of a bipolar stepper motor or bidirectionally control two DC mo-

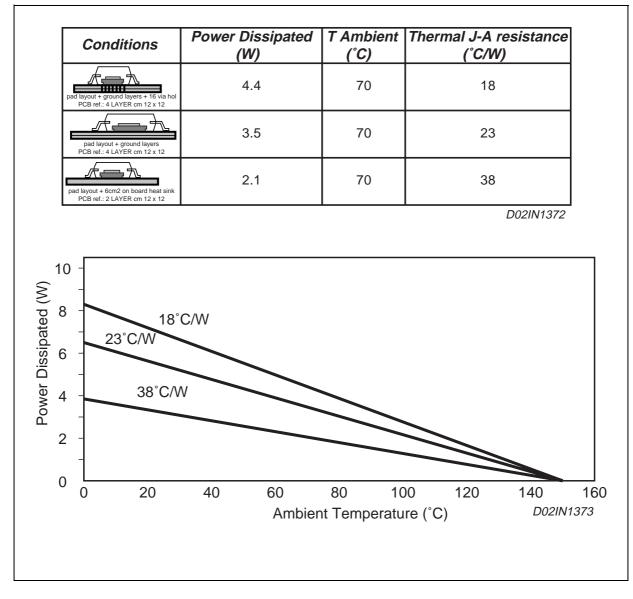
BLOCK DIAGRAM


tors. The L8219 with a few external components form a complete control and drive circuit for LS-TTL or microprocessor controlled stepper motor system.The power stage is a dual full bridge capable of sustaining 46V and including four diodes for current recirculation.A cross conduction protection is provided to avoid simultaneous cross conduction during switching current direction.An internal pulse-width-modulation (PWM) controls the output current to 1.5A with peak start-up current up to 1.75A.Wide range of current control from 1.5A (each bridge) is permitted by means of two logic inputs and an external voltage reference. A phase input to each bridge determines the load current direction.A thermal protection circuitry disables the outputs if the chip temperature exceeds safe operating limits.

August 2002

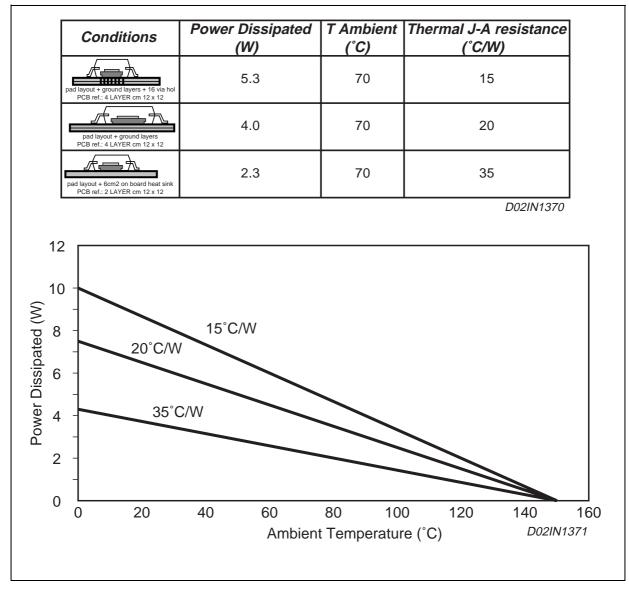
This is preliminary information on a new product now in development. Details are subject to change without notice.

PINS CONNECTIONS (Top views)



57

PIN FUNCTION


SO28 EP	PowerSO36	Name	Description					
1	10	OUT2B	Bridge-2 Ouput connection. The output stage is a "H" bridge formed by four transistors and four diodes connected to ground suitable for switching applications.					
2	11	Rs2	Bridge-2 Power stage sink transistors emitter connection.Sensing resistor is connected from this pin and ground.					
3	12	GND2	Ground					
4	13	OUT2A	same as OUT2B					
5	17	COMPI MP2	Bridge-2 An internal low pass filter RcCc is integrated.					
6	18	Vs2	Bridge-2 Power supply voltage.					
7, 21	19,36	GND	Ground					
8	20	EN2	Bridge2 When the enable input is set high the bridge is immediately switched-off skipping the delay time of the current control loop turning-off (I0=I1=H)					
9	22	102	Bridge-2 Logic input to set up the output current level, which is also determined by the sensing resistor and reference voltage(see also Functional description and table 1).					
10	23	l12	same as I02 (see table 1)					
11	24	PH2	Bridge-2 This TTL-compatible logic inputs sets the direction of current flow through the load. A high level causes current to flow from OUTPUT A (source) to OUTPUT B (sink). A schmitt trigger on this input provides good noise immunity and a delay circuit prevents output stage short circuits during switching.					
12	25	Vref2	Bridge-2 A voltage applied to this pin sets the reference voltage of the comparators, this determining the output current (also depending on Rs and the the two inputs INPUT 0 and INPUT 1).					
13	26	R2C2	Bridge-2 An external RC network connected to this pin sets the toff time of the higher power transistors. The pulse generator is a monostable triggerd by the output of the comparators (toff = 1.1 RTCT)					
14	27	Vss	Supply voltage input for the logic circuitry.					
15	28	R1C1	Bridge-1 same as R2C2.					
16	29	Vref1	Bridge-1 same as Vref2					
17	30	PH1	Bridge-1 same as PH2					
18	31	l11	Bridge-1 same as I12					
19	32	I01	Bridge-1 same as I02					
20	35	EN1	Bridge-1 same as EN2					
22	1	Vs1	Bridge-1 Power supply voltage.					
23	2	COMPINP1	Bridge-1 An internal low pass filter RcCc is integrated. Another RC external network will modify the blanking time (ss Functional Description)					
24	3,4,5,14,15, 16,21,33,34	N.C.	Not connected					
25	6	OUT1A	Bridge-1 Output connection. The output stage is a "H" bridge formed by four transistors and four diodes connected to ground suitable for switching applications					
26	7	GND	Ground.					
27	8	RS1	Bridge-1 Power stage sink transistors emitter connection.Sensing resistor is connected from this pin and ground.					
28	9	OUT1B	same as OUT1A					

THERMAL CHARACTERISTICS - SO28EP

57

THERMAL CHARACTERISTICS - PowerSO36

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage	50	V
l _o	Output Current (peak) non repetitive ton < 2µs	2.5	A
l _o	Output Current repetitive ton < 10µs	1.75	А
V _{SS}	Logic Supply Voltage	7	V
V _{IN}	Logic Input Voltage Range	-0.3 to +7	V
V _{sense}	Sense Output Voltage	1.5	V
TJ	Junction Temperature	+150	°C
T _{op}	Operating Temperature Range	0 to 70	°C
T _{stg}	Storage Temperature Range	-55 to +150	°C

ELECTRICAL CHARACTERISTICS (T_j = 25°C, V_S = 46V, V_{SS} = 4.75V to 5.25V, V_{REF} = 5V; unless otherwise specified) See fig. 3.

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
OUTPUT	DRIVERS (OUT _A or OUTB)			•	•	
Vs	Motor Supply Range		10		46	V
I _{CEX}	Output Leakage Current	V _{OUT} = V _s V _{OUT} = 0	-	<1 <-1	100 -100	μΑ μΑ
V _{CE(sat)}	Output Saturation Voltage	Sink Driver, I_{OUT} = +1A Sink Driver, I_{OUT} = +1.5A Source Driver, I_{OUT} = -1A Source Driver, I_{OUT} = -1.5A		0.5 0.8 1.8 1.9	0.7 1 1.9 2.1	V V V V
I _R	Clamp Diode Leakage Current	V _R = 50V	-	<1	50	μΑ
VF	Clamp Diode Forward Voltage	Sink Diode Source Diode I _F =1.5A		1.6 1.6	2 2	V V
I _{S(on)}	Driver Supply Current	Both Bridges ON, No Load	-	8	20	mA
I _{S(off)}	Driver Supply Current	Both Bridges OFF	-	6	15	mA
CONTRO	LLOGIC			•	•	
V _{IN(H)}	Input Voltage	All Inputs	2.4	-	-	V
V _{IN(L)}	Input Voltage	All Inputs	-	-	0.8	V
I _{IN(H)}	Input Current	V _{IN} = 2.4V	-	<1	20	mA
I _{IN(L)}	Input Current	V _{IN} = 0.84V	-	-3	-200	mA
V_{REF}	Reference Voltage	Operating	1.5	-	7.5	V
I _{SS(ON)}	Total Logic Supply Current	$I_0 = I_1 = 0.8V$, No Load	-	90	120	mA
I _{SS(OFF)}	Total Logic Supply Current	$I_0 = I_1 = 2.4V$, No Load	-	14	20	mA
COMPAR	ATORS			•	•	
V _{REF} /	Current Limit Threshold (at trip	$I_0 = I_1 = 0.8V$	9.5	10	10.5	-
Vsense	point	$I_0 = 2.4 V, I_1 = 0.8 V$	12.7	14.1	15.6	-
		$I_0 = 0.8V, I_1 = 2.4V$	20.7	24.4	28.1	-
t _{off}	Cutoff Time	$R_t = 56K\Omega C_t = 820pF$	-	50		μs
t _d	Turn Off Delay	Fig. 1	-	1		μs
PROTECT	ΓΙΟΝ		ı			
ТJ	Thermal Shutdown Temperature		-	170	-	°C

57

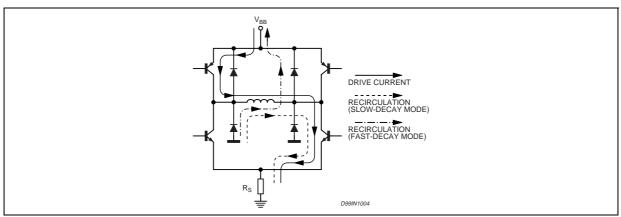
FUNCTIONAL DESCRIPTION

One L8219 is able to drive both windings of a bipolar stepper motor. Internal PWM control circuit sets the current in each motor's winding. The peak current in each winding is sensed and then controlled by an external sensing resistor (Rs), a reference voltage (Vref), and the 2 bit DAC. In addition, varying the Vref voltage can be provided a continous control of the peak load current fitting micro-stepping application needs.

Logic (I₀ and I₁)

The current level in each motor winding is selected with two digital inputs. (See tab.1) producing four current Imax, 70.7%Imax, 41%Imax and zero current.

Eight step position can be produced at constant torque setting an Half-step mode and selecting 100% current when only one phase is ON and 70.7% when two phases are ON.

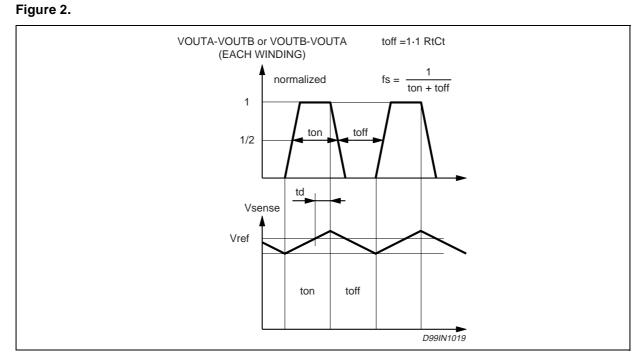

When the "Phase" signal change or when $I_0=I_1=H$ the power bridge is turned off resulting in a fast current decay (see fig.1) through the internal output clamp and flyback diodes. The <u>fast current decay</u> is usefull for half-step and high speed application. If any of the logic inputs is left open, the circuit will treat it as a high level input. Due to the internal current control loop (sensing resistor, comparator, monostable) a delay time of ~2µsec exsist between the input of the digital comand and the real current implementation in the motor's winding. When the digital inputs are set to zero ($I_0=I_1=L$) the average current will be higher then zero for a time period of ~2µsec; to skip this problem there is the pin "**Enable**" which immediately turn off the bridge.

With the I_0 and I_1 digital input signals is also possible to implement the "holding torque" (reduced power dissipation), or the best "start-up" condition (maximum output current).

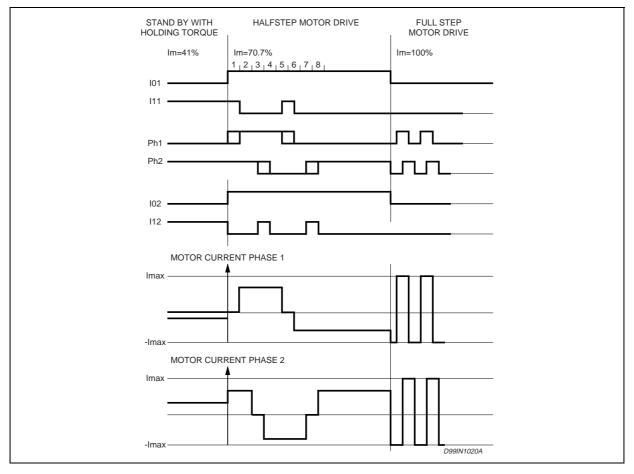
lo	11	Current Leve
H L H L	I I	0% Current 41% Current 70.7% Current 100% Current

Figure 1.

L7



Internal PWM Current Control


Once an output current level has been set by the digital input the current in the motor winding begins to flow in the bridge (see fig.1) and the max peak current Imax can be defined by: Imax = Vref10 Rs. At the same time the voltage on sensing resistor increase and the bridge will be turned off again as soon as the voltage on the sensing resistor is equal to the value set by the DAC; at this stage the current recirculates through the ground-clamp diodes and sink transistor implementing the slow current decay.

Once the "toff" time has expired the source driver is turned on again and the cycle repeat itself keeping the desidered average current level.

Figure 3. Principle Operating Sequence

57

L8219

Phase

This input determines the direction of current flow in the windings, depending on the motor connections. The signal is fed through a Schmidt-trigge for noise immunity, and through a time delay in order to guarantee that no short-circuit occurs in the output stage during phase-shift. High level on the PHASE input causes the motor current flow from Out A through the winding to Out B.

Current Sensor

This part contains a current sensing resistor (R_S), a low pass filter (R_C , C_C) and three comparators.Only one comparator is active at a time. It is activated by the input logic according to the current level chosen with signals I_0 and I_1 .

The motor current flows through the sensing resistor R_S . When the current has increased so that the voltage across R_S becomes higher than the reference voltage on the other comparator input, the comparator goes high, which triggers the pulse generator.

The max peak current Imax can be defined by:

$$I_{max} = \frac{V_{ref}}{10 R_s}$$

Single-pulse Generator

The pulse generator is a monostable triggered on the positive going edge of the comparator output. The monostable output is high during the pulse time, t_{off} , which is determined by the time components R_t and C_t .

$$t_{off} = 1.1 \cdot R_t C_t$$

The single pulse switches off the power feed to the motor winding, causing the winding current to decrease during t_{off} .

If a new trigger signal should occur during toff, it is ignored.

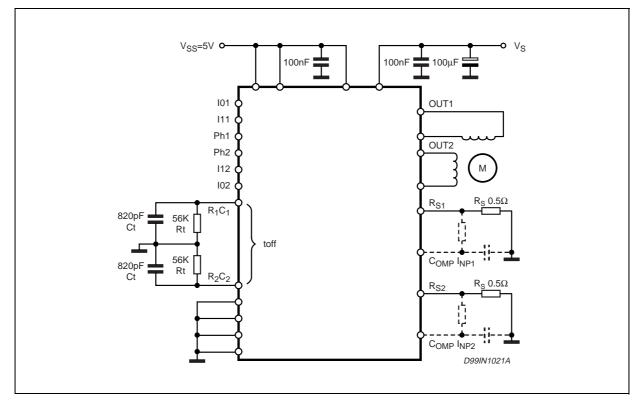
Output Stage

The output stage contains four Darlington transistors (source drivers) four saturated transistors (sink drivers) and eight diodes, connected in two H bridge. The source transistors are used to switch the power supplied to the motor winding, thus driving a constant current through the winding.

VS, VSS, VRef

The circuit will stand any order of turn-on or turn-off the supply voltages V_S and V_{SS} . Normal dV/dt values are then assumed. Preferably, V_{Ref} should be tracking V_{SS} during power-on and power-off if V_S is established.

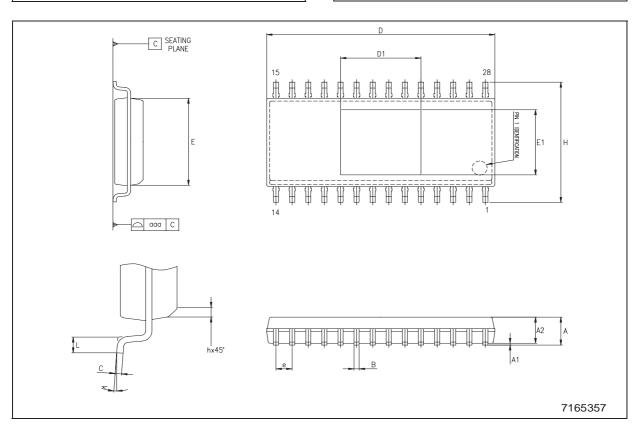
Thermal Shutdown


When the die temperature reach 170°C the thermal shutdown internal circuitry turns off the power stage (tristate), once the cause of the die increased temperature will be removed the L8219 re-turns on itself as soon as the die temperature reach 150°C.

APPLICATION INFORMATIONS

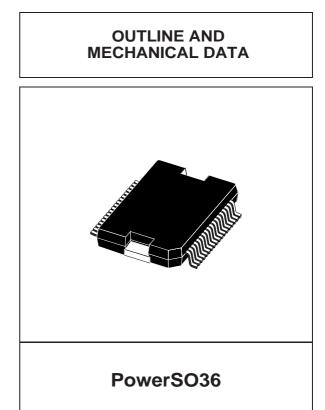
Some stepper motors are not designed for continuous operation at maximum current. As the circuit drives a constant current through the motor, its temperature might increase exceedingly both at low and high speed operation. Also, some stepper motors have such high core losses that they are not suited for switch mode current regulation. Unused inputs should be connected to proper voltage levels in order to get the highest noise immunity. As the circuit operates with switch mode current regulation, interference generation problems might arise in some applications. A good measure might then be to decouple the circuit with a 100nF capacitor, located near the package between power line and ground. The ground lead between Rs, and circuit GND should be kept as short as possible. A typical Application Circuit is shown in Fig. 4. Note that Ct must be NPO type or similar else. To sense the winding current, paralleled metal film resistors are recommended.

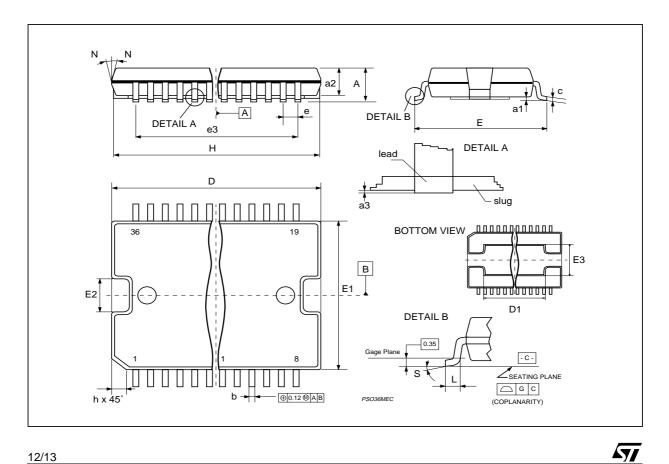
L8219



57

DIM.		mm		inch			
DINI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	2.350		2.650	0.092		0.104	
A1	0.100		0.300	0.004		0.012	
A2	2.050		2.550	0.080		0.100	
b	0.330		0.510	0.013		0.020	
С	0.230		0.320	0.009		00.12	
D ⁽¹⁾	17.70		18.10	0.696		0.712	
D1		ACCC	RDING	TO PAD	SIZE		
E ⁽²⁾	7.400		7.600	0.291		0.299	
E1		ACCC	RDING	TO PAD	SIZE		
е		1.270			0.05		
Н	10.00		10.65	0.394		0.419	
h	0.250		0.750	0.010		0.029	
L	0.400		1.270	0.016		0.05	
k	0° (min), 8° (max)						
ddd			0.100			0.004	
 Dimensions "D" does not include mold flash, protusions or gate burrs. Mold flash, protusions and gate shall not exceed 0.15mm per side. Dimensions "E" does not include inter-lead flash or protusions or gate burrs. Inter-lead flash or protusions shall not exceed 0.25mm per side. 							


OUTLINE AND MECHANICAL DATA



DIM.	mm			inch			
DIN.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α			3.60			0.141	
a1	0.10		0.30	0.004		0.012	
a2			3.30			0.130	
a3	0		0.10	0		0.004	
b	0.22		0.38	0.008		0.015	
с	0.23		0.32	0.009		0.012	
D (1)	15.80		16.00	0.622		0.630	
D1	9.40		9.80	0.370		0.385	
Е	13.90		14.50	0.547		0.570	
е		0.65			0.0256		
e3		11.05			0.435		
E1 (1)	10.90		11.10	0.429		0.437	
E2			2.90			0.114	
E3	5.80		6.20	0.228		0.244	
E4	2.90		3.20	0.114		0.126	
G	0		0.10	0		0.004	
Н	15.50		15.90	0.610		0.626	
h			1.10			0.043	
L	0.80		1.10	0.031		0.043	
Ν	10°(max.)						
S	8 °(max.)						

(1): "D" and "E1" do not include mold flash or protrusions
Mold flash or protrusions shall not exceed 0.15mm (0.006 inch)
Critical dimensions are "a3", "E" and "G".

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. http://www.st.com