FEATURES

Enhanced system-level ESD performance per IEC 61000-4-x Low power operation

5 V operation
1.4 mA per channel maximum @ 0 Mbps to 2 Mbps
4.3 mA per channel maximum @ 10 Mbps

34 mA per channel maximum @ 90 Mbps
3 V operation
0.9 mA per channel maximum @ 0 Mbps to 2 Mbps
2.4 mA per channel maximum @ 10 Mbps

20 mA per channel maximum @ 90 Mbps
Bidirectional communication
3 V/5 V level translation
High temperature operation: $105^{\circ} \mathrm{C}$
High data rate: dc to $\mathbf{9 0} \mathbf{~ M b p s}$ (NRZ)
Precise timing characteristics
2 ns maximum pulse width distortion
2 ns maximum channel-to-channel matching
High common-mode transient immunity: > $\mathbf{2 5} \mathbf{~ k V / \mu s}$
Output enable function
16-lead SOIC wide body, RoHS-compliant package
Safety and regulatory approvals
UL recognition: $\mathbf{2 5 0 0}$ V rms for 1 minute per UL 1577
CSA Component Acceptance Notice \#5A
VDE Certificate of Conformity
DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12
VIorm $=560$ V peak

APPLICATIONS

General-purpose multichannel isolation
SPI/data converter isolation
RS-232/RS-422/RS-485 transceivers
Industrial field bus isolation

GENERAL DESCRIPTION

The ADuM340x ${ }^{1}$ are 4-channel digital isolators based on the Analog Devices, Inc., i Coupler ${ }^{\oplus}$ technology. Combining high speed CMOS and monolithic air core transformer technology, these isolation components provide outstanding performance characteristics superior to alternatives such as optocoupler devices.
i Coupler devices remove the design difficulties commonly associated with optocouplers. Typical optocoupler concerns regarding uncertain current transfer ratios, nonlinear transfer functions, and temperature and lifetime effects are eliminated with the simple i Coupler digital interfaces and stable performance characteristics. The need for external drivers and other discrete components is eliminated with these i Coupler products. Furthermore, i Coupler devices consume one-tenth to one-sixth the power of optocouplers at comparable signal data rates.

The ADuM340x isolators provide four independent isolation channels in a variety of channel configurations and data rates (see the Ordering Guide). All models operate with the supply voltage on either side ranging from 2.7 V to 5.5 V , providing compatibility with lower voltage systems as well as enabling a voltage translation functionality across the isolation barrier. The ADuM340x isolators have a patented refresh feature that ensures dc correctness in the absence of input logic transitions and during power-up/power-down conditions.

In comparison to the ADuM140x isolators, the ADuM340x isolators contain various circuit and layout changes to provide increased capability relative to system-level IEC 61000-4-x testing (ESD/burst/surge). The precise capability in these tests for either the ADuM140x or ADuM340x products is strongly determined by the design and layout of the user's board or module. For more information, see the AN-793 Application Note, ESD/Latch-Up Considerations with iCoupler Isolation Products.
${ }^{1}$ Protected by U.S. Patents 5,952,849; 6,873,065; and 7,075,329.

FUNCTIONAL BLOCK DIAGRAMS

Figure 1. ADuM3400 Functional Block Diagram

Figure 2. ADuM3401 Functional Block Diagram

Figure 3. ADuM3402 Functional Block Diagram

[^0]One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2006-2012 Analog Devices, Inc. All rights reserved.

TABLE OF CONTENTS

\qquad
Applications. 1
General Description 1
Functional Block Diagrams. 1
Revision History 2
Specifications 3
Electrical Characteristics-5 V Operation. 3
Electrical Characteristics-3 V Operation. 6
Electrical Characteristics-Mixed $5 \mathrm{~V} / 3 \mathrm{~V}$ or $3 \mathrm{~V} / 5 \mathrm{~V}$ Operation. 8
Package Characteristics 12
Regulatory Information 12
Insulation and Safety-Related Specifications 12
DIN V VDE V 0884-10 (VDE V 0884-10) Insulation Characteristics 13
Recommended Operating Conditions 13
REVISION HISTORY
2/12—Rev. A to Rev. B
Created Hyperlink for Safety and Regulatory Approvals
Entry in Features Section 1
Change to PC Board Layout Section 20
6/07—Rev. 0 to Rev. A
Updated VDE Certification Throughout 1
Changes to Features, General Description, Note 1, Figure 1,Figure 2, and Figure 3 1
Changes to Regulatory Information Section 12
Changes to Table 7 and Figure 4 Caption. 13
Added Table 10; Renumbered Sequentially 14
Added Insulation Lifetime Section 22
Inserted Figure 21, Figure 22, and Figure 23 22
Changes to Ordering Guide 23
3/06-Revision 0: Initial Version
Absolute Maximum Ratings 14
ESD Caution 14
Pin Configurations and Function Descriptions 15
Typical Performance Characteristics. 18
Application Information 20
PC Board Layout 20
System-Level ESD Considerations and Enhancements 20
Propagation Delay-Related Parameters. 20
DC Correctness and Magnetic Field Immunity. 20
Power Consumption 21
Insulation Lifetime 22
Outline Dimensions 23
Ordering Guide 23

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS—5 V OPERATION

All voltages are relative to their respective ground. $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 5.5 \mathrm{~V}$; all minimum/maximum specifications apply over the entire recommended operation range, unless otherwise noted; all typical specifications are at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=5 \mathrm{~V}$.

Table 1.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
DC SPECIFICATIONS						
Input Supply Current per Channel, Quiescent	$\mathrm{I}_{\mathrm{DDI}}(\mathrm{Q})$		0.57	0.83	mA	
	$\mathrm{I}_{\text {DDO (0) }}$		0.29	0.35	mA	
ADuM3400, Total Supply Current, Four Channels ${ }^{1}$						
$\mathrm{V}_{\mathrm{DD} 1}$ Supply Current	$\mathrm{I}_{\mathrm{DD} 1 \text { (Q) }}$		2.9	3.5	mA	DC to 1 MHz logic signal freq.
$\mathrm{V}_{\mathrm{DD} 2}$ Supply Current	$\mathrm{l}_{\mathrm{DD2}}(0)$		1.2	1.9	mA	DC to 1 MHz logic signal freq.
10 Mbps (BRW and CRW Grades Only)						
$\mathrm{V}_{\mathrm{DD} 1}$ Supply Current	$\mathrm{I}_{\mathrm{DD1}}(10)$		9.0	11.6	mA	5 MHz logic signal freq.
$\mathrm{V}_{\mathrm{DD} 2}$ Supply Current	$\mathrm{I}_{\mathrm{DD2}}(10)$		3.0	5.5	mA	5 MHz logic signal freq.
90 Mbps (CRW Grade Only)						
$\mathrm{V}_{\mathrm{DD} 1}$ Supply Current	$\mathrm{I}_{\mathrm{DD1}}(90)$		72	100	mA	45 MHz logic signal freq.
$\mathrm{V}_{\mathrm{DD} 2}$ Supply Current	$\mathrm{I}_{\mathrm{DD2}}(90)$		19	36	mA	45 MHz logic signal freq.
ADuM3401, Total Supply Current, Four Channels ${ }^{1}$						
DC to 2 Mbps						
$\mathrm{V}_{\mathrm{DD} 1}$ Supply Current	$\mathrm{I}_{\mathrm{DD1}}(0)$		2.5	3.2	mA	DC to 1 MHz logic signal freq.
$\mathrm{V}_{\mathrm{DD} 2}$ Supply Current	$\mathrm{I}_{\mathrm{DD2} \text { (Q) }}$		1.6	2.4	mA	DC to 1 MHz logic signal freq.
10 Mbps (BRW and CRW Grades Only)						
$\mathrm{V}_{\mathrm{DD} 1}$ Supply Current	$\mathrm{I}_{\mathrm{DD1}(10)}$		7.4	10.6	mA	5 MHz logic signal freq.
$\mathrm{V}_{\mathrm{DD} 2}$ Supply Current	$\mathrm{I}_{\mathrm{DD2} \text { (10) }}$		4.4	6.5	mA	5 MHz logic signal freq.
90 Mbps (CRW Grade Only)						
$\mathrm{V}_{\mathrm{DD} 1}$ Supply Current	$\mathrm{I}_{\mathrm{DD1}}(90)$		59	82	mA	45 MHz logic signal freq.
$\mathrm{V}_{\mathrm{DD} 2}$ Supply Current	$\mathrm{I}_{\mathrm{DD2}}(90)$		32	46	mA	45 MHz logic signal freq.
ADuM3402, Total Supply Current, Four Channels ${ }^{1}$						
$\mathrm{V}_{\mathrm{DD} 1}$ or $\mathrm{V}_{\mathrm{DD} 2}$ Supply Current	$\mathrm{I}_{\mathrm{DD1} \text { (Q) }} \mathrm{I}_{\mathrm{DD2} \text { (0) }}$		2.0	2.8	mA	DC to 1 MHz logic signal freq.
10 Mbps (BRW and CRW Grades Only)						
$\mathrm{V}_{\mathrm{DD} 1}$ or $\mathrm{V}_{\mathrm{DD} 2}$ Supply Current	$\mathrm{I}_{\mathrm{DD1} \mathrm{(10)}} \mathrm{I}_{\mathrm{DD2} \mathrm{(10)}}$		6.0	7.5	mA	5 MHz logic signal freq.
90 Mbps (CRW Grade Only)						
$\mathrm{V}_{\mathrm{DD} 1}$ or $\mathrm{V}_{\mathrm{DD} 2}$ Supply Current	$\mathrm{I}_{\mathrm{DD1} 1 \text { (90) }} \mathrm{I}_{\mathrm{DD2} \text { (90) }}$		51	62	mA	45 MHz logic signal freq.
For All Models						
Input Currents	$I_{A A}, I_{B B}, I_{I_{C}}$ $\mathrm{I}_{\mathrm{ID}}, \mathrm{I}_{\mathrm{E} 1}, \mathrm{I}_{\mathrm{E} 2}$	-10	+0.01	+10	$\mu \mathrm{A}$	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IA}}, \mathrm{~V}_{\mathrm{IB}}, \mathrm{~V}_{1 \mathrm{C},} \mathrm{~V}_{\mathrm{ID}} \leq \mathrm{V}_{\mathrm{DD} 1} \text { or } \mathrm{V}_{\mathrm{DD} 2} \\ & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{E} 1}, \mathrm{~V}_{\mathrm{E} 2} \leq \mathrm{V}_{\mathrm{DD} 1} \text { or } \mathrm{V}_{\mathrm{DD} 2} \end{aligned}$
Logic High Input Threshold	$\mathrm{V}_{\mathrm{H},} \mathrm{V}_{\mathrm{EH}}$	2.0			V	
Logic Low Input Threshold	$\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{EL}}$			0.8	V	
Logic High Output Voltages	$\mathrm{V}_{\text {OAH }} \mathrm{V}^{\text {OBH }}$	$\left(\mathrm{V}_{\mathrm{DD} 1}\right.$ or $\left.\mathrm{V}_{\mathrm{DD} 2}\right)-0.1$	5.0		V	$\mathrm{I}_{\mathrm{Ox}}=-20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \mathrm{xH}}$
	$\mathrm{V}_{\text {OCH }} \mathrm{V}^{\text {ODH }}$	$\left(V_{D D 1}\right.$ or $\left.V_{D D 2}\right)-0.4$	4.8		V	$\mathrm{I}_{\mathrm{Ox}}=-4 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \times \mathrm{H}}$
Logic Low Output Voltages	$\mathrm{V}_{\text {OAL }} \mathrm{V}^{\text {OBL }}$,		0.0	0.1	V	$\mathrm{I}_{\mathrm{Ox}}=20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{lxL}}$
	$\mathrm{V}_{\text {OCL }} \mathrm{V}_{\text {ODL }}$		0.04	0.1	V	$\mathrm{I}_{\text {ox }}=400 \mu \mathrm{~A}, \mathrm{~V}_{\text {lx }}=\mathrm{V}_{\text {lxL }}$
			0.2	0.4	V	$\mathrm{I}_{\mathrm{Ox}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{IxL}}$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
SWITCHING SPECIFICATIONS						
ADuM340xARW						
Minimum Pulse Width ${ }^{2}$	PW			1000	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Maximum Data Rate ${ }^{3}$		1			Mbps	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay ${ }^{4}$	$\mathrm{t}_{\text {PHL }} \mathrm{t}_{\text {PLH }}$	50	65	100	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Pulse Width Distortion, $\left\|\mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHL }}\right\|^{4}$	PWD			40	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay Skew ${ }^{5}$	$\mathrm{t}_{\text {PSK }}$			50	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching ${ }^{6}$	$\mathrm{t}_{\text {PSKCD/OD }}$			50	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
ADuM340xBRW						
Minimum Pulse Width ${ }^{2}$	PW			100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Maximum Data Rate ${ }^{3}$		10			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Propagation Delay ${ }^{4}$	$\mathrm{t}_{\text {PHL }} \mathrm{t}_{\text {PLH }}$	20	32	50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Pulse Width Distortion, $\left\|\mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHL }}\right\|^{4}$	PWD			3	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Change vs. Temperature			5		ps $/{ }^{\circ} \mathrm{C}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Propagation Delay Skew ${ }^{5}$	$\mathrm{t}_{\text {PSK }}$			15	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching, Codirectional Channels ${ }^{6}$	$\mathrm{t}_{\text {PSKCD }}$			3	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching, Opposing-Directional Channels ${ }^{6}$	$\mathrm{t}_{\text {PSKOD }}$			6	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
ADuM340xCRW						
Minimum Pulse Width ${ }^{2}$	PW		8.3	11.1	ns	$C_{L}=15 \mathrm{pF}$, CMOS signal levels
Maximum Data Rate ${ }^{3}$		90	120		Mbps	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay ${ }^{4}$	$\mathrm{t}_{\text {PHL }} \mathrm{t}_{\text {PLH }}$	18	27	32	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Pulse Width Distortion, $\left\|\mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHLL }}\right\|^{4}$	PWD		0.5	2	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Change vs. Temperature			3		ps $/{ }^{\circ} \mathrm{C}$	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay Skew ${ }^{5}$	$\mathrm{t}_{\text {PK }}$			10	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching, Codirectional Channels ${ }^{6}$	$\mathrm{t}_{\text {PSKCD }}$			2	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching, Opposing-Directional Channels ${ }^{6}$	$\mathrm{t}_{\text {PSKOD }}$			5	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
For All Models						
Output Disable Propagation Delay (High/Low-to-High Impedance)	$\mathrm{t}_{\text {PHZ }} \mathrm{t}_{\text {PLH }}$		6	8	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Output Enable Propagation Delay (High Impedance-to-High/Low)	$\mathrm{t}_{\text {PZH, }} \mathrm{t}_{\text {PZL }}$		6	8	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		2.5		ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Common-Mode Transient Immunity at Logic High Output ${ }^{7}$	$\left\|\mathrm{CM}_{\mathrm{H}}\right\|$	25	35		kV/ $/ \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DD} 1} / \mathrm{V}_{\mathrm{DD} 2}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Common-Mode Transient Immunity at Logic Low Output ${ }^{7}$	\|CM ${ }_{\text {L }} \mid$	25	35		kV/ $/ \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{1 \mathrm{x}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Refresh Rate	fr_{r}		1.2		Mbps	
Input Dynamic Supply Current per Channel ${ }^{8}$	$\mathrm{I}_{\mathrm{DDI}}(\mathrm{D})$		0.20		mA/Mbps	
Output Dynamic Supply Current per Channel ${ }^{8}$	$\mathrm{I}_{\mathrm{DDO}}(\mathrm{D})$		0.05		mA/Mbps	

${ }^{1}$ The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through Figure 15 for total $V_{D D 1}$ and $V_{D D 2}$ supply currents as a function of data rate for ADuM3400/ADuM3401/ADuM3402 channel configurations.
${ }^{2}$ The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.
${ }^{3}$ The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.
${ }^{4} t_{\text {PHL }}$ propagation delay is measured from the 50% level of the falling edge of the $V_{1 x}$ signal to the 50% level of the falling edge of the $V_{\text {Ox }}$ signal. $t_{\text {PLH }}$ propagation delay is measured from the 50% level of the rising edge of the $V_{1 x}$ signal to the 50% level of the rising edge of the $V_{0 x}$ signal.
${ }^{5} t_{\text {PSK }}$ is the magnitude of the worst-case difference in $\mathrm{t}_{\mathrm{PHL}}$ or $\mathrm{t}_{\mathrm{PLH}}$ that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
${ }^{6}$ Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.
${ }^{7} \mathrm{CM}_{\mathrm{H}}$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD} 2}$. CM_{L} is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.
${ }^{8}$ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current for a given data rate.

ADuM3400/ADuM3401/ADuM3402

ELECTRICAL CHARACTERISTICS—3 V OPERATION

All voltages are relative to their respective ground. $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 3.6 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 3.6 \mathrm{~V}$; all minimum/maximum specifications apply over the entire recommended operation range, unless otherwise noted; all typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=3.0 \mathrm{~V}$.
Table 2.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
DC SPECIFICATIONS						
Input Supply Current per Channel, Quiescent	$\mathrm{I}_{\mathrm{DDI}}($ ()		0.31	0.49	mA	
Output Supply Current per Channel, Quiescent	$\mathrm{I}_{\mathrm{DDO}}(\mathrm{Q})$		0.19	0.27	mA	
ADuM3400, Total Supply Current, Four Channels ${ }^{1}$						
DC to 2 Mbps						
$\mathrm{V}_{\mathrm{DD} 1}$ Supply Current	$\mathrm{I}_{\mathrm{DD1}}(0)$		1.6	2.1	mA	DC to 1 MHz logic signal freq.
$\mathrm{V}_{\mathrm{DD} 2}$ Supply Current	$\mathrm{I}_{\mathrm{DD2}}(\mathrm{Q})$		0.7	1.2	mA	DC to 1 MHz logic signal freq.
10 Mbps (BRW and CRW Grades Only)						
$\mathrm{V}_{\mathrm{DD} 1}$ Supply Current	$\mathrm{I}_{\text {D1 } 1 \text { (10) }}$		4.8	7.1	mA	5 MHz logic signal freq.
$\mathrm{V}_{\mathrm{DD} 2}$ Supply Current	$\mathrm{I}_{\mathrm{DD2} \text { (10) }}$		1.8	2.3	mA	5 MHz logic signal freq.
90 Mbps (CRW Grade Only)						
$\mathrm{V}_{\mathrm{DD} 1}$ Supply Current	$\mathrm{I}_{\text {DD1 (90) }}$		37	54	mA	45 MHz logic signal freq.
$\mathrm{V}_{\mathrm{DD} 2}$ Supply Current	$\mathrm{I}_{\mathrm{DD2}}(90)$		11	15	mA	45 MHz logic signal freq.
ADuM3401, Total Supply Current, Four Channels ${ }^{1}$ DC to 2 Mbps						
$\mathrm{V}_{\mathrm{DD} 1}$ Supply Current	$\mathrm{I}_{\mathrm{DD1} \text { (0) }}$		1.4	1.9	mA	DC to 1 MHz logic signal freq.
$\mathrm{V}_{\mathrm{DD} 2}$ Supply Current	$\mathrm{I}_{\mathrm{DD2}}(\mathrm{Q})$		0.9	1.5	mA	DC to 1 MHz logic signal freq.
10 Mbps (BRW and CRW Grades Only)						
$\mathrm{V}_{\mathrm{DD} 1}$ Supply Current	$\mathrm{I}_{\mathrm{DD1}(10)}$		4.1	5.6	mA	5 MHz logic signal freq.
$\mathrm{V}_{\text {DD2 }}$ Supply Current	$\mathrm{I}_{\mathrm{DD2} \text { (10) }}$		2.5	3.3	mA	5 MHz logic signal freq.
90 Mbps (CRW Grade Only)						
$\mathrm{V}_{\mathrm{DD} 1}$ Supply Current	$\mathrm{I}_{\mathrm{DD1}}(90)$		31	44	mA	45 MHz logic signal freq.
$\mathrm{V}_{\text {DD2 }}$ Supply Current	$\mathrm{I}_{\mathrm{DD2}}(90)$		17	24	mA	45 MHz logic signal freq.
ADuM3402, Total Supply Current, Four Channels ${ }^{1}$						
DC to 2 Mbps						
$\mathrm{V}_{\mathrm{DD} 1}$ or $\mathrm{V}_{\mathrm{DD} 2}$ Supply Current	$\mathrm{I}_{\mathrm{DD1}(\text { (0) }}, \mathrm{I}_{\mathrm{DD2} \text { (Q) }}$		1.2	1.7	mA	DC to 1 MHz logic signal freq.
10 Mbps (BRW and CRW Grades Only)						
$\mathrm{V}_{\mathrm{DD} 1}$ or $\mathrm{V}_{\mathrm{DD} 2}$ Supply Current	$\mathrm{I}_{\mathrm{DD1}(10)} \mathrm{I}_{\mathrm{DD2} \text { (10) }}$		3.3	4.4	mA	5 MHz logic signal freq.
90 Mbps (CRW Grade Only)						
$V_{\text {DD1 }}$ or $\mathrm{V}_{\mathrm{DD} 2}$ Supply Current	$\mathrm{I}_{\mathrm{DD1} 1(90)} \mathrm{I}_{\mathrm{DD2} \text { (90) }}$		24	39	mA	45 MHz logic signal freq.
For All Models						
Input Currents	$I_{A_{A}}, I_{I_{B}}, I_{I_{C},}$ $I_{\mathrm{ID}}, I_{\mathrm{E} 1}, I_{\mathrm{E} 2}$	-10	+0.01	+10	$\mu \mathrm{A}$	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IA}}, \mathrm{~V}_{\mathrm{BB}}, V_{\mathrm{VC},}, \mathrm{~V}_{\mathrm{ID}} \leq \mathrm{V}_{\mathrm{DD} 1} \text { or } \mathrm{V}_{\mathrm{DD} 2} \\ & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{E} 1}, \mathrm{~V}_{\mathrm{E} 2} \leq \mathrm{V}_{\mathrm{DD} 1} \text { or } \mathrm{V}_{\mathrm{DD} 2} \end{aligned}$
Logic High Input Threshold	$\mathrm{V}_{\mathrm{IH}} \mathrm{V}_{\mathrm{EH}}$	1.6			V	
Logic Low Input Threshold	$\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{EL}}$			0.4	V	
Logic High Output Voltages	$\mathrm{V}_{\text {OAH, }} \mathrm{V}_{\text {OBH }}$	$\left(\mathrm{V}_{\mathrm{DD1}}\right.$ or $\left.\mathrm{V}_{\mathrm{DD} 2}\right)-0.1$	3.0		V	$\mathrm{I}_{\text {Ox }}=-20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \mathrm{xH}}$
	$\mathrm{V}_{\text {OCH, }} \mathrm{V}_{\text {ODH }}$	$\left(V_{D D 1}\right.$ or $\left.V_{\text {DD2 } 2}\right)-0.4$	2.8		V	$\mathrm{I}_{\mathrm{ox}}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{IxH}}$
Logic Low Output Voltages	$\mathrm{V}_{\text {OAL }} \mathrm{V}_{\text {OBL }}$		0.0	0.1	V	$\mathrm{I}_{\mathrm{Ox}}=20 \mu \mathrm{~A}, \mathrm{~V}_{\text {Ix }}=\mathrm{V}_{\text {IxL }}$
	$\mathrm{V}_{\mathrm{OCL}}, \mathrm{~V}_{\mathrm{ODL}}$		0.04	0.1	V	$\mathrm{I}_{\mathrm{Ox}}=400 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{lx}}=\mathrm{V}_{\text {lxL }}$
				0.4		$\mathrm{I}_{\mathrm{ox}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{lx}}=\mathrm{V}_{\mathrm{lxL}}$
SWITCHING SPECIFICATIONS						
ADuM340xARW						
Minimum Pulse Width ${ }^{2}$	PW			1000	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Maximum Data Rate ${ }^{3}$		1			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay ${ }^{4}$	$\mathrm{t}_{\text {PHL }} \mathrm{t}_{\text {PLH }}$	50	75	100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Pulse Width Distortion, $\left\|\mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHL }}\right\|^{4}$	PWD			40	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay Skew ${ }^{5}$	$\mathrm{t}_{\text {PSK }}$			50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching ${ }^{6}$	$\mathrm{t}_{\text {PSKCD/OD }}$			50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
ADuM340xBRW						
Minimum Pulse Width ${ }^{2}$	PW			100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Maximum Data Rate ${ }^{3}$		10			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay ${ }^{4}$	$\mathrm{t}_{\text {PHL }} \mathrm{t}_{\text {PLH }}$	20	38	50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Pulse Width Distortion, $\left\|\mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHL }}\right\|^{4}$	PWD			3	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Change vs. Temperature			5		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay Skew ${ }^{5}$	$\mathrm{t}_{\text {PK }}$			22	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching, Codirectional Channels ${ }^{6}$	$\mathrm{t}_{\text {PSKCD }}$			3	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching, Opposing-Directional Channels ${ }^{6}$	$\mathrm{t}_{\text {PSKOD }}$			6	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
ADuM340xCRW						
Minimum Pulse Width ${ }^{2}$	PW		8.3	11.1	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Maximum Data Rate ${ }^{3}$		90	120		Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay ${ }^{4}$	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$	20	34	45	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Pulse Width Distortion, $\left\|\mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHLL }}\right\|^{4}$	PWD		0.5	2	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Change vs. Temperature			3		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay Skew ${ }^{5}$	$\mathrm{t}_{\text {PSK }}$			16	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching, Codirectional Channels ${ }^{6}$	$\mathrm{t}_{\text {PSKCD }}$			2	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching, Opposing-Directional Channels ${ }^{6}$	$\mathrm{t}_{\text {PSKOD }}$			5	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
For All Models						
Output Disable Propagation Delay (High/Low-to-High Impedance)	$\mathrm{t}_{\text {PHZ }} \mathrm{t}_{\text {PLH }}$		6	8	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Output Enable Propagation Delay (High Impedance-to-High/Low)	$\mathrm{t}_{\text {PZH, }}, \mathrm{t}_{\text {PZL }}$		6	8	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		3		ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Common-Mode Transient Immunity at Logic High Output ${ }^{7}$	$\left\|\mathrm{CM}_{\mathrm{H}}\right\|$	25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DD} 1} / \mathrm{V}_{\mathrm{DD} 2}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Common-Mode Transient Immunity at Logic Low Output ${ }^{7}$	\|CM ${ }_{\text {L }}$ \|	25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Refresh Rate	f_{r}		1.1		Mbps	
Input Dynamic Supply Current per Channel ${ }^{8}$	$\mathrm{I}_{\mathrm{DII} \text { (})^{\text {I }}}$		0.10		mA/Mbps	
Output Dynamic Supply Current per Channel ${ }^{8}$	$\mathrm{I}_{\mathrm{DDO} \text { (} \mathrm{D})}$		0.03		mA/Mbps	

${ }^{1}$ The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through Figure 15 for total $V_{D D 1}$ and $V_{D D 2}$ supply currents as a function of data rate for ADuM3400/ADuM3401/ADuM3402 channel configurations.
${ }^{2}$ The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.
${ }^{3}$ The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.
${ }^{4} t_{\text {PHL }}$ propagation delay is measured from the 50% level of the falling edge of the $V_{\mid \mathbf{I X}}$ signal to the 50% level of the falling edge of the $V_{\text {Ox }}$ signal. $\mathrm{t}_{\text {PLH }}$ propagation delay is measured from the 50% level of the rising edge of the $\mathrm{V}_{1 \mathrm{x}}$ signal to the 50% level of the rising edge of the $\mathrm{V}_{0 \mathrm{x}}$ signal.
${ }^{5} t_{\text {PSK }}$ is the magnitude of the worst-case difference in $t_{\text {PHL }}$ or $t_{\text {PLH }}$ that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
${ }^{6}$ Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.
${ }^{7} \mathrm{CM}_{\mathrm{H}}$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD} 2}$. CM_{L} is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.
${ }^{8}$ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current for a given data rate.

ELECTRICAL CHARACTERISTICS—MIXED 5 V/3 V OR 3 V/5 V OPERATION

All voltages are relative to their respective ground. $5 \mathrm{~V} / 3 \mathrm{~V}$ operation: $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 3.6 \mathrm{~V} ; 3 \mathrm{~V} / 5 \mathrm{~V}$ operation: $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 3.6 \mathrm{~V}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 5.5 \mathrm{~V}$; all minimum/maximum specifications apply over the entire recommended operation range, unless otherwise noted; all typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD} 1}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD} 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=3.0 \mathrm{~V}$.
Table 3.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
DC SPECIFICATIONS						
Input Supply Current per Channel, Quiescent	$\mathrm{I}_{\mathrm{DDI}}($ ()					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			0.57	0.83	mA	
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			0.31	0.49	mA	
Output Supply Current per Channel, Quiescent	$\mathrm{I}_{\text {DOO (Q) }}$					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			0.29	0.27	mA	
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			0.19	0.35	mA	
ADuM3400, Total Supply Current, Four Channels ${ }^{1}$						
DC to 2 Mbps						
$\mathrm{V}_{\mathrm{DD} 1}$ Supply Current	$\mathrm{I}_{\mathrm{DD1}}(\mathrm{Q})$					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			2.9	3.5	mA	DC to 1 MHz logic signal freq.
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			1.6	2.1	mA	DC to 1 MHz logic signal freq.
$\mathrm{V}_{\text {DD2 }}$ Supply Current	$\mathrm{I}_{\mathrm{DD2} \text { (Q) }}$					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			0.7	1.2	mA	DC to 1 MHz logic signal freq.
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			1.2	1.9	mA	DC to 1 MHz logic signal freq.
10 Mbps (BRW and CRW Grades Only)						
$\mathrm{V}_{\mathrm{DD} 1}$ Supply Current	$\mathrm{I}_{\mathrm{DD} 1 \text { (10) }}$					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			9.0	11.6	mA	5 MHz logic signal freq.
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			4.8	7.1	mA	5 MHz logic signal freq.
$\mathrm{V}_{\mathrm{DD} 2}$ Supply Current	$\mathrm{I}_{\mathrm{DD2} \text { (10) }}$					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			1.8	2.3	mA	5 MHz logic signal freq.
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			3.0	5.5	mA	5 MHz logic signal freq.
90 Mbps (CRW Grade Only)						
$\mathrm{V}_{\mathrm{DD} 1}$ Supply Current	$\mathrm{I}_{\mathrm{DD1}}(90)$					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			72	100	mA	45 MHz logic signal freq.
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			37	54	mA	45 MHz logic signal freq.
$\mathrm{V}_{\mathrm{DD} 2}$ Supply Current	$\mathrm{I}_{\mathrm{DD2} \text { (90) }}$					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			11	15	mA	45 MHz logic signal freq.
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			19	36	mA	45 MHz logic signal freq.
ADuM3401, Total Supply Current, Four Channels ${ }^{1}$						
DC to 2 Mbps						
$\mathrm{V}_{\mathrm{DD} 1}$ Supply Current	$\mathrm{I}_{\mathrm{DD1} \text { (Q) }}$					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			2.5	3.2	mA	DC to 1 MHz logic signal freq.
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			1.4	1.9	mA	DC to 1 MHz logic signal freq.
$\mathrm{V}_{\mathrm{DD} 2}$ Supply Current	$\mathrm{I}_{\text {D22 (Q) }}$					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			0.9	1.5	mA	DC to 1 MHz logic signal freq.
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			1.6	2.4	mA	DC to 1 MHz logic signal freq.
10 Mbps (BRW and CRW Grades Only)						
$\mathrm{V}_{\mathrm{DD} 1}$ Supply Current	$\mathrm{I}_{\mathrm{DD} 1 \text { (10) }}$					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			7.4	10.6	mA	5 MHz logic signal freq.
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			4.1	5.6	mA	5 MHz logic signal freq.
$\mathrm{V}_{\mathrm{DD} 2}$ Supply Current	$\mathrm{I}_{\mathrm{DD2} \text { (10) }}$					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			2.5	3.3	mA	5 MHz logic signal freq.
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			4.4	6.5	mA	5 MHz logic signal freq.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
ADuM340xBRW						
Minimum Pulse Width ${ }^{2}$	PW			100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Maximum Data Rate ${ }^{3}$		10			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay ${ }^{4}$	$\mathrm{t}_{\text {PHL }} \mathrm{t}_{\text {PLH }}$	15	35	50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Pulse Width Distortion, $\left\|\mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHLL }}\right\|^{4}$	PWD			3	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Change vs. Temperature			5		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay Skew ${ }^{5}$	$\mathrm{t}_{\text {PSK }}$			22	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching, Codirectional Channels ${ }^{6}$	$\mathrm{t}_{\text {PSKCD }}$			3	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching, Opposing-Directional Channels ${ }^{6}$	$\mathrm{t}_{\text {PSKod }}$			6	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
ADuM340xCRW						
Minimum Pulse Width ${ }^{2}$	PW		8.3	11.1	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Maximum Data Rate ${ }^{3}$		90	120		Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay ${ }^{4}$	$\mathrm{t}_{\text {PHL }} \mathrm{t}_{\text {PLH }}$	20	30	40	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Pulse Width Distortion, $\left\|\mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHL }}\right\|^{4}$	PWD		0.5	2	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Change vs. Temperature			3		ps/ $/{ }^{\circ} \mathrm{C}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay Skew ${ }^{5}$	$\mathrm{t}_{\text {PSK }}$			14	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching, Codirectional Channels ${ }^{6}$	$\mathrm{t}_{\text {PSKCD }}$			2	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching, Opposing-Directional Channels ${ }^{6}$	$\mathrm{t}_{\text {PSKOD }}$			5	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
For All Models						
Output Disable Propagation Delay (High/Low-to-High Impedance)	$\mathrm{t}_{\text {PHZ }} \mathrm{t}_{\text {PLH }}$		6	8	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Output Enable Propagation Delay (High Impedance-to-High/Low)	$\mathrm{t}_{\text {PZH, }} \mathrm{t}_{\text {PZL }}$		6	8	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$					$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			3.0		ns	
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			2.5		ns	
Common-Mode Transient Immunity at Logic High Output ${ }^{7}$	$\left\|\mathrm{CM}_{\mathrm{H}}\right\|$	25	35		kV/ $/ \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DDD}} / \mathrm{V}_{\mathrm{DD} 2}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Common-Mode Transient Immunity at Logic Low Output ${ }^{7}$	\| $\mathrm{CM}_{\mathrm{L}} \mid$	25	35		kV/ $/ \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Refresh Rate	fr_{r}					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			1.2		Mbps	
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			1.1		Mbps	
Input Dynamic Supply Current per Channel ${ }^{8}$	$\mathrm{I}_{\text {DII (})^{\prime}}$					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			0.20		mA/Mbps	
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			0.10		mA/Mbps	
Output Dynamic Supply Current per Channel ${ }^{8}$	$\mathrm{I}_{\mathrm{DDO}}(\mathrm{D})$					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			0.03		mA/Mbps	
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			0.05		mA/Mbps	

${ }^{1}$ The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through Figure 15 for total $V_{D D 1}$ and $V_{D D 2}$ supply currents as a function of data rate for ADuM3400/ADuM3401/ADuM3402 channel configurations.
${ }^{2}$ The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.
${ }^{3}$ The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.
${ }^{4} t_{\text {PHL }}$ propagation delay is measured from the 50% level of the falling edge of the $V_{1 x}$ signal to the 50% level of the falling edge of the $V_{\text {Ox }}$ signal. $t_{\text {PLH }}$ propagation delay is measured from the 50% level of the rising edge of the $V_{1 x}$ signal to the 50% level of the rising edge of the $V_{0 x}$ signal.
${ }^{5} t_{\text {PSK }}$ is the magnitude of the worst-case difference in $\mathrm{t}_{\mathrm{PHL}}$ or $\mathrm{t}_{\mathrm{PLH}}$ that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
${ }^{6}$ Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.
${ }^{7} \mathrm{CM}_{\mathrm{H}}$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD} 2}$. CM_{L} is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.
${ }^{8}$ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current for a given data rate.

PACKAGE CHARACTERISTICS

Table 4.

Parameter	Symbol	Min	Typ \quad Max	Unit	Test Conditions
Resistance (Input-to-Output) ${ }^{1}$	$\mathrm{R}_{1-\mathrm{O}}$	10^{12}	Ω		
Capacitance (Input-to-Output) 1	$\mathrm{C}_{1-\mathrm{O}}$	2.2	pF	$\mathrm{f}=1 \mathrm{MHz}$	
Input Capacitance 2	C_{l}	4.0	pF		
IC Junction-to-Case Thermal Resistance, Side 1	θ_{JCl}	33	${ }^{\circ} \mathrm{C} / \mathrm{W}$	Thermocouple located at	
IC Junction-to-Case Thermal Resistance, Side 2	θ_{Jco}	28	${ }^{\circ} \mathrm{C} / \mathrm{W}$	center of package underside	

${ }^{1}$ Device considered a 2-terminal device; Pin 1 to Pin 8 are shorted together and Pin 9 to Pin 16 are shorted together.
${ }^{2}$ Input capacitance is from any input data pin to ground.

REGULATORY INFORMATION

The ADuM340x is approved by the organizations listed in Table 5. Refer to Table 10 and the Insulation Lifetime section for details regarding recommended maximum working voltages for specific crossisolation waveforms and insulation levels.
Table 5.

UL	CSA	VDE
Recognized under	Approved under	Certified according to DIN V VDE V 0884-10
1577 component recognition program ${ }^{1}$	CSA Component Acceptance Notice \#5A	(VDE V0884-10): 2006-12
Double/reinforced insulation,	Basic insulation per CSA 60950-1-03 and	Reinforced insulation, 560 V peak
2500 V rms isolation voltage	IEC 60950-1, 800 V rms (1131 V peak)	
	maximum working voltage Reinforced insulation per CSA 60950-1-03 and IEC 60950-1, 400 V rms (566 V peak)	
	maximum working voltage	
	File 205078	File 2471900-4880-0001

${ }^{1}$ In accordance with UL 1577 , each ADuM340x is proof tested by applying an insulation test voltage $\geq 3000 \mathrm{~V}$ rms for 1 sec (current leakage detection limit $=5 \mu \mathrm{~A}$).
${ }^{2}$ In accordance with DIN V VDE V 0884-10, each ADuM340x is proof tested by applying an insulation test voltage ≥ 1050 V peak for 1 sec (partial discharge detection limit $=5 \mathrm{pC}$). The * marking branded on the component designates DIN V VDE V 0884-10 approval.

INSULATION AND SAFETY-RELATED SPECIFICATIONS

Table 6.

Parameter	Symbol	Value	Unit	Conditions
Rated Dielectric Insulation Voltage	L(I01)	2500	7.7 min	mm
Minimum External Air Gap (Clearance)	1-minute duration Measured from input terminals to output terminals, shortest distance through air			
Minimum External Tracking (Creepage)	L(I02)	8.1 min	mm	Measured from input terminals to output terminals, shortest distance path along body
Minimum Internal Gap (Internal Clearance)	0.017 min	mm	Insulation distance through insulation Tracking Resistance (Comparative Tracking Index)	CTI
175	V IEC 112/VDE 0303 Part 1			
Isolation Group		IIla	Material Group (DIN VDE 0110, 1/89, Table 1)	

ADuM3400/ADuM3401/ADuM3402

DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS

These isolators are suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by protective circuits. The * marking on packages denotes DIN V VDE V 0884-10 approval.
Table 7.

Description	Conditions	Symbol	Characteristic	Unit
Installation Classification per DIN VDE 0110				
For Rated Mains Voltage $\leq 150 \mathrm{~V}$ rms			Ito IV	
For Rated Mains Voltage $\leq 300 \mathrm{~V} \mathrm{rms}$			I to III	
For Rated Mains Voltage $\leq 400 \mathrm{~V}$ rms			I to II	
Climatic Classification			40/105/21	
Pollution Degree per DIN VDE 0110, Table 1			2	
Maximum Working Insulation Voltage		$\mathrm{V}_{\text {IORM }}$	560	\checkmark peak
Input-to-Output Test Voltage, Method B1	$\mathrm{V}_{\text {IORM }} \times 1.875=\mathrm{V}_{\text {PR, }} 100 \%$ production test, $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	1050	\checkmark peak
Input-to-Output Test Voltage, Method A	$\begin{aligned} & \mathrm{V}_{\text {IORM }} \times 1.6=\mathrm{V}_{\text {PR }} \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}, \\ & \text { partial discharge }<5 \mathrm{pC} \end{aligned}$	$V_{P R}$		
After Environmental Tests Subgroup 1			896	\checkmark peak
After Input and/or Safety Test Subgroup 2 and Subgroup 3	$\begin{aligned} & \mathrm{V}_{\text {IORM }} \times 1.2=\mathrm{V}_{\text {PR, }} \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}, \\ & \text { partial discharge }<5 \mathrm{pC} \end{aligned}$		672	\checkmark peak
Highest Allowable Overvoltage	Transient overvoltage, $\mathrm{t}_{\mathrm{TR}}=10$ seconds	$\mathrm{V}_{\text {TR }}$	4000	\checkmark peak
Safety-Limiting Values	Maximum value allowed in the event of a failure (see Figure 4)			
Case Temperature		T_{s}	150	${ }^{\circ} \mathrm{C}$
Side 1 Current		I_{51}	265	mA
Side 2 Current		I_{52}	335	mA
Insulation Resistance at T_{5}	$\mathrm{V}_{10}=500 \mathrm{~V}$	R_{S}	$>10^{9}$	Ω

RECOMMENDED OPERATING CONDITIONS

Table 8.

Parameter	Rating
Operating Temperature Range $\left(\mathrm{T}_{\mathrm{A}}\right)$	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Supply Voltages $\left(\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}\right)^{1}$	2.7 V to 5.5 V
Input Signal Rise and Fall Times	1.0 ms
'All voltages are relative to their respective ground. See the DC Correctness	
and Magnetic Field Immunity section for information on immunity to	
external magnetic fields.	

Figure 4. Thermal Derating Curve, Dependence of Safety-Limiting Values with Case Temperature per DIN V VDE V 0884-10

ABSOLUTE MAXIMUM RATINGS

Ambient temperature $=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 9.

Parameter	Rating
Storage Temperature Range ($\mathrm{T}_{\text {TT }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Operating Temperature Range (T_{A})	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Supply Voltages ($\left.\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}\right)^{1}$	-0.5 V to +7.0 V
Input Voltage ($\left.\mathrm{V}_{1 A^{\prime}}, \mathrm{V}_{13}, \mathrm{~V}_{\mathrm{C},}, \mathrm{V}_{10}, \mathrm{~V}_{\mathrm{E} 1}, \mathrm{~V}_{\mathrm{E} 2}\right)^{1,2}$	-0.5 V to $\mathrm{V}_{\mathrm{DD} 1}+0.5 \mathrm{~V}$
Output Voltage ($\left.\mathrm{V}_{\text {OA }}, \mathrm{V}_{\mathrm{OB}}, \mathrm{V}_{\mathrm{OC}}, \mathrm{V}_{\mathrm{OD}}\right)^{1,2}$	-0.5 V to $\mathrm{V}_{\text {DDO }}+0.5 \mathrm{~V}$
Average Output Current per Pin^{3}	
Side $1\left(\mathrm{I}_{10}\right)$	-18 mA to +18 mA
Side $2\left(\mathrm{l}_{02}\right)$	-22 mA to +22 mA
Common-Mode Transients ($\left.\mathrm{CM}_{\mathrm{H}^{\prime}} \mathrm{CM}_{\mathrm{L}}\right)^{4}$	$\begin{aligned} & -100 \mathrm{kV} / \mu \mathrm{s} \text { to } \\ & +100 \mathrm{kV} / \mu \mathrm{s} \end{aligned}$

${ }_{2}^{1}$ All voltages are relative to their respective ground.
${ }^{2} \mathrm{~V}_{D D I}$ and $\mathrm{V}_{D D O}$ refer to the supply voltages on the input and output sides of a given channel, respectively. See the PC Board Layout section.
${ }^{3}$ See Figure 4 for maximum rated current values for various temperatures.
${ }^{4}$ Refers to common-mode transients across the insulation barrier. Commonmode transients exceeding the Absolute Maximum Ratings can cause latchup or permanent damage.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Table 10. Maximum Continuous Working Voltage ${ }^{1}$

Parameter	Max	Unit	Constraint
AC Voltage, Bipolar Waveform	565	V peak	50-year minimum lifetime
AC Voltage, Unipolar Waveform			
\quad Basic Insulation	1131	V peak	Maximum approved working voltage per IEC 60950-1
\quad Reinforced Insulation	560	V peak	Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10
DC Voltage			
Basic Insulation	1131	V peak	Maximum approved working voltage per IEC 60950-1
Reinforced Insulation	560	V peak	Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10

${ }^{1}$ Refers to continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for more details.

Table 11. Truth Table (Positive Logic)

$\mathrm{V}_{\text {Ix }}$ Input ${ }^{1}$	V_{Ex} Input ${ }^{2}$	$\mathbf{V}_{\text {DDI }}$ State ${ }^{1}$	$\mathbf{V}_{\text {DDO }}$ State 1	$\mathrm{V}_{\text {ox }}$ Output ${ }^{1}$	Notes
H	H or NC	Powered	Powered	H	
L	H or NC	Powered	Powered	L	
x	L	Powered	Powered	Z	
x	H or NC	Unpowered	Powered	H	Outputs return to the input state within $1 \mu \mathrm{~s}$ of $\mathrm{V}_{\text {DDI }}$ power restoration.
x		Unpowered	Powered	Z	
x	x	Powered	Unpowered	Indeterminate	Outputs return to the input state within $1 \mu \mathrm{~s}$ of $\mathrm{V}_{\text {DDo }}$ power restoration if V_{Ex} state is H or NC. Outputs return to high impedance state within 8 ns of $\mathrm{V}_{\text {DDo }}$ power restoration if V_{EX} state is L .

[^1]
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

*PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED AND CONNECTING BOTH TO GND $_{1}$ IS RECOMMENDED. PIN 9 AND PIN 15 ARE INTERNALLY CONNECTED AND CONNECTING BOTH TO GND ${ }_{2}$ IS RECOMMENDED. IN NOISY ENVIRONMENTS, CONNECTING OUTPUT ENABLES (PIN 7 FOR ADuM3401/ADuM3402 AND PIN 10 CONNECTING OUTPUT ENABLES (PIN 7 FOR ADuM3401/ADuM3402 AND PIN 10
FOR ALL MODELS) TO AN EXTERNAL LOGIC HIGH OR LOW IS RECOMMENDED.

Figure 5. ADuM3400 Pin Configuration

Table 12. ADuM3400 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	$\mathrm{~V}_{\mathrm{DD} 1}$	Supply Voltage for Isolator Side $1,2.7 \mathrm{~V}$ to 5.5 V.
2,8	GND_{1}	Ground 1. Ground reference for Isolator Side 1.
3	$\mathrm{~V}_{\mathrm{IA}}$	Logic Input A.
4	$\mathrm{~V}_{\mathrm{IB}}$	Logic Input B.
5	$\mathrm{~V}_{\mathrm{IC}}$	Logic Input C.
6	$\mathrm{~V}_{\mathrm{ID}}$	Logic Input D.
7	NC	No Connect.
9,15	GND_{2}	Ground 2. Ground reference for Isolator Side 2.
10	$\mathrm{~V}_{\mathrm{E} 2}$	Output Enable 2. Active high logic input. V_{OA}, V_{OB}, V_{O}, and V_{OD} outputs are enabled when $\mathrm{V}_{\mathrm{E} 2}$ is high or disconnected. 11
	$\mathrm{~V}_{\mathrm{OD}}$	high or low is recommended.
12	$\mathrm{~V}_{\mathrm{OC}}$	Logic Output D.
13	$\mathrm{~V}_{\mathrm{OB}}$	Logic Output C.
14	$\mathrm{~V}_{\mathrm{OA}}$	Logic Output B.
16	$\mathrm{~V}_{\mathrm{DD} 2}$	Logic Output A.

*PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED AND CONNECTING BOTH TO GND_{1} IS RECOMMENDED. PIN 9 AND PIN 15 ARE INTERNALLY CONNECTED AND CONNECTING BOTH TO GND ${ }_{2}$ IS RECOMMENDED. IN NOISY ENVIRONMENTS, CONNECTING OUTPUT ENABLES (PIN 7 FOR ADuM3401/ADuM3402 AND PIN 10 FOR ALL MODELS) TO AN EXTERNAL LOGIC HIGH OR LOW IS RECOMMENDED.

Figure 6. ADuM3401 Pin Configuration

Table 13. ADuM3401 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	$\mathrm{V}_{\mathrm{DD} 1}$	Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V.
2,8	GND_{1}	Ground 1. Ground reference for Isolator Side 1.
3	$\mathrm{V}_{\text {IA }}$	Logic Input A.
4	$V_{\text {IB }}$	Logic Input B.
5	$V_{\text {IC }}$	Logic Input C.
6	$V_{\text {OD }}$	Logic Output D.
7	$V_{E 1}$	Output Enable 1. Active high logic input. V_{OD} output is enabled when $\mathrm{V}_{\mathrm{E} 1}$ is high or disconnected. V_{OD} is disabled when $\mathrm{V}_{\mathrm{E} 1}$ is low. In noisy environments, connecting $\mathrm{V}_{\mathrm{E} 1}$ to an external logic high or low is recommended.
9, 15	GND_{2}	Ground 2. Ground reference for Isolator Side 2.
10	$\mathrm{V}_{\mathrm{E} 2}$	Output Enable 2. Active high logic input. $\mathrm{V}_{\mathrm{OA}}, \mathrm{V}_{\mathrm{OB}}$, and V_{OC} outputs are enabled when $\mathrm{V}_{\mathrm{E} 2}$ is high or disconnected. $\mathrm{V}_{\mathrm{OA}}, \mathrm{V}_{\mathrm{OB}}$, and V_{OC} outputs are disabled when $\mathrm{V}_{\mathrm{E} 2}$ is low. In noisy environments, connecting $\mathrm{V}_{\mathrm{E} 2}$ to an external logic high or low is recommended.
11	$\mathrm{V}_{\text {ID }}$	Logic Input D.
12	$\mathrm{V}_{\text {OC }}$	Logic Output C.
13	$\mathrm{V}_{\text {OB }}$	Logic Output B.
14	$\mathrm{V}_{\text {OA }}$	Logic Output A.
16	$\mathrm{V}_{\mathrm{DD} 2}$	Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V.

*PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED AND CONNECTING BOTH TO GND_{1} IS RECOMMENDED. PIN 9 AND PIN 15 ARE INTERNALLY CONNECTED AND CONNECTING BOTH TO GND ${ }^{2}$ IS RECOMMENDED. IN NOISY ENVIRONMENTS, CONNECTING OUTPUT ENABLES (PIN 7 FOR ADuM3401/ADuM3402 AND PIN 10 FOR ALL MODELS) TO AN EXTERNAL LOGIC HIGH OR LOW IS RECOMMENDED.

Figure 7. ADuM3402 Pin Configuration

Table 14. ADuM3402 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	$V_{\text {DD } 1}$	Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V.
2, 8	GND_{1}	Ground 1. Ground reference for Isolator Side 1.
3	$\mathrm{V}_{\text {IA }}$	Logic Input A.
4	$\mathrm{V}_{1 \text { B }}$	Logic Input B.
5	$\mathrm{V}_{\text {oc }}$	Logic Output C.
6	$\mathrm{V}_{\text {OD }}$	Logic Output D.
7	$\mathrm{V}_{\mathrm{E} 1}$	Output Enable 1. Active high logic input. V_{OC} and V_{OD} outputs are enabled when $\mathrm{V}_{\mathrm{E} 1}$ is high or disconnected. V_{OC} and V_{OD} outputs are disabled when $\mathrm{V}_{\mathrm{E} 1}$ is low. In noisy environments, connecting $\mathrm{V}_{\mathrm{E} 1}$ to an external logic high or low is recommended.
9, 15	GND_{2}	Ground 2. Ground reference for Isolator Side 2.
10	$\mathrm{V}_{\mathrm{E} 2}$	Output Enable 2. Active high logic input. V_{OA} and V_{OB} outputs are enabled when $\mathrm{V}_{\mathrm{E} 2}$ is high or disconnected. $V_{O A}$ and $V_{O B}$ outputs are disabled when $V_{E 2}$ is low. In noisy environments, connecting $V_{E 2}$ to an external logic high or low is recommended.
11	$\mathrm{V}_{1 \mathrm{D}}$	Logic Input D.
12	V_{16}	Logic Input C.
13	$V_{\text {OB }}$	Logic Output B.
14	$V_{\text {OA }}$	Logic Output A.
16	$\mathrm{V}_{\mathrm{DD} 2}$	Supply Voltage for Isolator Side 2, 2.7 V to 5.5 V.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 8. Typical Input Supply Current per Channel vs. Data Rate (No Load)

Figure 9. Typical Output Supply Current per Channel vs. Data Rate (No Load)

Figure 10. Typical Output Supply Current per Channel vs. Data Rate (15 pF Output Load)

Figure 11. Typical ADuM3400 VDD1 Supply Current vs. Data Rate for 5 V and 3 V Operation

Figure 12. Typical ADuM3400 VDD2 Supply Current vs. Data Rate for 5 V and 3 V Operation

Figure 13. Typical ADuM3401 V DD1 Supply Current vs. Data Rate for 5 V and 3 V Operation

Data Sheet

Figure 14. Typical ADuM3401 VD2 Supply Current vs. Data Rate for 5 V and 3 V Operation

Figure 15. Typical ADuM3402 $V_{D D 1}$ or $V_{D D 2}$ Supply Current vs. Data Rate for 5 V and 3 V Operation

Figure 16. Propagation Delay vs. Temperature, C Grade

APPLICATION INFORMATION

PC BOARD LAYOUT

The ADuM340x digital isolator requires no external interface circuitry for the logic interfaces. Power supply bypassing is strongly recommended at the input and output supply pins (see Figure 17). Bypass capacitors are most conveniently connected between Pin 1 and Pin 2 for $\mathrm{V}_{\mathrm{DDI}}$ and between Pin 15 and Pin 16 for $\mathrm{V}_{\mathrm{DD} 2}$. The capacitor value should be between $0.01 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$. The total lead length between both ends of the capacitor and the input power supply pin should not exceed 20 mm . Bypassing between Pin 1 and Pin 8 and between Pin 9 and Pin 16 should also be considered unless the ground pair on each package side is connected close to the package.

Figure 17. Recommended Printed Circuit Board Layout
In applications involving high common-mode transients, care should be taken to ensure that board coupling across the isolation barrier is minimized. Furthermore, the board layout should be designed such that any coupling that does occur equally affects all pins on a given component side. Failure to ensure this could cause voltage differentials between pins exceeding the Absolute Maximum Ratings of the device, thereby leading to latch-up or permanent damage.

See the AN-1109 Application Note for board layout guidelines.

SYSTEM-LEVEL ESD CONSIDERATIONS AND ENHANCEMENTS

System-level ESD reliability (for example, per IEC 61000-4-x) is highly dependent on system design, which varies widely by application. The ADuM340x incorporate many enhancements to make ESD reliability less dependent on system design. The enhancements include:

- ESD protection cells added to all input/output interfaces.
- Key metal trace resistances reduced using wider geometry and paralleling of lines with vias.
- The SCR effect inherent in CMOS devices minimized by use of guarding and isolation technique between PMOS and NMOS devices.
- Areas of high electric field concentration eliminated using 45° corners on metal traces.
- Supply pin overvoltage prevented with larger ESD clamps between each supply pin and its respective ground.

While the ADuM340x improve system-level ESD reliability, they are no substitute for a robust system-level design. See the AN-793 application note, ESD/Latch-Up Considerations with iCoupler Isolation Products for detailed recommendations on board layout and system-level design.

PROPAGATION DELAY-RELATED PARAMETERS

Propagation delay is a parameter that describes the time it takes a logic signal to propagate through a component. The propagation delay to a logic low output can differ from the propagation delay to a logic high.

Figure 18. Propagation Delay Parameters
Pulse width distortion is the maximum difference between these two propagation delay values and is an indication of how accurately the input signal's timing is preserved.

Channel-to-channel matching refers to the maximum amount the propagation delay differs between channels within a single ADuM340x component.

Propagation delay skew refers to the maximum amount the propagation delay differs between multiple ADuM340x components operating under the same conditions.

DC CORRECTNESS AND MAGNETIC FIELD IMMUNITY

Positive and negative logic transitions at the isolator input cause narrow ($\sim 1 \mathrm{~ns}$) pulses to be sent to the decoder via the transformer. The decoder is bistable and is, therefore, either set or reset by the pulses, indicating input logic transitions. In the absence of logic transitions at the input for more than $\sim 1 \mu \mathrm{~s}$, a periodic set of refresh pulses indicative of the correct input state are sent to ensure dc correctness at the output. If the decoder receives no internal pulses of more than about $5 \mu \mathrm{~s}$, the input side is assumed to be unpowered or nonfunctional, in which case the isolator output is forced to a default state (see Table 11) by the watchdog timer circuit.

The limitation on the magnetic field immunity of the ADuM340x is set by the condition in which induced voltage in the receiving coil of the transformer is sufficiently large to either falsely set or reset the decoder. The following analysis defines the conditions under which this can occur. The 3 V operating condition of the ADuM340x is examined because it represents the most susceptible mode of operation.

The pulses at the transformer output have an amplitude greater than 1.0 V . The decoder has a sensing threshold at about 0.5 V , thus establishing a 0.5 V margin in which induced voltages can be tolerated. The voltage induced across the receiving coil is given by

$$
V=(-d \beta / d t) \sum \Pi r_{n}^{2} ; N=1,2, \ldots, N
$$

where:
β is magnetic flux density (gauss).
N is the number of turns in the receiving coil. r_{n} is the radius of the $\mathrm{n}^{\text {th }}$ turn in the receiving coil (cm).

Given the geometry of the receiving coil in the ADuM340x and an imposed requirement that the induced voltage be at most 50% of the 0.5 V margin at the decoder, a maximum allowable magnetic field is calculated as shown in Figure 19.

Figure 19. Maximum Allowable External Magnetic Flux Density
For example, at a magnetic field frequency of 1 MHz , the maximum allowable magnetic field of 0.2 kgauss induces a voltage of 0.25 V at the receiving coil, which is about 50% of the sensing threshold and does not cause a faulty output transition. Similarly, if such an event were to occur during a transmitted pulse (and was of the worst-case polarity), it would reduce the received pulse from $>1.0 \mathrm{~V}$ to 0.75 V -still well above the 0.5 V sensing threshold of the decoder.

The preceding magnetic flux density values correspond to specific current magnitudes at given distances from the ADuM340x transformers. Figure 20 expresses these allowable current magnitudes as a function of frequency for selected distances. As shown, the ADuM340x is extremely immune and can be affected only by extremely large currents operated at high frequency very close to the component. For the 1 MHz example noted, one would have to place a 0.5 kA current 5 mm away from the ADuM340x to affect the operation of the component.

Figure 20. Maximum Allowable Current for Various Current-to-ADuM340x Spacings

Note that at combinations of strong magnetic field and high frequency, any loops formed by printed circuit board traces could induce error voltages sufficiently large enough to trigger the thresholds of succeeding circuitry. Care should be taken in the layout of such traces to avoid this possibility.

POWER CONSUMPTION

The supply current at a given channel of the ADuM340x isolator is a function of the supply voltage, the channel's data rate, and the channel's output load.

For each input channel, the supply current is given by

$$
\begin{array}{ll}
I_{D D I}=I_{D D I(Q)} & f \leq 0.5 f_{r} \\
I_{D D I}=I_{D D I(D)} \times\left(2 f-f_{r}\right)+I_{D D I(Q)} & f>0.5 f_{r}
\end{array}
$$

For each output channel, the supply current is given by

$$
\begin{aligned}
& I_{D D O}=I_{\text {DDO (Q) }} f \leq 0.5 f_{r} \\
& I_{D D O}=\left(I_{D D O(D)}+\left(0.5 \times 10^{-3}\right) \times C_{L} \times V_{D D O}\right) \times\left(2 f-f_{r}\right)+I_{D D O(Q)} \\
& f>0.5 f_{r}
\end{aligned}
$$

where:
$I_{D D I(D)}, I_{D D O(D)}$ are the input and output dynamic supply currents per channel (mA/Mbps).
C_{L} is the output load capacitance (pF).
$V_{D D O}$ is the output supply voltage (V).
f is the input logic signal frequency (MHz); it is half of the input data rate expressed in units of Mbps.
f_{r} is the input stage refresh rate (Mbps).
$I_{D D I(Q)}, I_{D D O(Q)}$ are the specified input and output quiescent supply currents (mA).

To calculate the total $\mathrm{I}_{\mathrm{DD} 1}$ and $\mathrm{I}_{\mathrm{DD} 2}$ supply current, the supply currents for each input and output channel corresponding to $V_{D D 1}$ and $V_{D D 2}$ are calculated and totaled. Figure 8 provides the per-channel input supply current as a function of the data rate. Figure 9 and Figure 10 provide the per-channel supply output current as a function of the data rate for an unloaded output condition and for a 15 pF output condition, respectively. Figure 11 through Figure 15 provide the total $\mathrm{V}_{\mathrm{DD} 1}$ and $\mathrm{V}_{\mathrm{DD} 2}$ supply current as a function of the data rate for ADuM3400/ADuM3401/ ADuM3402 channel configurations.

INSULATION LIFETIME

All insulation structures eventually break down when subjected to voltage stress over a sufficiently long period. The rate of insulation degradation is dependent on the characteristics of the voltage waveform applied across the insulation. In addition to the testing performed by the regulatory agencies, Analog Devices carries out an extensive set of evaluations to determine the lifetime of the insulation structure within the ADuM340x.

Analog Devices performs accelerated life testing using voltage levels higher than the rated continuous working voltage. Acceleration factors for several operating conditions are determined. These factors allow calculation of the time to failure at the actual working voltage. The values shown in Figure 21 summarize the peak voltage for 50 years of service life for a bipolar ac operating condition, and the maximum CSA/VDE approved working voltages. In many cases, the approved working voltage is higher than the 50-year service life voltage. Operation at these high working voltages can lead to shortened insulation life in some cases.

The insulation lifetime of the ADuM340x depends on the voltage waveform type imposed across the isolation barrier. The i Coupler insulation structure degrades at different rates depending on whether the waveform is bipolar ac, unipolar ac, or dc. Figure 21, Figure 22, and Figure 23 illustrate these different isolation voltage waveforms.

Bipolar ac voltage is the most stringent environment. The goal of a 50 -year operating lifetime under the ac bipolar condition determines the recommended maximum working voltage of Analog Devices.

In the case of unipolar ac or dc voltage, the stress on the insulation is significantly lower, which allows operation at higher working voltages while still achieving a 50 -year service life. The working voltages listed in Table 10 can be applied while maintaining the 50 -year minimum lifetime provided the voltage conforms to either the unipolar ac or dc voltage cases. Any cross insulation voltage waveform that does not conform to Figure 22 or Figure 23 should be treated as a bipolar ac waveform and its peak voltage should be limited to the 50 -year lifetime voltage value listed in Table 10.

Note that the voltage presented in Figure 22 is shown as sinusoidal for illustration purposes only. It is meant to represent any voltage waveform varying between 0 V and some limiting value. The limiting value can be positive or negative, but the voltage cannot cross 0 V .

Figure 21. Bipolar AC Waveform

RATED PEAK VOLTAGE

Figure 23. DC Waveform

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-013-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 24. 16-Lead Standard Small Outline Package [SOIC_W] Wide Body (RW-16)
Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model ${ }^{1,2}$	Number of Inputs, $\mathrm{V}_{\mathrm{DD} 1}$ Side	Number of Inputs, $\mathrm{V}_{\mathrm{DD} 2}$ Side	Maximum Data Rate (Mbps)	Maximum Propagation Delay, 5 V (ns)	Maximum Pulse Width Distortion (ns)	Temperature Range	Package Description	Package Option
ADuM3400ARWZ	4	0	1	100	40	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16-Lead SOIC_W	RW-16
ADuM3400BRWZ	4	0	10	50	3	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16-Lead SOIC_W	RW-16
ADuM3400CRWZ	4	0	90	32	2	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16-Lead SOIC_W	RW-16
ADuM3401ARWZ	3	1	1	100	40	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16-Lead SOIC_W	RW-16
ADuM3401BRWZ	3	1	10	50	3	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16-Lead SOIC_W	RW-16
ADuM3401CRWZ	3	1	90	32	2	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16-Lead SOIC_W	RW-16
ADuM3402ARWZ	2	2	1	100	40	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16-Lead SOIC_W	RW-16
ADuM3402BRWZ	2	2	10	50	3	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16-Lead SOIC_W	RW-16
ADuM3402CRWZ	2	2	90	32	2	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16-Lead SOIC_W	RW-16

[^2]
NOTES

[^0]: Rev. B
 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

[^1]: ${ }^{1} V_{V x}$ and $V_{O x}$ refer to the input and output signals of a given channel (A, B, C, or D). $V_{E x}$ refers to the output enable signal on the same side as the $V_{O x}$ outputs. $V_{D D I}$ and
 $V_{D D O}$ refer to the supply voltages on the input and output sides of the given channel, respectively.
 ${ }^{2}$ In noisy environments, connecting V_{Ex} to an external logic high or low is recommended.

[^2]: ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.
 ${ }^{2}$ Tape and reel are available. The addition of an -RL suffix designates a 13" (1,000 units) tape-and-reel option.

