

CMPA2735075F

75 W, 2.7 - 3.5 GHz, GaN MMIC, Power Amplifier

Cree's CMPA2735075F is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to Si and GaAs transistors. This MMIC contains a two-stage reactively matched amplifier design approach enabling very wide bandwidths to be achieved. This MMIC enables extremely wide bandwidths to be achieved in a small footprint screw-down package.

PN: CMPA2735075F Package Type: 780019

Typical Performance Over 2.7-3.5 GHz (T_c = 25°C)

Parameter	2.7 GHz	2.9 GHz	3.1 GHz	3.3 GHz	3.5 GHz	Units
Small Signal Gain	27	29	29	28	27	dB
Saturated Output Power, P _{SAT} ¹	59	76	89	90	83	W
Power Gain @ P _{sat} ¹	21	23	24	24	23	dB
PAE @ P _{SAT} ¹	43	54	56	56	56	%

Note¹: P_{sat} is defined as the RF output power where the device starts to draw positive gate current in the range of 2-8 mA.

Features

- 27 dB Small Signal Gain
- 80 W Typical P_{SAT}
- Operation up to 28 V
- High Breakdown Voltage
- High Temperature Operation
- 0.5" x 0.5" Total Product Size

Applications

Civil and Military Pulsed Radar Ampli-

fiers

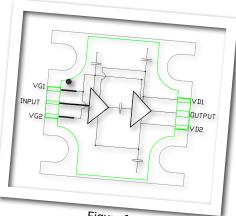


Figure 1.

Subject to change without notice www.cree.com/rf

CREE ᆃ

Absolute Maximum Ratings (not simultaneous) at 25°C

Parameter	Symbol	Rating	Units	Conditions
Drain-source Voltage	V _{DSS}	84	VDC	25°C
Gate-source Voltage	V _{GS}	-10, +2	VDC	25°C
Storage Temperature	T _{stg}	-65, +150	°C	
Operating Junction Temperature	Tj	225	°C	
Maximum Forward Gate Current	I _G	28	mA	25°C
Screw Torque	Т	40	in-oz	
Thermal Resistance, Junction to Case (packaged) ¹	$R_{_{ ext{ ext{ ext{ ext{ ext{ ext{ ext{ ext$	2.5	°C/W	300 µsec, 20%, 85°C

Notes:

 $^{\rm 1}$ Measured for the CMPA2735075F at $\rm P_{\rm DISS}$ = 64 W.

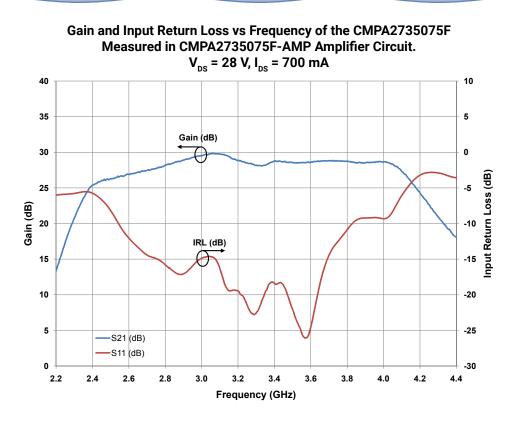
Electrical Characteristics (Frequency = 2.9 GHz to 3.5 GHz unless otherwise stated; $T_c = 25^{\circ}C$)

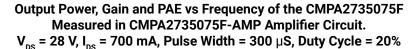
Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics						
Gate Threshold Voltage	V _{GS(TH)}	-3.8	-3.0	-2.3	V	$V_{_{DS}}$ = 10 V, I $_{_{D}}$ = 28 mA
Gate Quiescent Voltage	V _{GS(Q)}	-	-2.7	-	V _{DC}	$V_{_{DD}}$ = 28 V, I $_{_{DQ}}$ = 700 mA, Freq = 2.9 GHz
Saturated Drain Current ¹	I _{DS}	19.6	27.4	-	А	$V_{_{ m DS}}$ = 6.0 V, $V_{_{ m GS}}$ = 2.0 V
Drain-Source Breakdown Voltage	V _{BD}	84	100	-	V	$V_{_{\rm GS}}$ = -8 V, I $_{_{\rm D}}$ = 28 mA
RF Characteristics ^{2,3}						
Small Signal Gain,	S21	-	29	-	dB	$\rm V_{_{\rm DD}}$ = 28 V, $\rm I_{_{\rm DQ}}$ = 700 mA, Freq = 2.9 GHz
Small Signal Gain ₂	S21	26.5	29	-	dB	$\rm V_{_{DD}}$ = 28 V, $\rm I_{_{DQ}}$ = 700 mA, Freq = 3.1 GHz
Small Signal Gain ₃	S21	26	27	-	dB	$\rm V_{_{\rm DD}}$ = 28 V, $\rm I_{_{DQ}}$ = 700 mA, Freq = 3.5 GHz
Power Output,	P _{out}	-	76	-	W	$\rm V_{_{DD}}$ = 28 V, $\rm I_{_{DQ}}$ = 700 mA, $\rm P_{_{IN}}$ = 28 dBm, Freq = 2.9 GHz
Power Output ₂	P _{OUT}	66	82	-	W	$\rm V_{_{DD}}$ = 28 V, $\rm I_{_{DQ}}$ = 700 mA, $\rm P_{_{IN}}$ = 28 dBm, Freq = 3.1 GHz
Power Output ₃	P _{OUT}	66	85	-	W	$\rm V_{_{DD}}$ = 28 V, $\rm I_{_{DQ}}$ = 700 mA, $\rm P_{_{IN}}$ = 28 dBm, Freq = 3.5 GHz
Power Added Efficiency ₁	PAE	-	54	-	%	$\rm V_{_{\rm DD}}$ = 28 V, $\rm I_{_{\rm DQ}}$ = 700 mA, Freq = 2.9 GHz
Power Added Efficiency ₂	PAE	45	54	-	%	$\rm V_{_{\rm DD}}$ = 28 V, $\rm I_{_{\rm DQ}}$ = 700 mA, Freq = 3.1 GHz
Power Added Efficiency ₃	PAE	45	53	-	%	$\rm V_{_{DD}}$ = 28 V, $\rm I_{_{DQ}}$ = 700 mA, Freq = 3.5 GHz
Power Gain ₁	G _P	-	23	-	dB	$\rm V_{_{DD}}$ = 28 V, $\rm I_{_{DQ}}$ = 700 mA, Freq = 2.9 GHz
Power Gain ₂	G _P	20	21	-	dB	$\rm V_{_{DD}}$ = 28 V, $\rm I_{_{DQ}}$ = 700 mA, Freq = 3.1 GHz
Power Gain ₃	G _P	20	21	-	dB	$\rm V_{_{DD}}$ = 28 V, $\rm I_{_{DQ}}$ = 700 mA, Freq = 3.5 GHz
Input Return Loss ₁	S11	-	-11	-8	dB	$\rm V_{_{DD}}$ = 28 V, $\rm I_{_{DQ}}$ = 700 mA, Freq = 3.1 GHz
Input Return Loss ₂	S11	-	-16	-10	dB	$\rm V_{_{DD}}$ = 28 V, $\rm I_{_{DQ}}$ = 700 mA, Freq = 3.5 GHz
Output Return Loss ₁	S22	-	-9	-4	dB	$\rm V_{_{DD}}$ = 28 V, $\rm I_{_{DQ}}$ = 700 mA, Freq = 3.1 GHz
Output Return Loss ₂	S22	-	-17	-10	dB	$\rm V_{_{DD}}$ = 28 V, $\rm I_{_{DQ}}$ = 700 mA, Freq = 3.5 GHz
Output Mismatch Stress	VSWR	-	-	5:1	Ψ	No damage at all phase angles, $V_{_{DD}}$ = 28V, I $_{_{DQ}}$ = 700mA, $P_{_{OUT}}$ = 75W CW

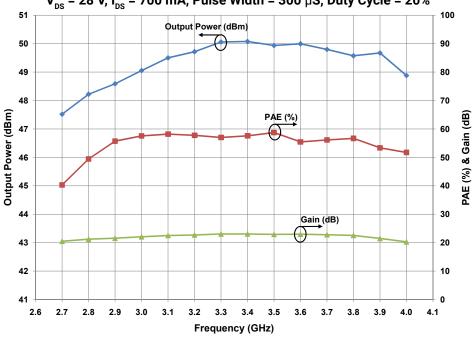
Notes:

¹ Scaled from PCM data.

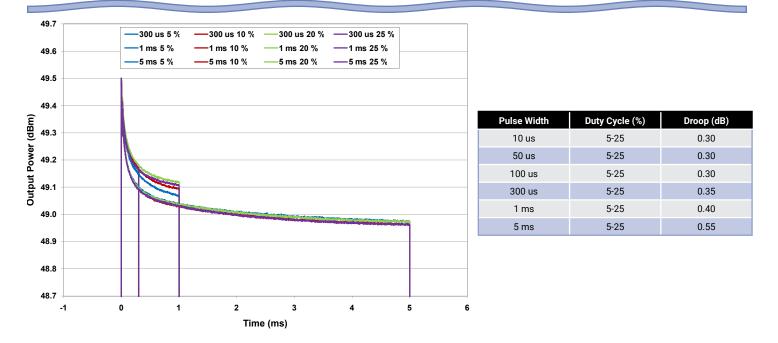
² All data pulse tested in CMPA2735075F-AMP


 3 Pulse Width = 300 µS, Duty Cycle = 20%.


Copyright © 2010-2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective owners and do not imply specific product and/or vendor endorsement, sponsorship or association.


Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/ff

Typical Performance of the CMPA2735075F



Copyright © 2010-2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective owners and do not imply specific product and/or vendor endorsement, sponsorship or association.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.813.5300 Fax: +1.919.869.2733 www.cree.com/rf

Typical Pulse Droop Performance

Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Test Methodology
Human Body Model	НВМ	1A (> 250 V)	JEDEC JESD22 A114-D
Charge Device Model	CDM	II (200 < 500 V)	JEDEC JESD22 C101-C

Copyright © 2010-2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective owners and do not imply specific product and/or vendor endorsement, sponsorship or association.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/f

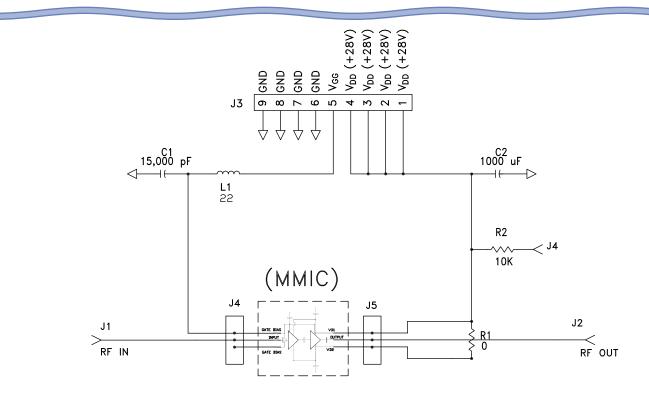

CMPA2735075F-AMP Demonstration Amplifier Circuit Bill of Materials

Designator	Description	Qty
C1	CAP, 15000pF, 100V, 0805, X7R	1
C2	CAP, 1000uF, 20%, 50V, ELECT, MVY, SMD	1
R1	RES, 1/8W, 1206, +/-5%, 0 OHMS	1
R2	RES, 1/16W, 0603, +/-5%, 10K OHMS	1
L1	FERRITE, 22 OHM, 0805, BLM21PG220SN1	1
J1,J2	CONNECTOR, N-TYPE, FEMALE, W/0.500 SMA FLNG	2
J3	CONNECTOR, HEADER, RT>PLZ .1CEN LK 9POS	1
J4	CONNECTOR, SMB, STRAIGHT JACK, SMD	1
-	PCB, TACONIC, RF-35-0100-CH/CH	1
Q1	CMPA2735075F	1

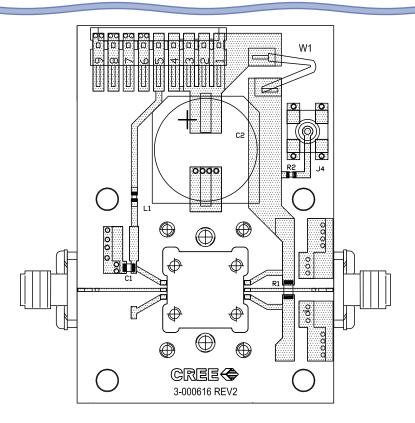
Notes

¹The CMPA2735075F is connected to the PCB with 2.0 mil Au bond wires.

CMPA2735075F-AMP Demonstration Amplifier Circuit

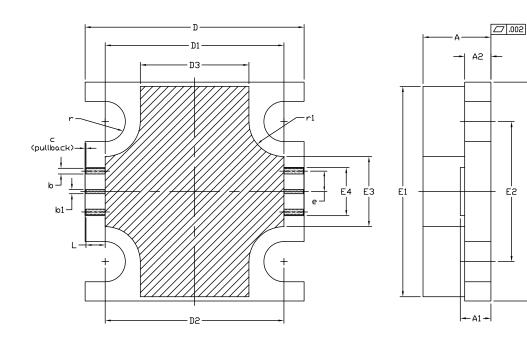


Copyright © 2010-2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective owners and do not imply specific product and/or vendor endorsement, sponsorship or association.


Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf

CMPA2735075F-AMP Demonstration Amplifier Circuit Schematic

CMPA2735075F-AMP Demonstration Amplifier Circuit Outline



Copyright © 2010-2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective owners and do not imply specific product and/or vendor endorsement, sponsorship or association.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/ff

Product Dimensions CMPA2735075F (Package Type - 780019)

NOTES

È

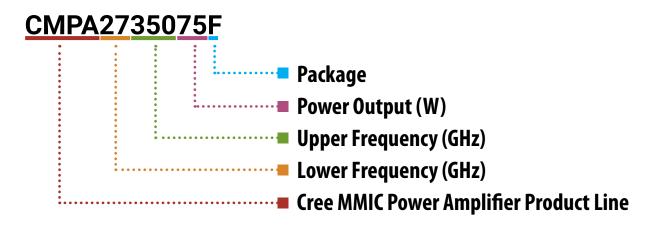
1. DIMENSIONING AND TOLERANICING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION INCH. 3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM DF 0.020' BEVOND EDGE OF LID.

4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.

5. ALL PLATED SURFACES ARE NI/AU

	INCHES		MILLIMETERS		NOTE
DIM	MIN	MAX	MIN	MAX	NOTE
Α	0.148	0.162	3.76	4.12	-
A1	0.066	0.076	1.67	1.93	-
A2	0.056	0.064	1.42	1.63	-
b	0.0	13	0.	33	x4
b1	0.0	10	0.:	25	×2
с	0.0	02	0.	05	×2
D	0.495	0.505	12.57	12.83	-
D1	0.403	0.413	10.23	10.49	-
D2	0.408		10.36		-
D3	0.243	0.253	6.17	6.43	-
Е	0.495	0.505	12.57	12.83	-
E1	0.475	0.485	12.06	12.32	-
E2	0.3	20	8.13		-
E3	0.155	0.165	3.93	4.19	-
E4	0.105	0.115	2.66	2.92	-
e	0.046		1.17		x4
L	0.044		1.	.12	x6
r	R0.046		R1.17		x4
r1	R0.080		R2.03		x4


Copyright © 2010-2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective owners and do not imply specific product and/or vendor endorsement, sponsorship or association.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf

7 CMPA2735075F Rev 1.2

Part Number System

Parameter	Value	Units
Lower Frequency	2.7	GHz
Upper Frequency	3.5	GHz
Power Output	75	W
Package	Flange	-

Note: Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Character Code	Code Value
А	0
В	1
С	2
D	3
E	4
F	5
G	6
Н	7
J	8
К	9
Examples:	1A = 10.0 GHz 2H = 27.0 GHz

Table 2.

Copyright © 2010-2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective owners and do not imply specific product and/or vendor endorsement, sponsorship or association.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CMPA2735075F	GaN HEMT	Each	CHERCOTERS
CMPA2735075F-TB	Test board without GaN MMIC	Each	
CMPA2735075F-AMP	Test board with GaN MMIC installed	Each	

Copyright © 2010-2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective owners and do not imply specific product and/or vendor endorsement, sponsorship or association.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf

9 CMPA2735075F Rev 1.2

CREE ᆃ

Disclaimer

Specifications are subject to change without notice. Cree, Inc. believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Cree for its use or for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Cree. Cree makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. These values can and do vary in different applications, and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Cree products are not designed, intended, or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Cree product could result in personal injury or death, or in applications for the planning, construction, maintenance or direct operation of a nuclear facility. CREE and the CREE logo are registered trademarks of Cree, Inc.

For more information, please contact:

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 www.cree.com/RE

Sarah Miller Marketing Cree, RF Components 1.919.407.5302

Ryan Baker Marketing & Sales Cree, RF Components 1.919.407.7816

Tom Dekker Sales Director Cree, RF Components 1.919.407.5639

Copyright © 2010-2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective owners and do not imply specific product and/or vendor endorsement, sponsorship or association.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf