74LVC1G384 Bilateral switch Rev. 4 — 6 December 2011 **Product data sheet** #### 1. **General description** The 74LVC1G384 provides one single pole, single throw analog switch function. It has two input/output terminals (Y and Z) and an active LOW enable input pin (E). When pin E is HIGH, the analog switch is turned off. Schmitt trigger action at the enable input makes the circuit tolerant of slower input rise and fall times across the entire V_{CC} range from 1.65 V to 5.5 V. #### 2. **Features and benefits** - Wide supply voltage range from 1.65 V to 5.5 V - Very low ON resistance: - 7.5 Ω (typical) at $V_{CC} = 2.7 \text{ V}$ - 6.5 Ω (typical) at $V_{CC} = 3.3 \text{ V}$ - 6 Ω (typical) at $V_{CC} = 5 \text{ V}$ - ESD protection: - ♦ HBM JESD22-A114F exceeds 2000 V - MM JESD22-A115-A exceeds 200 V - Switch current capability of 32 mA - High noise immunity - CMOS low power consumption - TTL interface compatibility at 3.3 V - Latch-up performance meets requirements of JESD 78 Class I - Enable input accepts voltages up to 5.5 V - Inputs accept voltages up to 5 V - Multiple package options - Specified from -40 °C to +85 °C and from -40 °C to +125 °C #### 3. **Ordering information** Table 1. **Ordering information** | Type number | Package | | | | |--------------|-------------------|--------|---|----------| | | Temperature range | Name | Description | Version | | 74LVC1G384GW | –40 °C to +125 °C | TSSOP5 | plastic thin shrink small outline package; 5 leads; body width 1.25 mm | SOT353-1 | | 74LVC1G384GV | –40 °C to +125 °C | SC-74A | plastic surface-mounted package; 5 leads | SOT753 | | 74LVC1G384GM | –40 °C to +125 °C | XSON6 | plastic extremely thin small outline package; no leads; 6 terminals; body 1 \times 1.45 \times 0.5 mm | SOT886 | Table 1. Ordering information ...continued | Type number | Package | | | | |--------------|-------------------|-------|--|---------| | | Temperature range | Name | Description | Version | | 74LVC1G384GF | –40 °C to +125 °C | XSON6 | plastic extremely thin small outline package; no leads; 6 terminals; body 1 \times 1 \times 0.5 mm | SOT891 | | 74LVC1G384GN | –40 °C to +125 °C | XSON6 | extremely thin small outline package; no leads; 6 terminals; body $0.9 \times 1.0 \times 0.35$ mm | SOT1115 | | 74LVC1G384GS | –40 °C to +125 °C | XSON6 | extremely thin small outline package; no leads; 6 terminals; body 1.0 \times 1.0 \times 0.35 mm | SOT1202 | # 4. Marking ### Table 2. Marking | ······································ | | |--|-----------------------------| | Type number | Marking code ^[1] | | 74LVC1G384GW | YL | | 74LVC1G384GV | YL | | 74LVC1G384GM | YL | | 74LVC1G384GF | YL | | 74LVC1G384GN | YL | | 74LVC1G384GS | YL | ^[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code. # 5. Functional diagram # 6. Pinning information ## 6.1 Pinning ## 6.2 Pin description Table 3. Pin description | Symbol | Pin | | Description | |-----------------|------------------|-------------------------------------|-----------------------------| | | SOT353-1, SOT753 | SOT886, SOT891, SOT1115 and SOT1202 | | | Υ | 1 | 1 | independent input or output | | Z | 2 | 2 | independent output or input | | GND | 3 | 3 | ground (0 V) | | Ē | 4 | 4 | enable input (active LOW) | | n.c. | - | 5 | not connected | | V _{CC} | 5 | 6 | supply voltage | # 7. Functional description Table 4. Function table[1] | Input E | Switch | |---------|-----------| | L | ON-state | | Н | OFF-state | ^[1] H = HIGH voltage level; L = LOW voltage level. # 8. Limiting values Table 5. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V). | | | 9 7 9 | | 10 | , | |------------------|-------------------------|---|-----------------|----------------|------| | Symbol | Parameter | Conditions | Min | Max | Unit | | V_{CC} | supply voltage | | -0.5 | +6.5 | V | | VI | input voltage | | <u>[1]</u> –0.5 | +6.5 | V | | I _{IK} | input clamping current | $V_I < -0.5 \text{ V or } V_I > V_{CC} + 0.5 \text{ V}$ | -50 | - | mA | | I _{SK} | switch clamping current | $V_I < -0.5 \text{ V or } V_I > V_{CC} + 0.5 \text{ V}$ | - | ±50 | mA | | V _{SW} | switch voltage | enable and disable mode | <u>[2]</u> –0.5 | $V_{CC} + 0.5$ | V | | I _{SW} | switch current | V_{SW} > -0.5 V or V_{SW} < V_{CC} + 0.5 V | - | ±50 | mA | | I _{CC} | supply current | | - | 100 | mA | | I _{GND} | ground current | | -100 | - | mA | | T _{stg} | storage temperature | | -65 | +150 | °C | | P _{tot} | total power dissipation | T_{amb} = -40 ° C to +125 °C | <u>[3]</u> _ | 250 | mW | | | | | | | | ^[1] The minimum input voltage rating may be exceeded if the input current rating is observed. # 9. Recommended operating conditions Table 6. Recommended operating conditions | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |------------------|---------------------------|---|--------------|-----|----------|------| | V_{CC} | supply voltage | | 1.65 | - | 5.5 | V | | VI | input voltage | | 0 | - | 5.5 | V | | V _{SW} | switch voltage | | <u>[1]</u> 0 | - | V_{CC} | V | | T _{amb} | ambient temperature | | -40 | - | +125 | °C | | Δt/ΔV | input transition rise and | $V_{CC} = 1.65 \text{ V to } 2.7 \text{ V}$ | - | - | 20 | ns/V | | | fall rate | $V_{CC} = 2.7 \text{ V to } 5.5 \text{ V}$ | - | - | 10 | ns/V | ^[1] To avoid sinking GND current from terminal Z when switch current flows in terminal Y, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminal Z, no GND current will flow from terminal Y. In this case, there is no limit for the voltage drop across the switch. 74LVC1G384 ^[2] The minimum and maximum switch voltage ratings may be exceeded if the switch clamping current rating is observed. ^[3] For TSSOP5 and SC-74A packages: above 87.5 °C the value of P_{tot} derates linearly with 4.0 mW/K. For XSON6 package: above 118 °C the value of P_{tot} derates linearly with 7.8 mW/K. # 10. Static characteristics Table 7. Static characteristics At recommended operating conditions; voltages are referenced to GND (ground = 0 V). | Symbol | Parameter | Conditions | | -40 ° | C to +8 | 5 °C | –40 °C to | +125 °C | Unit | |---------------------|---------------------------------|--|-----|---------------------|---------|--------------|----------------------|--------------|------| | | | | | Min | Typ[1] | Max | Min | Max | V | | V_{IH} | HIGH-level | V _{CC} = 1.65 V to 1.95 V | | 0.65V _{CC} | - | - | 0.65 V _{CC} | - | V | | | input voltage | V _{CC} = 2.3 V to 2.7 V | | 1.7 | - | - | 1.7 | - | V | | | | V _{CC} = 2.7 V to 3.6 V | | 2.0 | - | - | 2.0 | - | V | | | | V _{CC} = 4.5 V to 5.5 V | | $0.7V_{CC}$ | - | - | $0.7V_{CC}$ | - | V | | V_{IL} | LOW-level | V _{CC} = 1.65 V to 1.95 V | | - | - | $0.35V_{CC}$ | - | $0.35V_{CC}$ | V | | | input voltage | V _{CC} = 2.3 V to 2.7 V | | - | - | 0.7 | - | 0.7 | V | | | | V _{CC} = 2.7 V to 3.6 V | | - | - | 0.8 | - | 0.8 | V | | | | V _{CC} = 4.5 V to 5.5 V | | - | - | $0.3V_{CC}$ | - | $0.3V_{CC}$ | V | | II | input leakage
current | pin \overline{E} ; V _I = 5.5 V or GND;
V _{CC} = 0 V to 5.5 V | [2] | - | ±0.1 | ±5 | - | 100 | μА | | I _{S(OFF)} | OFF-state
leakage
current | V _{CC} = 5.5 V; see <u>Figure 7</u> | [2] | - | ±0.1 | ±5 | - | 200 | μА | | I _{S(ON)} | ON-state
leakage
current | V _{CC} = 5.5 V; see <u>Figure 8</u> | [2] | - | ±0.1 | ±5 | - | 200 | μА | | I _{CC} | supply current | V_I = 5.5 V or GND;
V_{SW} = GND or V_{CC} ; V_{CC} = 1.65 V to 5.5 V | [2] | - | 0.1 | 10 | - | 200 | μА | | ΔI_{CC} | additional supply current | pin \overline{E} ; $V_I = V_{CC} - 0.6 \text{ V}$;
$V_{SW} = \text{GND or } V_{CC}$; $V_{CC} = 5.5 \text{ V}$ | [2] | - | 5 | 500 | - | 5000 | μΑ | | C _I | input
capacitance | | | - | 2.0 | - | - | - | pF | | C _{S(OFF)} | OFF-state capacitance | | | - | 5.0 | - | - | - | pF | | C _{S(ON)} | ON-state capacitance | | | - | 9.5 | - | - | - | pF | ^[1] All typical values are measured at T_{amb} = 25 °C. ^[2] These typical values are measured at V_{CC} = 3.3 V. ### 10.1 Test circuits ### 10.2 ON resistance Table 8. ON resistance At recommended operating conditions; voltages are referenced to GND (ground 0 V); for graphs see Figure 10 to Figure 15. | Symbol | Parameter | Conditions | -40 | °C to +8 | 5 °C | -40 °C to | +125 °C | Unit | |--|--|--|------|----------|------|-----------|---------|------| | | | | Min | Typ[1] | Max | Min | Max | | | R _{ON(peak)} ON resistance (peak) | ON resistance (peak) | $V_I = GND$ to V_{CC} ; see <u>Figure 9</u> | | | | | | | | | | $I_{SW} = 4 \text{ mA};$
$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ | - | 34.0 | 130 | - | 195 | Ω | | | I_{SW} = 8 mA; V_{CC} = 2.3 V to 2.7 V | - | 12.0 | 30 | - | 45 | Ω | | | | | $I_{SW} = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$ | - | 10.4 | 25 | - | 38 | Ω | | | | I_{SW} = 24 mA; V_{CC} = 3 V to 3.6 V | - | 7.8 | 20 | - | 30 | Ω | | | | I_{SW} = 32 mA; V_{CC} = 4.5 V to 5.5 V | - | 6.2 | 15 | - | 23 | Ω | | $R_{ON(rail)}$ | ON resistance (rail) | V _I = GND; see <u>Figure 9</u> | | | | | | | | | | $I_{SW} = 4 \text{ mA};$
$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ | - | 8.2 | 18 | - | 27 | Ω | | | | I_{SW} = 8 mA; V_{CC} = 2.3 V to 2.7 V | - | 7.1 | 16 | - | 24 | Ω | | | | $I_{SW} = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$ | - | 6.9 | 14 | - | 21 | Ω | | | | I_{SW} = 24 mA; V_{CC} = 3 V to 3.6 V | - | 6.5 | 12 | - | 18 | Ω | | | | I_{SW} = 32 mA; V_{CC} = 4.5 V to 5.5 V | - | 5.8 | 10 | - | 15 | Ω | | | | V _I = V _{CC} ; see <u>Figure 9</u> | | | | - | | | | | | I _{SW} = 4 mA;
V _{CC} = 1.65 V to 1.95 V | - | 10.4 | 30 | - | 45 | Ω | | | | I_{SW} = 8 mA; V_{CC} = 2.3 V to 2.7 V | - | 7.6 | 20 | - | 30 | Ω | | | | $I_{SW} = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$ | - | 7.0 | 18 | - | 27 | Ω | | | | I_{SW} = 24 mA; V_{CC} = 3 V to 3.6 V | - | 6.1 | 15 | - | 23 | Ω | | | | I_{SW} = 32 mA; V_{CC} = 4.5 V to 5.5 V | - | 4.9 | 10 | - | 15 | Ω | Table 8. ON resistance ... continued At recommended operating conditions; voltages are referenced to GND (ground 0 V); for graphs see Figure 10 to Figure 15. | Symbol | Parameter | Conditions | | -40 | °C to +8 | 5 °C | -40 °C to | +125 °C | Unit | |-----------------------|---------------|---|-----|-----|----------|------|-----------|---------|------| | | | | | Min | Typ[1] | Max | Min | Max | | | R _{ON(flat)} | ON resistance | $V_I = GND$ to V_{CC} | [2] | | | | | | | | (flat | (flatness) | I _{SW} = 4 mA;
V _{CC} = 1.65 V to 1.95 V | | - | 26.0 | - | - | - | Ω | | | | I_{SW} = 8 mA; V_{CC} = 2.3 V to 2.7 V | | - | 5.0 | - | - | - | Ω | | | | I_{SW} = 12 mA; V_{CC} = 2.7 V | | - | 3.5 | - | - | - | Ω | | | | I_{SW} = 24 mA; V_{CC} = 3 V to 3.6 V | | - | 2.0 | - | - | - | Ω | | | | I_{SW} = 32 mA; V_{CC} = 4.5 V to 5.5 V | | - | 1.5 | - | - | - | Ω | ^[1] Typical values are measured at T_{amb} = 25 °C and nominal V_{CC} . ## 10.3 ON resistance test circuit and graphs ^[2] Flatness is defined as the difference between the maximum and minimum value of ON resistance measured at identical V_{CC} and temperature. - (1) $T_{amb} = 125 \, ^{\circ}C$. - (2) $T_{amb} = 85 \, ^{\circ}C$. - (3) $T_{amb} = 25 \, ^{\circ}C$. - (4) $T_{amb} = -40 \, ^{\circ}C$. Fig 11. ON resistance as a function of input voltage; $V_{CC} = 1.8 \text{ V}$ - (1) $T_{amb} = 125 \, ^{\circ}C$. - (2) $T_{amb} = 85 \, ^{\circ}C$. - (3) $T_{amb} = 25 \, ^{\circ}C$. - (4) $T_{amb} = -40 \, ^{\circ}C$. Fig 12. ON resistance as a function of input voltage; $V_{CC} = 2.5 \text{ V}$ - (1) $T_{amb} = 125 \, ^{\circ}C$. - (2) $T_{amb} = 85 \, ^{\circ}C$. - (3) $T_{amb} = 25 \, ^{\circ}C$. - (4) $T_{amb} = -40 \, ^{\circ}C$. Fig 13. ON resistance as a function of input voltage; $V_{CC} = 2.7 \text{ V}$ - (1) $T_{amb} = 125 \, ^{\circ}C$. - (2) $T_{amb} = 85 \, ^{\circ}C$. - (3) $T_{amb} = 25 \, ^{\circ}C$. - (4) $T_{amb} = -40 \, ^{\circ}C$. Fig 14. ON resistance as a function of input voltage; $V_{CC} = 3.3 \text{ V}$ - (1) $T_{amb} = 125 \, ^{\circ}C$. - (2) $T_{amb} = 85 \, ^{\circ}C$. - (3) $T_{amb} = 25 \, ^{\circ}C$. - (4) $T_{amb} = -40 \, ^{\circ}C$. Fig 15. ON resistance as a function of input voltage; $V_{CC} = 5.0 \text{ V}$ # 11. Dynamic characteristics Table 9. Dynamic characteristics At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for test circuit see Figure 18. | Symbol | Parameter | Conditions | | -40 | °C to +8 | 5 °C | –40 °C to | +125 °C | Unit | |-----------------|-------------------|--|------------|-----|----------|------|-----------|---------|------| | | | | | Min | Typ[1] | Max | Min | Max | | | t _{pd} | propagation delay | Y to Z or Z to Y; see Figure 16 | [2][3] | | | | | | | | | | $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ | | - | 0.8 | 2.0 | - | 3.0 | ns | | | | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ | | - | 0.4 | 1.2 | - | 2.0 | ns | | | | $V_{CC} = 2.7 \text{ V}$ | | - | 0.4 | 1.0 | - | 1.5 | ns | | | | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$ | | - | 0.3 | 0.8 | - | 1.5 | ns | | | | $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$ | | - | 0.2 | 0.6 | - | 1.0 | ns | | t _{en} | enable time | E to Y or Z; see Figure 17 | <u>[4]</u> | | | | | | | | | | $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ | | 1.0 | 10.0 | 12.0 | 1.0 | 15.5 | ns | | | | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ | | 1.0 | 5.7 | 6.5 | 1.0 | 8.5 | ns | | | | $V_{CC} = 2.7 \text{ V}$ | | 1.0 | 5.4 | 6.0 | 1.0 | 8.0 | ns | | | | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$ | | 1.0 | 4.8 | 5.0 | 1.0 | 6.5 | ns | | | | $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$ | | 1.0 | 3.3 | 4.2 | 1.0 | 5.5 | ns | Table 9. Dynamic characteristics ...continued At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for test circuit see Figure 18. | Symbol | Parameter | Conditions | -40 | °C to +8 | 5 °C | -40 °C to | +125 °C | ns
ns
ns
ns | |------------------|-------------------------------|---|----------|----------|------|-----------|---------|----------------------| | | | | Min | Typ[1] | Max | Min | Max | | | t_{dis} | disable time | E to Y or Z; see Figure 17 | <u> </u> | | | • | | • | | | | $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ | 1.0 | 7.4 | 10.0 | 1.0 | 13.0 | ns | | | | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ | 1.0 | 4.1 | 6.9 | 1.0 | 9.0 | ns | | | | $V_{CC} = 2.7 \text{ V}$ | 1.0 | 4.9 | 7.5 | 1.0 | 9.5 | ns | | | | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$ | 1.0 | 5.4 | 6.5 | 1.0 | 8.5 | ns | | | | $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$ | 1.0 | 3.6 | 5.0 | 1.0 | 6.5 | ns | | C_{PD} | power dissipation capacitance | $C_L = 50 \text{ pF}; f_i = 10 \text{ MHz};$
$V_I = \text{GND to } V_{CC}$ | | | | | | | | | | V _{CC} = 2.5 V | - | 13.7 | - | - | - | pF | | | | V _{CC} = 3.3 V | - | 15.2 | - | - | - | pF | | | | V _{CC} = 5.0 V | - | 18.3 | - | - | - | pF | - [1] Typical values are measured at T_{amb} = 25 °C and nominal V_{CC} . - [2] t_{pd} is the same as t_{PLH} and t_{PHL} . - [3] propagation delay is the calculated RC time constant of the typical ON resistance of the switch and the specified capacitance when driven by an ideal voltage source (zero output impedance). - [4] t_{en} is the same as t_{PZH} and t_{PZL} . - [5] t_{dis} is the same as t_{PLZ} and t_{PHZ} . - [6] C_{PD} is used to determine the dynamic power dissipation (P_D in μW). $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma \{ (C_L + C_{S(ON)}) \times V_{CC}^2 \times f_o \} \text{ where:}$ f_i = input frequency in MHz; f_o = output frequency in MHz; C_L = output load capacitance in pF; C_{S(ON)} = maximum ON-state switch capacitance in pF; V_{CC} = supply voltage in V; N = number of inputs switching; $\Sigma \{(C_L + C_{S(ON)}) \times V_{CC}^2 \times f_o\} = \text{sum of the outputs.}$ #### 11.1 Waveforms and test circuit Fig 16. Input (Y or Z) to output (Z or Y) propagation delays 74LVC1G384 Table 10. Measurement points | Supply voltage | Input | Output | | | |------------------|--------------------|--------------------|--------------------------|--------------------------| | V _{CC} | V _M | V _M | V _X | V _Y | | 1.65 V to 1.95 V | 0.5V _{CC} | 0.5V _{CC} | V _{OL} + 0.15 V | V _{OH} – 0.15 V | | 2.3 V to 2.7 V | 0.5V _{CC} | 0.5V _{CC} | V _{OL} + 0.15 V | V _{OH} – 0.15 V | | 2.7 V | 1.5 V | 1.5 V | $V_{OL} + 0.3 V$ | $V_{OH} - 0.3 V$ | | 3.0 V to 3.6 V | 1.5 V | 1.5 V | $V_{OL} + 0.3 V$ | $V_{OH} - 0.3 V$ | | 4.5 V to 5.5 V | 0.5V _{CC} | 0.5V _{CC} | V _{OL} + 0.3 V | V _{OH} – 0.3 V | Test data is given in Table 11. Definitions for test circuit: R_T = Termination resistance should be equal to output impedance Z_o of the pulse generator. C_L = Load capacitance including jig and probe capacitance. R_L = Load resistance. V_{EXT} = External voltage for measuring switching times. Fig 18. Test circuit for measuring switching times Table 11. Test data | Supply voltage | Input | Input | | | V _{EXT} | | | |------------------|----------|---------------------------------|-------|----------------|-------------------------------------|-------------------------------------|-------------------------------------| | V _{CC} | VI | t _r , t _f | CL | R _L | t _{PLH} , t _{PHL} | t _{PZH} , t _{PHZ} | t _{PZL} , t _{PLZ} | | 1.65 V to 1.95 V | V_{CC} | ≤ 2.0 ns | 30 pF | 1 kΩ | open | GND | 2V _{CC} | | 2.3 V to 2.7 V | V_{CC} | ≤ 2.0 ns | 30 pF | 500Ω | open | GND | 2V _{CC} | | 2.7 V | 2.7 V | ≤ 2.5 ns | 50 pF | 500Ω | open | GND | 6 V | | 3.0 V to 3.6 V | 2.7 V | ≤ 2.5 ns | 50 pF | 500Ω | open | GND | 6 V | | 4.5 V to 5.5 V | V_{CC} | ≤ 2.5 ns | 50 pF | 500Ω | open | GND | 2V _{CC} | ## 11.2 Additional dynamic characteristics Table 12. Additional dynamic characteristics At recommended operating conditions; typical values measured at T_{amb} = 25 °C. | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |--------|-------------------------------|--|-------|-------|-----|------| | THD | THD total harmonic distortion | $R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pF}; f_i = 1 \text{ kHz};$ see Figure 19 | | | | | | | | V _{CC} = 1.65 V | - | 0.032 | - | % | | | | V _{CC} = 2.3 V | - | 0.008 | - | % | | | V _{CC} = 3.0 V | - | 0.006 | - | % | | | | | V _{CC} = 4.5 V | - | 0.001 | - | % | | | | $R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pF}; f_i = 10 \text{ kHz};$ see Figure 19 | | | | | | | | V _{CC} = 1.65 V | - | 0.068 | - | % | | | V _{CC} = 2.3 V | - | 0.009 | - | % | | | | V _{CC} = 3.0 V | - | 0.008 | - | % | | | | | V _{CC} = 4.5 V | - | 0.006 | - | % | Table 12. Additional dynamic characteristics ...continued At recommended operating conditions; typical values measured at T_{amb} = 25 °C. | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |---------------------|--------------------------|--|-----|-------|-----|------| | f _(-3dB) | -3 dB frequency response | $R_L = 600 \Omega$; $C_L = 50 pF$;
see <u>Figure 20</u> | | | | | | | | V _{CC} = 1.65 V | - | 135 | - | MHz | | | | V _{CC} = 2.3 V | - | 145 | - | MHz | | | | V _{CC} = 3.0 V | - | 150 | - | MHz | | | | V _{CC} = 4.5 V | - | 155 | - | MHz | | | | $R_L = 50 \Omega$; $C_L = 5 pF$; see Figure 20 | | | | | | | | V _{CC} = 1.65 V | - | > 500 | - | MHz | | | | V _{CC} = 2.3 V | - | > 500 | - | MHz | | | | V _{CC} = 3.0 V | - | > 500 | - | MHz | | | | V _{CC} = 4.5 V | - | > 500 | - | MHz | | | | $R_L = 50 \Omega$; $C_L = 10 pF$; see Figure 20 | | | | | | | | V _{CC} = 1.65 V | - | 200 | - | MHz | | | | V _{CC} = 2.3 V | - | 350 | - | MHz | | | | V _{CC} = 3.0 V | - | 410 | - | MHz | | | | V _{CC} = 4.5 V | - | 440 | - | MHz | | α _{iso} | so isolation (OFF-state) | $R_L = 600 \Omega$; $C_L = 50 pF$; $f_i = 1 MHz$; see Figure 21 | | | | | | | | V _{CC} = 1.65 V | - | -46 | - | dB | | | | V _{CC} = 2.3 V | - | -46 | - | dB | | | | V _{CC} = 3.0 V | - | -46 | - | dB | | | | V _{CC} = 4.5 V | - | -46 | - | dB | | | | $R_L = 50 \Omega$; $C_L = 5 pF$; $f_i = 1 MHz$; see Figure 21 | | | | | | | | V _{CC} = 1.65 V | - | -37 | - | dB | | | | V _{CC} = 2.3 V | - | -37 | - | dB | | | | V _{CC} = 3.0 V | - | -37 | - | dB | | | | V _{CC} = 4.5 V | - | -37 | - | dB | | / _{ct} | crosstalk voltage | between digital input and switch; | | | | | | | | R_L = 600 Ω ; C_L = 50 pF; f_i = 1 MHz;
t_r = t_f = 2 ns; see <u>Figure 22</u> | | | | | | | | V _{CC} = 1.65 V | - | 69 | - | mV | | | | $V_{CC} = 2.3 \text{ V}$ | - | 87 | - | mV | | | | V _{CC} = 3.0 V | - | 156 | - | mV | | | | $V_{CC} = 4.5 \text{ V}$ | - | 302 | - | mV | | | | | | | | | Table 12. Additional dynamic characteristics ...continued At recommended operating conditions; typical values measured at T_{amb} = 25 °C. | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |-----------------------------------|-------------------------|--|-----|-----|-----|------| | Q _{inj} charge injection | charge injection | C_L = 0.1 nF; V_{gen} = 0 V; R_{gen} = 0 Ω ; f_i = 1 MHz; R_L = 1 M Ω ; see Section 11 | | | | | | | V _{CC} = 1.8 V | - | 3.3 | - | рС | | | | V _{CC} = 2.5 V | - | 4.1 | - | рC | | | | V _{CC} = 3.3 V | - | 5.0 | - | рС | | | | V _{CC} = 4.5 V | - | 6.4 | - | рС | | | | | V _{CC} = 5.5 V | - | 7.5 | - | рС | ## 11.3 Test circuits #### Test conditions: $V_{CC} = 1.65 \text{ V: } V_I = 1.4 \text{ V (p-p)}.$ $V_{CC} = 2.3 \text{ V: } V_I = 2 \text{ V (p-p)}.$ $V_{CC} = 3 \text{ V: } V_{I} = 2.5 \text{ V (p-p)}.$ $V_{CC} = 4.5 \text{ V: } V_I = 4 \text{ V (p-p)}.$ Fig 19. Test circuit for measuring total harmonic distortion Adjust f_i voltage to obtain 0 dBm level at output. Increase f_i frequency until dB meter reads -3 dB. Fig 20. Test circuit for measuring the frequency response when switch is in ON-state Adjust fi voltage to obtain 0 dBm level at input. Fig 21. Test circuit for measuring isolation (OFF-state) Fig 22. Test circuit for measuring crosstalk between digital inputs and switch 74LVC1G384 # 12. Package outline TSSOP5: plastic thin shrink small outline package; 5 leads; body width 1.25 mm SOT353-1 #### . . 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. | OUTLINE | | REFER | ENCES | EUROPEAN | ISSUE DATE | | |----------|-----|--------|--------|------------|-----------------------------------|--| | VERSION | IEC | JEDEC | JEITA | PROJECTION | ISSUE DATE | | | SOT353-1 | | MO-203 | SC-88A | | -00-09-01-
03-02-19 | | Fig 24. Package outline SOT353-1 (TSSOP5) 74LVC1G384 All information provided in this document is subject to legal disclaimers. ### Plastic surface-mounted package; 5 leads **SOT753** Fig 25. Package outline SOT753 (SC-74A) 74LVC1G384 All information provided in this document is subject to legal disclaimers. Fig 26. Package outline SOT886 (XSON6) 74LVC1G384 All infor Fig 27. Package outline SOT891 (XSON6) 74LVC1G384 All information provided in this document is subject to legal disclaimers. Fig 28. Package outline SOT1115 (XSON6) 74LVC1G384 All information provided in this document is subject to legal disclaimers. Fig 29. Package outline SOT1202 (XSON6) 74LVC1G384 All information provided in this document is subject to legal disclaimers. # 13. Abbreviations ### Table 13. Abbreviations | Acronym | Description | |---------|---| | CMOS | Complementary Metal Oxide Semiconductor | | DUT | Device Under Test | | ESD | ElectroStatic Discharge | | НВМ | Human Body Model | | MM | Machine Model | | TTL | Transistor-Transistor Logic | # 14. Revision history ## Table 14. Revision history | Document ID | Release date | Data sheet status | Change notice | Supersedes | |----------------|---------------------------------|--------------------|---------------|----------------| | 74LVC1G384 v.4 | 20111206 | Product data sheet | - | 74LVC1G384 v.3 | | Modifications: | Legal pages | updated. | | | | 74LVC1G384 v.3 | 20101103 | Product data sheet | - | 74LVC1G384 v.2 | | 74LVC1G384 v.2 | 20070829 | Product data sheet | - | 74LVC1G384 v.1 | | 74LVC1G384 v.1 | 20040226 | Product data | - | - | # 15. Legal information #### 15.1 Data sheet status | Document status[1][2] | Product status[3] | Definition | |--------------------------------|-------------------|---| | Objective [short] data sheet | Development | This document contains data from the objective specification for product development. | | Preliminary [short] data sheet | Qualification | This document contains data from the preliminary specification. | | Product [short] data sheet | Production | This document contains the product specification. | - [1] Please consult the most recently issued document before initiating or completing a design. - [2] The term 'short data sheet' is explained in section "Definitions" - [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. #### 15.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. **Product specification** — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet. #### 15.3 Disclaimers Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. **Suitability for use** — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk. **Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. **Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities. 74LVC1G384 All information provided in this document is subject to legal disclaimers. NXP Semiconductors 74LVC1G384 #### **Bilateral** switch Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications. #### 15.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. ## 16. Contact information For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com # 17. Contents | 1 | General description | |------|---| | 2 | Features and benefits | | 3 | Ordering information 1 | | 4 | Marking 2 | | 5 | Functional diagram 2 | | 6 | Pinning information 3 | | 6.1 | Pinning | | 6.2 | Pin description | | 7 | Functional description 4 | | 8 | Limiting values 4 | | 9 | Recommended operating conditions 4 | | 10 | Static characteristics 5 | | 10.1 | Test circuits 6 | | 10.2 | ON resistance | | 10.3 | ON resistance test circuit and graphs 7 | | 11 | Dynamic characteristics 9 | | 11.1 | Waveforms and test circuit 10 | | 11.2 | Additional dynamic characteristics 12 | | 11.3 | Test circuits | | 12 | Package outline | | 13 | Abbreviations | | 14 | Revision history | | 15 | Legal information | | 15.1 | Data sheet status 23 | | 15.2 | Definitions | | 15.3 | Disclaimers | | 15.4 | Trademarks24 | | 16 | Contact information 24 | | 17 | Contents | Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.