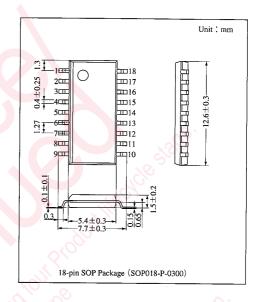
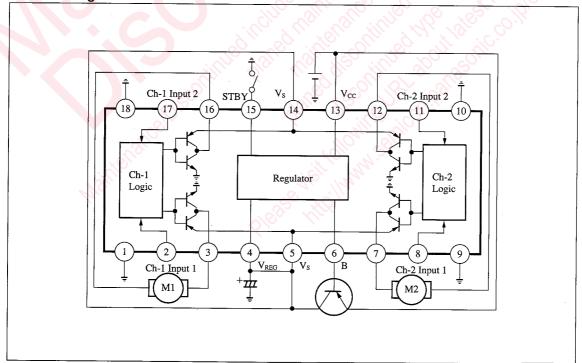
AN6668NS


DC Motor Forward/Reveres Rotation Drive IC

Overview


The AN6668NS is an IC for driving the stepping motor which incorporates the decoder. For its low voltage saturation drive characteristics, it is suitable for shutter drive or lens drive of optical camera.

■ Features

- · Low saturation voltage output transistor built-in
- Decoder circuit built-in (forward/reverse mode, brake/standby mode)
- Back electromotive voltage absorption diode built-in

Block Diagram

ICs for Motor

Pin Descriptions

Pin No.	Pin name	Pin No.	Pin name
1	GND terminal (1)	10	GND terminal (3)
2	CH-1 input terminal (1)	11	CH-2 input terminal (2)
3	CH-1 output terminal (1)	12	CH-2 output terminal (2)
4	Regulator output terminal	13	Power supply voltage terminal (1)
	Power supply voltage terminal (2)	14	Power supply voltage terminal (2)
6	Regulator control terminal	15	Stand-by terminal
7	CH-2 output terminal (1)	16	CH-1 output terminal (2)
8	CH-2 input terminal (1)	17	CH-1 input terminal (2)
9	GND terminal (2)	18	GND terminal (4)

■ Absolute Maximum Rating (Ta=25 °C)

Parameter	Symbol	Rating	Unit V	
Supply voltage 1	V _{cc}	4.5		
Supply voltage 2	Vs	4.5	V	
Supply current 1	I_{CC}	300	mA	
Supply current 2	Is	600	mA	
Output applied voltage	V _{OUT}	$-0.3 \text{ to V}_{\text{s}} + 0.6$	V	
Input applied voltage	Vin	$-0.3 \text{ to V}_{CC} + 0.6$	·V	
Power dissipation Note)	P _D	210	mW	
Operating ambient temperature	$T_{ m opr}$	-20 to +75	C	
Storage temperature	T _{stg}	-55 to +125	${\mathbb C}$	

Note) Package power dissipation under free air and operating ambient temperature Ta of 75°C

■ Allowable Operating Range (Ta=25 °C)

Parameter	Symbol	Rating	Unit
Supply voltage (1) Note 1)	V_{cc}	1.8 to 4.0	V
Supply voltage (2)	Vs	1.8 to 4.0	V
Input (H) level voltage Note 2)	V _{IH}	2.0 to 4.6	V
Input (L) level voltage	V _{IL}	-0.3 to 0.7	V
Stand-by (H) level voltage Note 3)	V _{ST(H)}	$ m V_{cc}-0.5$ to $ m V_{cc}$	V
Stand-by (L) level voltage Note 3)	V _{ST(L)}	-0.3 to 0.4	V

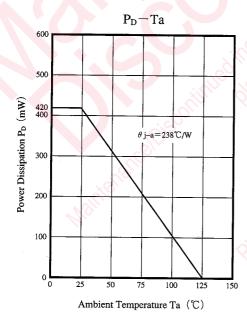
Note 1) For the external discrete transistor, use the 2SB956 or its equivalent. The regulator operates under $V_{\rm CC}$ over 2.5 V.

Note 2) It should operate normally even when the input voltage is higher than V_{CC}.

Note 3) (H) level, or open for stand-by mode. (L) level for active mode.

■ Electrical Characteristics $(V_{CC}=3.0V, Ta=25\pm2^{\circ}C)$

Parameter	Symbol	Condition	min	typ	max	Unit		
Output saturation voltage (lower+higher)	Vsat(1)	IL=200mA Normal rotation mode		0.2	0.4	V		
Output saturation voltage (lower+higher)	Vsat(2)	IL=200mA Reverse rotation mode		0.2	0.4	v		
Supply current	I _{CC} 1 (ON)	Iout=200mA (One Ch. on)			250	mA		
Supply current	I _{cc} 2(ON)	Iout=200mA (Both Ch. on)			500	mA		
Input current (one ch. on)	I _{IN(H)}	V IN (H) =3.0V		250	300	μΑ		
Power Supply								
Stand-by consumption current	I _{cs}	Stand-by terminal H or Open			10	μΑ		
Stand-by terminal drawing-out current	I _{ST}	Stand-by terminal VST=0 V	20	65	130	μA		
V REG terminal output voltage	V_{REG}	Stand-by terminal VST=0 V	2.1	2.2	2.3			
V REG control current	I _{CTL}		5.0	8.0	æ.	mA		


Note) For the external transistor, use the 2SB956 or its equivalent.

■ Electrical Characteristics (Design Reference Values) (V_{CC}=3.0V, Ta=25±2°C)

Parameter	Symbol	Condition	min	typ	max	Unit
V REG voltage temperature coefficient	V RT	V RT= Δ Vo/ Δ Ta I _o =200mA, Ta= -20 to 75°C		-0.8		mV/℃
Ripple rejection ratio	V RR	$VR = 100mV_{P-P}$ f=100Hz	5	35	_	dB
Output noise voltage	V NO			-85	_	dBv

Note 1) For the above characteristics, the values specified are design reference values, but not guaranteed ones. Note 2) For the external transistor, use the 2SB956 or its equivalent.

■ Package Power Dissipation

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
 - Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - · Any applications other than the standard applications intended.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.
- Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of our company.

20080805