General Description

The MAX9650/MAX9651 are single- and dual-channel VCOM amplifiers with rail-to-rail inputs and outputs. The MAX9650/MAX9651 can drive up to 1300mA of peak current per channel and operate up to 20V.
The MAX9650/MAX9651 are designed to source and sink a high current quickly to hold the VCOM voltage stable in large TFT-LCD panels.
The MAX9650/MAX9651 feature 40V/ μ s slew rate and 35 MHz bandwidth to quickly settle outputs for 120 Hz frame rate and full HD television.
The MAX9650/MAX9651 feature output short-circuit protection and thermal shutdown. These devices are available in exposed pad packages for excellent heat dissipation.

Applications
TFT-LCD Panels
Instrument Control Voltage Sources

Features

- 1300mA Peak Output Current
- Rail-to-Rail Inputs and Outputs
- Operates Up to 20V
- 40V/ μ s Slew Rate
- 35MHz Bandwidth
- 5mA Quiescent Current per Channel
- Excellent Heat Dissipation (Exposed Pad)

Ordering Information

PART	AMPS PER PACKAGE	PIN- PACKAGE	TOP MARK
MAX9650AZK +	1	5 SOT23	ADSI
MAX9650AZK/V +	1	5 SOT23	ADSK
MAX9650AUA +	1	8μ MAX-EP* *	AABI
MAX9650ATA +	1	8 TDFN-EP*	BKX
MAX9651AUA +	2	$8 ~ \mu M A X-E P * ~$	AABH
MAX9651ATA +	2	8 TDFN-EP*	BKY

Note: All devices are specified over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating range.
+Denotes a lead(Pb)-free/RoHS-compliant package.
N denotes an automotive qualified part.
*EP = Exposed pad.

Typical Operating Circuit

*RS MAY BE NEEDED FOR SOME APPLICATIONS.

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

MAX9650/MAX9651

High-Current VCOM Drive Op Amps for TFT LCDs

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VDD to GND)-0.3V to +22V	
Any Other Pin to GND-0.3V to (VDD +0.3 V)	
IN_+/IN_- (current).	$\pm 20 \mathrm{~mA}$
OUT_ (current)	
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)	
SOT23 (derate $3.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$))...............297.4mW
$\mu \mathrm{MAX}$-EP (derate $12.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	
above $+70^{\circ} \mathrm{C}$)	
TDFN-EP (derate $23.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	

Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature .. $+150^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$
Soldering Temperature (reflow) $+260^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{DD}}=19 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage Range	VDD	Guaranteed by PSRR		6		20	V
Quiescent Current	IDD	Per channel			3.7	8	mA
High Output Voltage	VOH	$\mathrm{I}_{\mathrm{H}}=+5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$		$\begin{gathered} V_{D D}- \\ 0.30 \end{gathered}$	$\begin{gathered} \text { VDD - } \\ 0.05 \end{gathered}$		V
Low Output Voltage	VOL	$\mathrm{IL}=-5 \mathrm{~mA}, \mathrm{~V} / \mathrm{N}=0 \mathrm{~V}$			0.05	0.30	V
Input Offset Voltage	Vos	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-14	3.5	+14	mV
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		-17		+17	
Load Regulation	LR	IOUT $=0 \mathrm{~mA}$ to -80 mA			+0.2		$\mathrm{mV} / \mathrm{mA}$
		lout $=0 \mathrm{~mA}$ to +80 mA		-0.2			
Input Bias Current	IFB	At $\mathrm{V}_{\text {IN }}=9.5 \mathrm{~V}$			0.01	1	$\mu \mathrm{A}$
Voltage Gain	Av	$R \mathrm{~L}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		0.99		1.01	V/V
Power-Supply Rejection Ratio	PSRR	$\mathrm{V}_{\text {DD }}=6 \mathrm{~V}$ to 20V, $\mathrm{V}_{\text {CM }}=\mathrm{V}_{\text {OUT }}=3 \mathrm{~V}$		70	95		dB
Common-Mode Input Voltage Range	CMVR	Inferred from CMRR test		0.5		$\begin{gathered} V_{D D}- \\ 0.5 \end{gathered}$	V
Common-Mode Rejection Ratio	CMRR	$0.5 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq \mathrm{V}_{\text {DD }}-0.5 \mathrm{~V}$		60	80		dB
Continuous Output Current	Io	VOUT $=9.5 \mathrm{~V}$	MAX9650AZK +	20			mA
		(Note 2)	MAX9650AUA+	80			
		$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=7.5 \mathrm{~V}$	MAX9650ATA+		± 350		
Transient Peak Output Current	IPK	(Note 3)			± 1.3		A
Bandwidth	BW	-3dB			35		MHz
Slew Rate	SR	4 V step, $\mathrm{CL}=50 \mathrm{pF}, \mathrm{RL}=10 \mathrm{k} \Omega, \mathrm{AV}=+1 \mathrm{~V} / \mathrm{V}$			40		V/ $/ \mathrm{s}$
Settling Time	ts	Settling to 0.1% of VOUT, IL $=0$ to 1000 mA , $R_{S}=2.2 \Omega, C_{S}=0.1 \mu \mathrm{~F}$ (Figure 1)			2.0		$\mu \mathrm{s}$

MAX9650/MAX9651 High-Current VCOM Drive Op Amps for TFT LCDs

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=19 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP
Maximum Load Capacitance	CLOAD	(Note 4)	150	UNITS
Noninverting Input Resistance	RIN+	(Note 5)	100	nF
Inverting Input Resistance	RIN-	(Note 5)	100	$\mathrm{M} \Omega$
Input Capacitance	CIN		3	$\mathrm{M} \Omega$
Thermal Shutdown			+170	${ }^{\circ} \mathrm{C}$
Thermal Shutdown Hysteresis			15	${ }^{\circ} \mathrm{C}$

Note 1: All devices are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. All temperature limits are guaranteed by design.
Note 2: Continuous output current is tested with one output at a time.
Note 3: See the Thermal Shutdown with Temperature Hysteresis section.
Note 4: A series resistor can extend load capacitance range. The settling time can be optimized by a small series resistance. See the Applications Information section for more information.
Note 5: Inputs are protected by back-to-back diodes.

Typical Operating Characteristics

$\left(V_{D D}=19 \mathrm{~V}, G N D=0, V_{C M}=V_{O U T}=V_{D D} / 2, T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise specified. $)$

MAX9650/MAX9651 High-Current VCOM Drive Op Amps for TFT LCDs

Typical Operating Characteristics (continued)

$\left(V_{D D}=19 \mathrm{~V}, \mathrm{GND}=0, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise specified. $)$

CLOSED-LOOP SMALL-SIGNAL FREQUENCY RESPONSE FOR VARIOUS CL

SMALL-SIGNAL GAIN
vs. FREQUENCY

OPEN-LOOP GAIN AND PHASE
vs. FREQUENCY

SMALL-SIGNAL GAIN vs. FREQUENCY WITH VARIOUS Cl

MAX9650/MAX9651
 High-Current VCOM Drive Op Amps for TFT LCDs

Pin Description

PIN			NAME	FUNCTION
MAX9650		$\begin{gathered} \text { MAX9651 } \\ (\mu \mathrm{MAX}-\mathrm{EP}, \\ \text { TDFN-EP) } \\ \hline \end{gathered}$		
SOT23	μ MAX-EP, TDFN-EP			
1	6	1	OUTA	VCOM Output A
2	4	4	GND	Ground
3	3	3	INA+	Positive Input A
4	2	2	INA-	Negative Input A
5	7	8	VDD	Positive-Supply Input. Bypass VDD to GND with a $0.1 \mu \mathrm{~F}$ capacitor as close as possible to the device.
-	-	5	INB+	Positive Input B
-	-	6	INB-	Negative Input B
-	-	7	OUTB	VCOM Output B
-	1, 5, 8	-	N.C.	No Connection. Not internally connected.
-	-	-	EP	Exposed Pad (μ MAX and TDFN Only). EP is internally connected to GND. Connect EP to GND.

Detailed Description

The MAX9650/MAX9651 operational rail-to-rail input/output amplifiers hold the VCOM voltage stable while providing the ability to source and sink a high current quickly (1.3A) into a capacitive load such as the backplane of a TFT-LCD panel.

Thermal Shutdown with Temperature Hysteresis
The MAX9650/MAX9651 are capable of high output currents and feature thermal-shutdown protection with temperature hysteresis. When the die temperature reaches $+170^{\circ} \mathrm{C}$, the device shuts down. When the die cools down by $15^{\circ} \mathrm{C}$, the device turns on again. In a TFT-LCD application, the duty cycle is very low. Even with high values of voltage and current, the power dissipation is low and the chip does not shut down.

${ }^{*} 10 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ CAPACITORS AS CLOSE AS POSSIBLE TO THE PIN. ${ }^{* *}\left(R_{S}=R_{G E N}\right) \times C_{L C D} \times 6<2 \mu \mathrm{~s}$, WHERE RGEN $=$ GENERATOR SOURCE IMPEDANCE.

Figure 1. Settling Time Test Circuit

MAX9650/MAX9651

High-Current VCOM Drive Op Amps for TFT LCDs

Applications Information

Output Load

The MAX9650/MAX9651 are designed to drive capacitive loads. A small value of series resistance improves the performance of the device to ensure stability and fast settling with very large or very small capacitive loads. In many cases, this resistance is already present due to connection resistance in the wiring and no additional physical resistor is necessary. For minimum series resistance required for stability with capacitive loading, see Figure 2.

Power Supplies and Bypass Capacitors The MAX9650/MAX9651 operate from a 6V to 20V single supply or from $\pm 4.5 \mathrm{~V}$ to $\pm 10 \mathrm{~V}$ dual supplies. Proper supply bypassing ensures stability while driving high

Figure 2. Minimum Combined ESR/Series/Trace Resistance Required for Stability of the MAX9650 in Response to Capacitive Loads
transient loads. The MAX9650/MAX9651 require a minimum $10 \mu \mathrm{~F}$ (C1) and $0.1 \mu \mathrm{~F}(\mathrm{C} 2)$ power-supply bypass capacitors placed as close as possible to the powersupply pin (VDD). See Figure 3. For dual-supply operation, use $10 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ bypass capacitors on both supplies (VDD and GND) with each capacitor placed as close as possible to VDD and GND.

Layout and Grounding

The exposed pad on the $\mu \mathrm{MAX®}$ and TDFN packages provide a low thermal resistance for heat dissipation. Solder the exposed pad to a ground plane for best thermal performance. Do not route traces under these packages. For dual-supply operation, the exposed pad (EP) can be electrically connected to the negative supply or it can be left unconnected.

Figure 3. Typical TFT-LCD Backplane Drive Circuit

PROCESS: BiCMOS

MAX9650/MAX9651
 High-Current VCOM Drive Op Amps for TFT LCDs

Pin Configurations

MAX9650/MAX9651

High-Current VCOM Drive Op Amps for TFT LCDs

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
5 SOT23	$\mathrm{Z} 5+2$	$\underline{21-0113}$	$\underline{90-0241}$
$8 \mu \mathrm{MAX}$	$\mathrm{U} 8 \mathrm{E}+2$	$\underline{21-0107}$	$\underline{90-0145}$
8 TDFN-EP	$\mathrm{T} 833+2$	$\underline{21-0137}$	$\underline{90-0059}$

MAX9650/MAX9651
 High-Current VCOM Drive Op Amps for TFT LCDs

Package Information (continued)

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

```
NDTES:
1. ALL dimensians are in millimeters unless atherwise specified.
2. "D" AND "E1" ARE REFERENCE DATUM AND DD NDT INCLUDE MDLD FLASH OR PROTRUSIDNS, AND ARE MEASURED AT THE BDTTMM PARTING LINE, MDLD FLASH IR PROTRUSION SHALL NUT EXCEED 0.15 mm ON "D" AND 0.25 mm ©N "E" PER SIDE.
3. THE LEEAD WIDTH DIMENSIIN DEES NOT INCLUDE DAMBAR PROTRUSION. ALLIDWABLE DAMBAR PROTRUSIDN SHALL BE 0.07 mm TITAL IN EXCESS DF THE LEAD WIDTH dimension at maximum material condition.
datum plane en lacated at mald parting line and caincident with lead, Where lead exits plastic bady at the battam ar parting line.
THE LEAD TIPS MUST LINE WITHIN A SPECIFIED TQLERANCE ZONE. THIS TDLERANCE ZONE IS DEFINED BY TWO PARALLEL LINES. ONE PLANE IS THE SEATING PLANE, DATUM EC-1 AND THE OTHER PLANE IS AT THE SPECIFIED DISTANCE FRIM EC- IN THE DIRECTIIN IINDICATED. FIRMED LEADS SHALL BE PLANAR WITH RESPECT TI ONE ANDTHER WITH 0.10 mm AT SEATING PLANE.
6. THIS PART IS CCMPLIANT WITH JEDEC SPECIFICATION MD-193 EXCEPT FIR THE "e" DIMENSION WHICH IS 0.95 mm INSTEAD DF 1.00 mm . THIS PART IS IN FULL CIMPLIANCE TI EIAJ SPECIFICATION SC-74.
7. CIPLANARITY APPLIES TT THE EXPOSED PAD AS WELL AS THE TERMINALS. COPLANARITY SHALL NIT EXCEED 0.08 mm .
8. WARPAGE SHALL NOT EXCEED 0.10 mm .
9. THE TERMINAL \#1 IDENTIFIER AND TERMINAL NUMBERING CDNVENTIDN SHALL CDNFDRM TO JESD 95-1 PP-012. DETAILS OF TERMINAL \#1 IDENTIFIER ARE IPTIINAL. THE TERMINAL \#1 IDENTIFIER MAY BE EITHER A MILD DR MARKED FEATURE.
10. Marking is for package drientation reference anly.
11. MATERIAL MUST COMPLY WITH BANNED AND RESTRICTED SUBSTANCES SPEC \# 10-0131.
12. ALL dimensians apply ta bath leaded (-) and lead free (+) Package cades.
```

-DRAWING NOT TO SCALE-

DIMENSIUNS				
	MIN	NIM	MAX	
A	-	-	1.10	
A1	0.00	0.075	0.10	
A2	0.85	0.88	0.90	
A3	0.50 BSC			
b	0.30	-	0.45	
b1	0.25	0.35	0.40	
C	0.15	-	0.20	
C1	0.12	0.127	0.15	
D	2.80	2.90	3.00	
E	2.75 BSC			
E1	1.55	1.60	1.65	
L	0.30	0.40	0.50	
e1	1.90 BSC			
e	0.95 BSC			
α	0°	4°	8°	
a.aa	0.20			
PKG	Z5-1, Z5-2, Z5-3			
CDDE				

(A) inaxim ${ }_{\text {integrated }}$			
TTTLE: PACKAGE DUTLINE, 5L THIN SIT23, (LIW PRDFILE)			
APPROVAL	DOCUMENT CONTROL NO. $21-0113$	REV.	

MAX9650/MAX9651
 High-Current VCOM Drive Op Amps for TFT LCDs

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

MAX9650/MAX9651
 High-Current VCOM Drive Op Amps for TFT LCDs

Package Information (continued)

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

MAX9650/MAX9651

High-Current VCOM Drive Op Amps for TFT LCDs

Package Information (continued)

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

COMMON DIMENSIONS		
SYMBOL	MIN.	MAX.
A	0.70	0.80
D	2.90	3.10
E	2.90	3.10
A1	0.00	0.05
L	0.20	0.40
k	0.25 MIN.$$	
A2	0.20 REF.	

PACKAGE VARIATIONS							
PKG. CODE	N	D 2	E 2	e	JEDEC SPEC	b	$[(\mathrm{N} / 2)-1] \times \mathrm{e}$
T633-2	6	1.50 ± 0.10	2.30 ± 0.10	0.95 BSC	MO229 / WEEA	0.40 ± 0.05	1.90 REF
T833-2	8	1.50 ± 0.10	2.30 ± 0.10	0.65 BSC	MO229 / WEEC	0.30 ± 0.05	1.95 REF
T833-3	8	1.50 ± 0.10	2.30 ± 0.10	0.65 BSC	MO229 / WEEC	0.30 ± 0.05	1.95 REF
T1033-1	10	1.50 ± 0.10	2.30 ± 0.10	0.50 BSC	MO229 / WEED-3	0.25 ± 0.05	2.00 REF
T1033MK-1	10	1.50 ± 0.10	2.30 ± 0.10	0.50 BSC	MO229 / WEED-3	0.25 ± 0.05	2.00 REF
T1033-2	10	1.50 ± 0.10	2.30 ± 0.10	0.50 BSC	MO229 / WEED-3	0.25 ± 0.05	2.00 REF
T1433-1	14	1.70 ± 0.10	2.30 ± 0.10	0.40 BSC	----	0.20 ± 0.05	2.40 REF
T1433-2	14	1.70 ± 0.10	2.30 ± 0.10	0.40 BSC	----	0.20 ± 0.05	2.40 REF
T1433-3F	14	1.70 ± 0.10	2.30 ± 0.10	0.40 BSC	----	0.20 ± 0.05	2.40 REF

NOTES:

1. ALL DIMENSIONS ARE IN mm. ANGLES IN DEGREES.
2. COPLANARITY SHALL NOT EXCEED 0.08 mm .
3. WARPAGE SHALL NOT EXCEED 0.10 mm .
4. PACKAGE LENGTH/PACKAGE WIDTH ARE CONSIDERED AS SPECIAL CHARACTERISTIC(S).
5. DRAWING CONFORMS TO JEDEC MO229, EXCEPT DIMENSIONS "D2" AND "E2", AND T1433-1 \& T1433-2.
6. "N" IS THE TOTAL NUMBER OF LEADS.
7. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.
8. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.
9. ALL DIMENSIONS APPLY TO BOTH LEADED (-) AND PbFREE (+) PKG. CODES.

(A) maxim integrated ${ }_{\text {m }}$			
TTILE: PACKAGE DUTLINE, $6,8,10$ \& 14 L , TDFN, EXPDSED PAD, $3 \times 3 \times 0.80 \mathrm{~mm}$			
APPROVAL	DOCUMENT CONTROL NO. $21-0137$	${ }^{\text {REV. }}$	2/2

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$7 / 08$	Initial release	-
1	$10 / 08$	Updated slew rate and added TDFN-EP package	$1,2,6,10,11$
2	$5 / 09$	Updated continuous output current specification	2
3	$2 / 10$	Added automotive part to Ordering Information, corrected units for input offset voltage, and added figure for minimum series resistance	$1,2,5,6$
4	$7 / 10$	Removed extraneous information in the Electrical Characteristics table and corrected typo in TOC 5	2,4
5	$11 / 12$	Corrected lead pattern number	8

maxim
integrated ${ }_{\text {w }}$

[^0]
[^0]: Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

