19-5122; Rev 2; 11/10

EVALUATION KIT AVAILABLE

Dual, 256-Tap, Volatile, Low-Voltage, Linear Taper Digital Potentiometer

General Description

Applications

The MAX5392 dual, 256-tap, volatile, low-voltage, linear taper digital potentiometer offers three end-to-end resistance values of $10k\Omega$, $50k\Omega$, and $100k\Omega$. Operating from a single +1.7V to +5.5V power supply, the device provides a low 35ppm/°C end-to-end temperature coefficient. The device features an I²C interface.

The small package size, low supply operating voltage, low supply current, and automotive temperature range of the MAX5392 makes the device uniquely suited for the portable consumer market, battery-backup industrial applications, and the automotive market.

The MAX5392 is specified over the automotive -40°C to +125°C temperature range and is available in a 16-pin TSSOP package.

Low-Voltage Battery Applications

Mechanical Potentiometer Replacement

Adjustable Voltage References/Linear Regulators

Portable Electronics

Offset and Gain Control

Automotive Electronics

_Features

- Dual, 256-Tap Linear Taper Positions
- Single +1.7V to +5.5V Supply Operation
- Low 12µA Quiescent Supply Current
- + 10k Ω , 50k Ω , 100k Ω End-to-End Resistance Values
- ♦ I²C-Compatible Interface
- Wiper Set to Midscale on Power-Up
- ♦ -40°C to +125°C Operating Temperature Range

Ordering Information

PART	PIN-PACKAGE	END-TO-END RESISTANCE ($k\Omega$)
MAX5392LAUE+	16 TSSOP	10
MAX5392MAUE+	16 TSSOP	50
MAX5392NAUE+	16 TSSOP	100

Note: All devices are specified over the -40°C to +125°C operating temperature range.

+Denotes a lead(Pb)-free/RoHS-compliant package.

BYP HA V_{DD} WA ΙA CHARGE PUMP SCL LATCH 256 DECODER SDA A HB ΜΛΧΙΜ A0 12C POR MAX5392 A1 WB LATCH 256 DECODER A2 LB GND

Functional Diagram

Maxim Integrated Products 1

res MAX5392

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

V _{DD} to GND H_, W_, L_ to GND	
All Other Pins to GND	(==)
Continuous Current in to H_, W_, and I	
MAX5392L	±5mA
MAX5392M	±2mA
MAX5392N	±1mA

Continuous Power Dissipation ($T_A = +70^{\circ}C$)

16-Pin TSSOP (derate 11.1mW/°C above +70°C)888.9	mW
Operating Temperature Range40°C to +12	5°C
Junction Temperature+15	0°C
Storage Temperature Range65°C to +15	0°C
Lead Temperature (soldering, 10s)+30	0°C
Soldering Temperature (reflow)+26	0°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(VDD = +1.7V to +5.5V, VH_ = VDD, VL_ = 0, TA = TMIN to TMAX, unless otherwise noted. Typical values are at VDD = +1.8V, TA = +25°C.) (Note 1)

PARAMETER	SYMBOL	(CONDITIONS	MIN	TYP	MAX	UNITS
Resolution	lution N						Тар
DC PERFORMANCE (Voltage Di	vider Mode)						
Integral Nonlinearity	INL	(Note 2)		-0.5		+0.5	LSB
Differential Nonlinearity	DNL	(Note 2)		-0.5		+0.5	LSB
Dual Code Matching		Register A = R	legister B	-0.5		+0.5	LSB
Ratiometric Resistor Tempco		$(\Delta VW/VW)/\Delta T$,	no load		5		ppm/°C
			MAX5392L	-3	-2.2		
Full-Scale Error		Code = FFh	MAX5392M	-1	-0.6		LSB
			MAX5392N	-0.5	-0.3		
			MAX5392L		2.2	3	
Zero-Scale Error		Code = 00h	MAX5392M		0.6	1.0	LSB
			MAX5392N		0.3	0.5	
DC PERFORMANCE (Variable R	esistor Mode)					
		MAX5392L (No	ote 3)	-1.5		+1.5	
Integral Nonlinearity	R-INL	MAX5392M (N		-0.75		+0.75	LSB
		MAX5392N (N	ote 3)	-0.5		+0.5	
Differential Nonlinearity	R-DNL	(Note 3)		-0.5		+0.5	LSB
DC PERFORMANCE (Resistor C	haracteristic	s)					
Wiper Resistance	RwL	(Note 4)				200	Ω
Terminal Capacitance	CH_, CL_	Measured to G	ND		10		pF
Wiper Capacitance	Cw_	Measured to G	ND		50		pF
End-to-End Resistor Tempco	TCR	No load			35		ppm/°C
End-to-End Resistor Tolerance	ΔR_{HL}	Wiper not conr	nected	-25		+25	%

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +1.7V \text{ to } +5.5V, V_{H} = V_{DD}, V_{L} = 0, T_{A} = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } V_{DD} = +1.8V, T_{A} = +25^{\circ}C.)$ (Note 1)

PARAMETER	SYMBOL	0	ONDITIONS	MIN	TYP	MAX	UNITS	
AC PERFORMANCE		•						
Crosstalk		(Note 5)			-90		dB	
		Code = 80H,	MAX5392L		600		1	
-3dB Bandwidth	BW	10pF load,	MAX5392M		100		kHz	
		$V_{DD} = 1.8V$	MAX5392N		50			
Total Harmonic Distortion Plus Noise	THD+N	Measured at W	/, V _H _ = 1V _{RMS} at 1kHz		0.02		%	
			MAX5392L		400			
Wiper Settling Time	ts	(Note 6)	MAX5392M		1200		ns	
			MAX5392N		2200			
Charge-Pump Feedthrough at W_	Vrw	fclk = 600kHz	z, $CBYP = OnF$			600	nVP-P	
POWER SUPPLIES								
Supply Voltage Range	Vdd			1.7		5.5	V	
Standby Current		$V_{DD} = 5.5V$			27			
		VDD = 1.7V			12		- μΑ	
DIGITAL INPUTS								
		$V_{DD} = 2.6V$ to	5.5V	70				
Minimum Input High Voltage	Vih	$V_{DD} = 1.7 V$ to	2.6V	75			% x Vdd	
		$V_{DD} = 2.6V$ to	5.5V			30		
Maximum Input Low Voltage	VIL	VDD = 1.7V to	2.6V			25	% x V _{DD}	
Input Leakage Current				-1		+1	μA	
Input Capacitance					5		pF	
TIMING CHARACTERISTICS—I ²	C (Notes 7 a	nd 8)						
Maximum SCL Frequency	fSCL					400	kHz	
Setup Time for START Condition	tsu:sta			0.6			μs	
Hold Time for START Condition	thd:sta			0.6			μs	
SCL High Time	thigh			0.6			μs	
SCL Low Time	tLOW			1.3			μs	

ELECTRICAL CHARACTERISTICS (continued)

(VDD = +1.7V to +5.5V, VH_ = VDD, VL_ = 0, TA = TMIN to TMAX, unless otherwise noted. Typical values are at VDD = +1.8V, TA = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Data Setup Time	tsu:dat		100			ns
Data Hold Time	thd:dat		0			μs
SDA, SCL Rise Time	tR				0.3	μs
SDA, SCL Fall	tF				0.3	μs
Setup Time for STOP Condition	tsu:sto		0.6			μs
Bus Free Time Between STOP and START Condition	tBUF	Minimum power-up rate = 0.2V/µs	1.3			μs
Pulse Suppressed Spike Width	tsp				50	ns
Capacitive Load for Each Bus	Св	(Note 9)			400	pF

Note 1: All devices are 100% production tested at T_A = +25°C. Specifications over temperature limits are guaranteed by design and characterization.

Note 2: DNL and INL are measured with the potentiometer configured as a voltage-divider (Figure 1) with H_ = V_{DD} and L_ = GND. The wiper terminal is unloaded and measured with a high-input-impedance voltmeter.

Note 3: R-DNL and R-INL are measured with the potentiometer configured as a variable resistor (Figure 1). DNL and INL are measured with the potentiometer configured as a variable resistor. H_ is unconnected and L_ = GND. For V_{DD} = +5V, the wiper terminal is driven with a source current of 400µA for the 10k Ω configuration, 80µA for the 50k Ω configuration, and 40µA for the 100k Ω configuration. For V_{DD} = +1.7V, the wiper terminal is driven with a source current of 150µA for the 10k Ω configuration, 30µA for the 50k Ω configuration, and 15µA for the 100k Ω configuration.

Note 4: The wiper resistance is the worst value measured by injecting the currents given in Note 3 to W_ with L_ = GND. $R_{W_{-}} = (V_{W_{-}} - V_{H_{-}})/I_{W_{-}}.$

Note 5: Drive HA with a 1kHz GND to V_{DD} amplitude tone. LA = LB = GND. No load. WB is at midscale with a 10pF load. Measure WB.

Note 6: The wiper-settling time is the worst-case 0 to 50% rise time, measured between tap 0 and tap 127. H_ = V_{DD}, L_ = GND, and the wiper terminal is loaded with 10pF capacitance to ground.

Note 7: Digital timing is guaranteed by design and characterization, not production tested.

- **Note 8:** The SCL clock period includes rise and fall times ($t_R = t_F$). All digital input signals are specified with $t_R = t_F = 2n_S$ and timed from a voltage level of ($V_{IL} + V_{IH}$)/2.
- Note 9: An appropriate bus pullup resistance must be selected depending on board capacitance. For I²C-bus specification information from NXP Semiconductor (formerly Philips Semiconductor), refer to the UM10204: I²C-Bus Specification and User Manual.

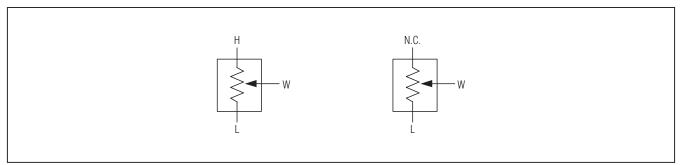
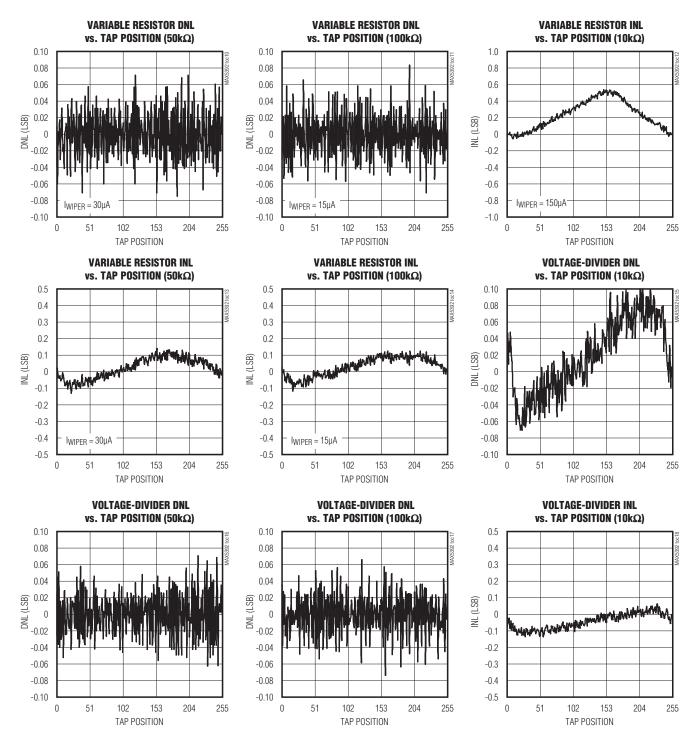


Figure 1. Voltage-Divider and Variable Resistor Configurations

M/IXI/M

Typical Operating Characteristics

 $(V_{DD} = 1.8V, T_A = +25^{\circ}C, unless otherwise noted.)$


SUPPLY CURRENT **SUPPLY CURRENT SUPPLY CURRENT** vs. SUPPLY VOLTAGE vs. TEMPERATURE vs. DIGITAL INPUT VOLTAGE 30 10,000 30 25 1000 $V_{DD} = 5V$ SUPPLY CURRENT (µA) SUPPLY CURRENT (µA) 25 20 $V_{DD} = 5V$ (Au) aal $V_{DD} = 2.6V$ 15 100 = 2.6V 20 Vdd X 10 $V_{DD} = 1.8V$ 10 15 5 $V_{DD} = 1.8V$ 0 10 1 2.7 -40 -20 -10 5 20 35 50 65 80 95 110 125 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 1.7 2.2 3.2 3.7 4.2 4.7 5.2 0 TEMPERATURE (°C) DIGITAL INPUT VOLTAGE (V) V_{DD} (V) RESISTANCE (W_-TO-L_) RESISTANCE (W_-TO-L_) RESISTANCE (W_-TO-L_) vs. TAP POSITION (10kΩ) vs. TAP POSITION (50kΩ) vs. TAP POSITION (100kΩ) 10 50 100 9 45 90 8 40 80 RESISTANCE (kΩ) W_-TO-L_ RESISTANCE (k\O) W_-TO-L_ RESISTANCE (k\O) 7 35 70 6 30 60 5 25 50 W_-T0-L_ F 4 20 40 3 15 30 2 20 10 5 10 1 0 0 0 0 51 102 153 204 255 0 51 102 153 204 255 0 51 102 153 204 255 TAP POSITION TAP POSITION TAP POSITION END-TO-END RESISTANCE PERCENTAGE WIPER RESISTANCE **VARIABLE RESISTOR DNL** vs. WIPER VOLTAGE (10kΩ) **CHANGE vs. TEMPERATURE** vs. TAP POSITION (10kΩ) 0.05 0.10 0.08 140 $100k\Omega$ 0.06 WIPER RESISTANCE (Ω) 0.04 120 DNL (LSB) 0.02 50kO 0 100 -0.02 10kO-0.04 $V_{DD} = 5V$ 80 -0.02 -0.06 $V_{DD} = 1.8V$ -0.08 $V_{DD} = 2.6V$ I_{WIPER} = 150µA 60 -0.03 -0.10 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 -40 -25 -10 5 20 35 50 65 80 95 110 125 0 51 153 204 255 102 WIPER VOLTAGE (V) TEMPERATURE (°C) TAP POSITION

///XI//

_Typical Operating Characteristics (continued)

 $(V_{DD} = 1.8V, T_A = +25^{\circ}C, unless otherwise noted.)$

Typical Operating Characteristics (continued)

 $(V_{DD} = 1.8V, T_A = +25^{\circ}C, unless otherwise noted.)$

0.5

0.4

0.3

0.2

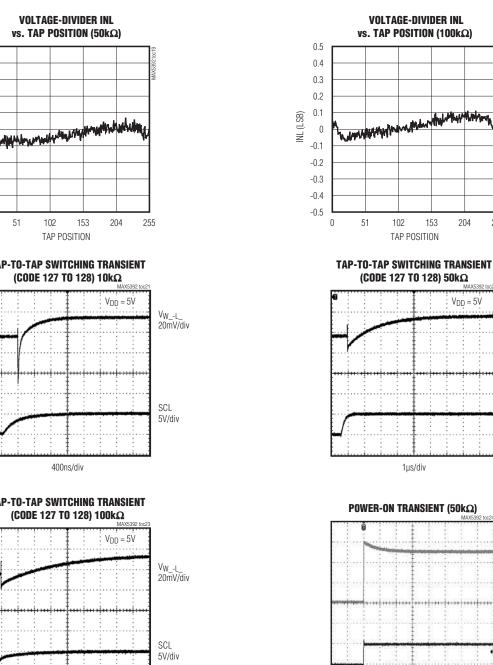
0.1

-0.1

-0.2

-0.3

-0.4


-0.5

0

51

0

INL (LSB)

204

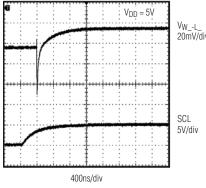
255

V_{W_-L_} 20mV/div

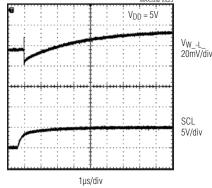
SCL

5V/div

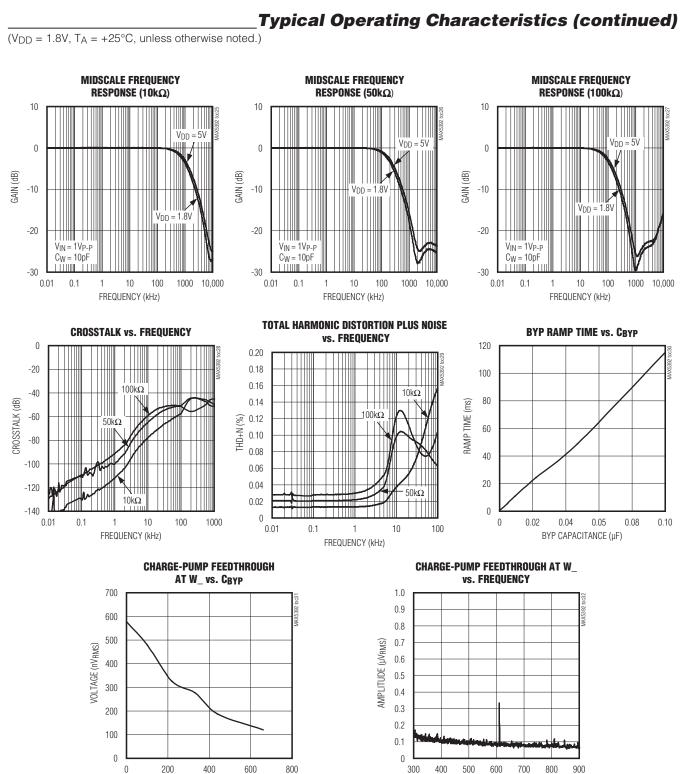
Vw_-L_ 1V/div

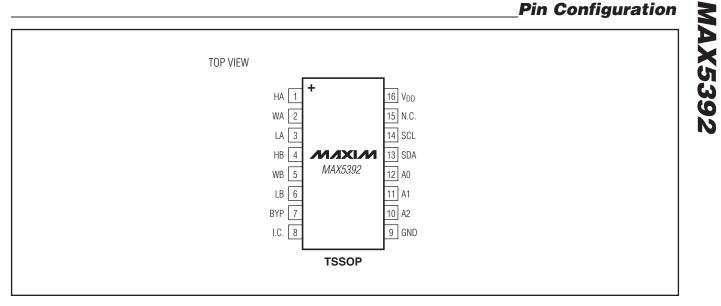

Vcc

2µs/div


5V/div

MAX5392




FREQUENCY (kHz)

8

MAX5392

CAPACITANCE (pF)

Pin Configuration

Pin Description

PIN	NAME	FUNCTION
1	HA	Resistor A High Terminal. The voltage at HA can be higher or lower than the voltage at LA. Current can flow into or out of HA.
2	WA	Resistor A Wiper Terminal
3	LA	Resistor A Low Terminal. The voltage at LA can be higher or lower than the voltage at HA. Current can flow into or out of LA.
4	HB	Resistor B High Terminal. The voltage at HB can be higher or lower than the voltage at LB. Current can flow into or out of HB.
5	WB	Resistor B Wiper Terminal
6	LB	Resistor B Low Terminal. The voltage at LB can be higher or lower than the voltage at HB. Current can flow into or out of LB.
7	BYP	Internal Power-Supply Bypass. For additional charge-pump filtering, bypass to GND with a capaci- tor close to the device.
8	I.C.	Internally Connected. Connect to GND.
9	GND	Ground
10	A2	Address Input 2. Connect to VDD or GND.
11	A1	Address Input 1. Connect to V _{DD} or GND.
12	A0	Address Input 0. Connect to VDD or GND.
13	SDA	I ² C-Compatible Serial-Data Input/Output. A pullup resistor is required.
14	SCL	I ² C-Compatible Serial-Clock Input. A pullup resistor is required.
15	N.C.	No Connection. Not internally connected.
16	Vdd	Power-Supply Input. Bypass V_{DD} to GND with a 0.1µF capacitor close to the device.

WAX5392

Detailed Description

The MAX5392 dual, 256-tap, volatile, low-voltage linear taper digital potentiometer offers three end-to-end resistance values of $10k\Omega$, $50k\Omega$, and $100k\Omega$. The potentiometer consists of 255 fixed resistors in series between terminals H_ and L_. The potentiometer wiper, W_, is programmable to access any one of the 256 tap points on the resistor string.

The potentiometers are programmable independently of each other. The MAX5392 features an $I^{2}C$ interface.

Charge Pump

TThe MAX5392 contains an internal charge pump that guarantees the maximum wiper resistance, RWL, to be less than 200Ω for supply voltages down to 1.7V. Pins H_, W_, and L_ are still required to be less than VDD + 0.3V. A bypass input, BYP, is provided to allow additional filtering of the charge-pump output, further reducing clock feedthrough that can occur on H_, W_, or L_. The nominal clock rate of the charge pump is 600kHz. BYP should remain resistively unloaded as any additional load would increase clock feedthrough. See the Charge-Pump Feedthrough at W_ vs. CBYP graph in the *Typical Operating Characteristics* for CBYP sizing guide-lines with respect to clock feedthrough to the wiper. The value of CBYP does affect the startup time of the charge

pump; however, CBYP does not impact the ability to communicate with the device, nor is there a minimum CBYP requirement. The maximum wiper impedance specification is not guaranteed until the charge pump is fully settled. See the BYP Ramp Time vs. CBYP graph in the *Typical Operating Characteristics* for CBYP impact on charge-pump settling time.

I²C Digital Interface

The I²C interface contains a shift register that decodes the command and address bytes, routing the data to the appropriate control registers. Data written to a control register immediately updates the wiper position. The wipers A and B power up in midposition, D[7:0] = 80h.

Serial Addressing

The MAX5392 operates as a slave device that receives data through an I²C/SMBusTM-compatible 2-wire serial interface. The interface uses a serial-data access line (SDA) and a serial-clock line (SCL) to achieve bidirectional communication between master(s) and slave(s). A master, typically a microcontroller, initiates all data transfers to the port and generates the SCL clock that synchronizes the data transfer. See Figure 2. Connect a pullup resistor, typically 4.7k Ω , between each of the SDA and SCL lines to a voltage between VDD and 5.5V.

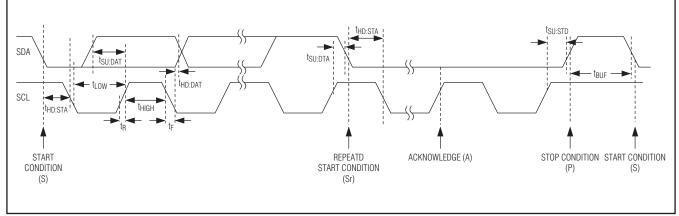


Figure 2. I²C Serial-Interface Timing Diagram

SMBus is a trademark of Intel Corp.

Each transmission consists of a START (S) condition sent by a master, followed by a 7-bit slave address plus a NOP/ \overline{W} bit. See Figures 3, 4, and 7.

START and STOP Conditions

SCL and SDA remain high when the interface is inactive. A master controller signals the beginning of a transmission with a START condition by transitioning SDA from high to low while SCL is high. The master controller issues a STOP condition by transitioning the SDA from low to high while SCL is high, after finishing communicating with the slave. The bus is then free for another transmission. See Figure 2.

Bit Transfer

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable while SCL is high. See Figure 5.

Acknowledge

The acknowledge bit is a clocked 9th bit that the recipient uses to handshake receipt of each byte of data. See Figure 6. Each byte transferred requires a total of 9 bits. The master controller generates the 9th clock pulse, and the recipient pulls down SDA during the acknowledge clock pulse, so the SDA line remains stable low during the high period of the clock pulse.

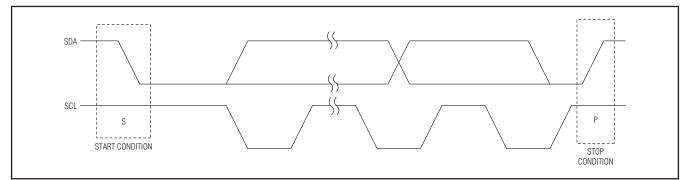


Figure 3. START and STOP Conditions

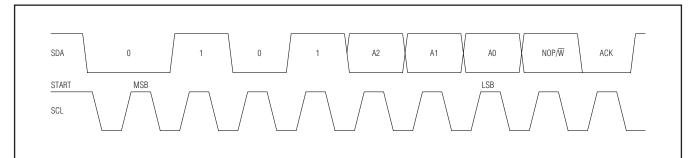


Figure 4. Slave Address

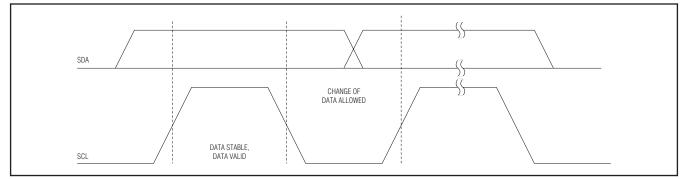
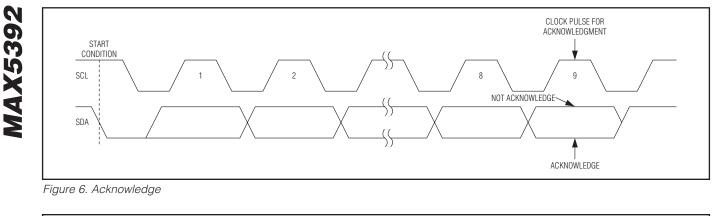



Figure 5. Bit Transfer

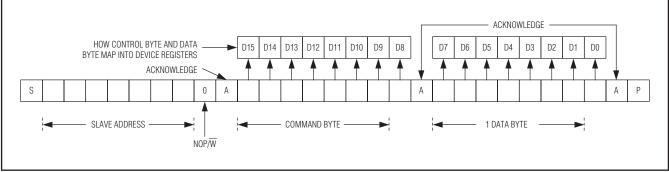


Figure 7. Command and Single Data Byte Received

Slave Address

The MAX5392 includes a 7-bit slave address (Figure 4). The 8th bit following the 7th bit of the slave address is the NOP/ \overline{W} bit. Set the NOP/ \overline{W} bit low for a write command and high for a no-operation command. The device does not support readback.

The device provides three address inputs (A0, A1, and A2), allowing up to eight devices to share a common bus (Table 1). The first 4 bits (MSBs) of the factory-set slave addresses are always 0101. A2, A1, and A0 set the next 3 bits of the slave address. Connect each address input to V_{DD} or GND. Each device must have a unique address to share a common bus.

Message Format for Writing

Write to the devices by transmitting the device's slave address with NOP/ \overline{W} (8th bit) set to zero, followed by at least 2 bytes of information. The first byte of informa-

tion is the command byte. The second byte is the data byte. The data byte goes into the internal register of the device as selected by the command byte (Figure 7 and Table 2).

Table 1. Slave Addresses

AD	DRESS INP	JTS	SLAVE ADDRESS
A2	A1	A0	SLAVE ADDRESS
GND	GND	GND	0101000
GND	GND	VDD	0101001
GND	Vdd	GND	0101010
GND	VDD	Vdd	0101011
Vdd	GND	GND	0101100
VDD	GND	Vdd	0101101
Vdd	Vdd	GND	0101110
VDD	VDD	VDD	0101111

Table 2. I²C Command Byte Summary

	ADDRESS BYTE								ADDRESS BYTE								COMMAND BYTE						DATA BYTE								
	_	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27			
SCL CYCLE NUMBER	START (S)	A6	A5	A4	A3	A2	A1	A0	W	ACK (A)	R7	R6	R5	R4	R3	R2	R1	R0	ACK (A)	D7	D6	D5	D4	D3	D2	D1	D0	ACK (A)	STOP (P)		
REG A		0	1	0	1	A2	A1	A0	0		0	0	0	1	0	0	0	1		D7	D6	D5	D4	D3	D2	D1	D0				
REG B		0	1	0	1	A2	A1	AO	0		0	0	0	1	0	0	1	0		D7	D6	D5	D4	D3	D2	D1	D0				
REG A AND B		0	1	0	1	A2	A1	AO	0		0	0	0	1	0	0	1	1		D7	D6	D5	D4	D3	D2	D1	D0				

Command Byte Use the command byte to select the destination of the wiper data. See Table 2.

Command Descriptions

REG A: The data byte writes to register A and the wiper of potentiometer A moves to the appropriate position. D[7:0] indicates the position of the wiper. D[7:0] = 00hmoves the wiper to the position closest to LA. D[7:0] = FFhmoves the wiper closest to HA. D[7:0] is 80h following power-on.

REG B: The data byte writes to register B and the wiper of potentiometer B moves to the appropriate position. D[7:0] indicates the position of the wiper. D[7:0] = 00hmoves the wiper to the position closest to LB. D[7:0] = FFhmoves the wiper to the position closest to HB. D[7:0] is 80h following power-on.

REG A and B: The data byte writes to registers A and B and the wipers of potentiometers A and B move to the appropriate position. D[7:0] indicates the position of the wiper. D[7:0] = 00h moves the wipers to the position closest to L_. D[7:0] = FFh moves the wipers to the position closest to H_. D[7:0] is 80h following power-on.

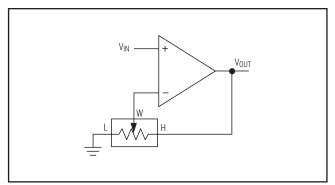


Figure 8. Variable Gain Noninverting Amplifier

Applications Information

Variable Gain Amplifier

Figure 8 shows a potentiometer adjusting the gain of a noninverting amplifier. Figure 9 shows a potentiometer adjusting the gain of an inverting amplifier.

Adjustable Dual Regulator

Figure 10 shows an adjustable dual linear regulator using a dual potentiometer as two variable resistors.

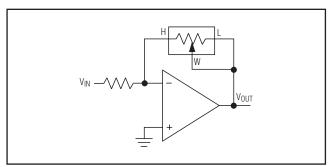


Figure 9. Variable Gain Inverting Amplifier

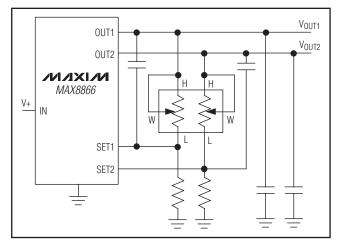


Figure 10. Adjustable Dual Linear Regulator

Adjustable Voltage Reference

Figure 11 shows an adjustable voltage reference circuit using a potentiometer as a voltage-divider.

Variable Gain Current to Voltage Converter

Figure 12 shows a variable gain current to voltage converter using a potentiometer as a variable resistor.

LCD Bias Control

Figure 13 shows a positive LCD bias control circuit using a potentiometer as a voltage-divider.

Figure 14 shows a positive LCD bias control circuit using a potentiometer as a variable resistor.

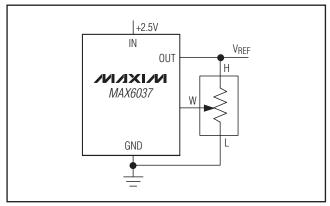


Figure 11. Adjustable Voltage Reference

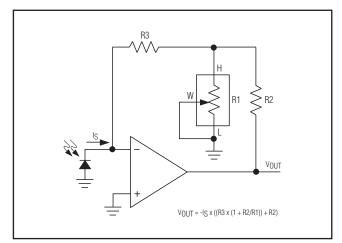


Figure 12. Variable Gain I-to-V Converter

Programmable Filter

Chip Information

Figure 15 shows a programmable filter using a dual potentiometer.

Offset Voltage Adjustment Circuit

Figure 16 shows an offset voltage adjustment circuit using a dual potentiometer.

PROCESS: BICMOS

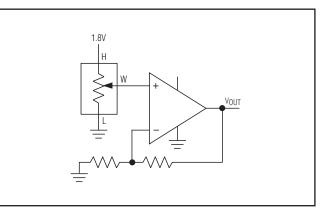


Figure 13. Positive LCD Bias Control Using a Voltage Divider

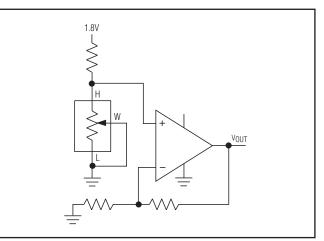


Figure 14. Positive LCD Bias Control Using a Variable Resistor

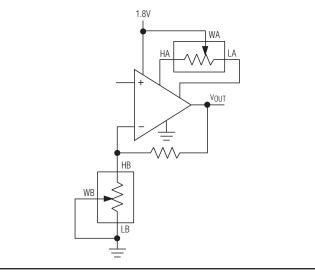


Figure 15. Programmable Filter

Figure 16. Offset Voltage Adjustment Circuit

Package Information

For the latest package outline information and land patterns, go to <u>www.maxim-ic.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
16 TSSOP	U16+2	<u>21-0066</u>	<u>90-0117</u>

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	1/10	Initial release	—
1	4/10	Added Soldering Temperature in <i>Absolute Maximum Ratings</i> ; corrected code in Conditions of -3dB Bandwidth specification in <i>Electrical Characteristics</i>	2, 3
2	11/10	Changed <i>Electrical Characteristics</i> heading and corrected Figures 9, 12, 14, 15, 16	2, 3, 4, 13, 14, 15

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

_____ Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2010 Maxim Integrated Products

16

Maxim is a registered trademark of Maxim Integrated Products, Inc.