UT54ACTS00E

Quadruple 2-Input NAND Gates

April 2015
www.aeroflex.com/Logic
Datasheet

FEATURES

- $0.6 \mu \mathrm{~m}$ CRH CMOS process
- Latchup immune
- High speed
- Low power consumption
- Wide power supply operating range from 3.0 V to 5.5 V
- Available QML Q or V processes
- 14-lead flatpack
- UT54ACTS00E - SMD 5962-96513

DESCRIPTION

The UT54ACTS00E is a performance and voltage enhanced version of the UT54ACTS00 quadruple, two-input NAND gate. The circuit performs the Boolean functions $\mathrm{Y}=\overline{\mathrm{A} \cdot \mathrm{B}}$ or $\mathrm{Y}=\overline{\mathrm{A}}$ $+\overline{\mathrm{B}}$ in positive logic.

The device is characterized over full military temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS		OUTPUT
A	B	Y
H	H	L
L	X	H
X	L	H

PINOUT

14-Lead Flatpack
TopView

LOGIC SYMBOL

Note:

1. Logic symbol in accordance with ANSI/IEEE standard 91-1984 and IEC Publication 617-12

LOGIC DIAGRAM

OPERATIONAL ENVIRONMENT ${ }^{1}$

PARAMETER	LIMIT	UNITS
Total Dose	1.0 E 6	$\mathrm{rads}(\mathrm{Si})$
SEU Threshold 2	108	$\mathrm{MeV}-\mathrm{cm}^{2} / \mathrm{mg}$
SEL Threshold	120	$\mathrm{MeV}-\mathrm{cm}^{2} / \mathrm{mg}$
Neutron Fluence	1.0 E 14	$\mathrm{n} / \mathrm{cm}^{2}$

Notes:

1. Logic will not latchup during radiation exposure within the limits defined in the table.
2. Device storage elements are immune to SEU affects.

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	LIMIT	UNITS
V_{DD}	Supply voltage	-0.3 to 7.0	V
$\mathrm{~V}_{\mathrm{I} / \mathrm{O}}$	Voltage any pin	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
$\mathrm{~T}_{\mathrm{STG}}$	Storage Temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{J}	Maximum junction temperature	+175	${ }^{\circ} \mathrm{C}$
T_{LS}	Lead temperature (soldering 5 seconds	+300	${ }^{\circ} \mathrm{C}$
Θ_{JC}	Thermal resistance junction to case	15	${ }^{\circ} \mathrm{C} / \mathrm{W}$
I_{I}	DC input current	± 10	mA
$\mathrm{P}_{\mathrm{D}}{ }^{2}$	Maximum package power dissipation		
	permitted @ $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$	3.2	W

Note:

1. Stresses outside the listed absolute maximum ratings may cause permanent damage to the device. This is a stress rating only, functional operation of the device at these or any other conditions beyond limits indicated in the operational sections is not recommended. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2. Per MIL-STD-883, method 1012.1, Section 3.4.1, $P_{D}=\left(T_{J(\max)}-T_{C(\max)}\right) / \Theta_{J C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMIT	UNITS
V_{DD}	Supply voltage	3.0 to 5.5	V
$\mathrm{~V}_{\mathrm{IN}}$	Input voltage any pin	0 to V_{DD}	V
T_{C}	Temperature range	-55 to +125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS FOR THE UT54ACTS00E ${ }^{7}$
$\left(\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}\right.$ to $\left.5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}^{6} ;-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{C}}<+125^{\circ} \mathrm{C}\right)$

SYMBOL	DESCRIPTION	CONDITION	MIN	MAX	UNIT
$\mathrm{V}_{\text {IL1 }}$	Low-level input voltage ${ }^{1}$	V_{DD} from 4.5 V to 5.5 V		0.8	V
$\mathrm{V}_{\text {IL2 }}$	Low-level input voltage ${ }^{1}$	V_{DD} from 3.0 V to 3.6 V		0.8	V
$\mathrm{V}_{\mathrm{IH} 1}$	High-level input voltage ${ }^{1}$	V_{DD} from 4.5 V to 5.5 V	$0.5 \mathrm{~V}_{\mathrm{DD}}$		V
$\mathrm{V}_{\mathrm{IH} 2}$	High-level input voltage ${ }^{1}$	V_{DD} from 3.0V to 3.6 V	2.0		V
$\mathrm{I}_{\text {IN }}$	Input leakage current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$ or $\mathrm{V}_{\text {SS }}$	-1	1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL1 }}$	Low-level output voltage 3	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{aligned}$		0.4	V
$\mathrm{V}_{\text {OL2 }}$	Low-level output voltage 3	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=6 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$		0.4	V
$\mathrm{V}_{\mathrm{OH} 1}$	High-level output voltage ${ }^{3}$	$\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$ V_{DD} from 4.5 V to 5.5 V	$0.7 \mathrm{~V}_{\mathrm{DD}}$		V
$\mathrm{V}_{\mathrm{OH} 2}$	High-level output voltage ${ }^{3}$	$\mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA}$ V_{DD} from 3.0 V to 3.6 V	2.4		V
$\mathrm{I}_{\text {OS1 }}$	Short-circuit output current ${ }^{2,4}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}$ and V_{SS} V_{DD} from 4.5 V to 5.5 V	-200	+200	mA
$\mathrm{I}_{\mathrm{OS} 2}$	Short-circuit output current ${ }^{2,4}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}$ and V_{SS} V_{DD} from 3.0 V to 3.6 V	-100	+100	mA
$\mathrm{I}_{\text {OL1 }}$	Low level output current ${ }^{10}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{SS}} \\ & \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}} \text { from } 4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{aligned}$	+8		mA
$\mathrm{I}_{\text {OL2 }}$	Low level output current ${ }^{10}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{SS}} \\ & \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}} \text { from } 3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$	+6		mA
$\mathrm{I}_{\mathrm{OH} 1}$	High level output current ${ }^{10}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{SS}} \\ & \mathrm{~V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.4 \mathrm{~V} \end{aligned}$ V_{DD} from 4.5 V to 5.5 V	-8		mA
$\mathrm{I}_{\mathrm{OH} 2}$	High level output current ${ }^{10}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{SS}} \\ & \mathrm{~V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}} \text { from } 3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$	-6		mA

$\mathrm{P}_{\text {total1 }}$	Power dissipation $2,8,9$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to 5.5 V	$\mathrm{mW} /$ MHz		
$\mathrm{P}_{\text {total2 }}$	Power dissipation $2,8,9$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ to 3.6 V		0.5	$\mathrm{~mW} /$
MHz					
$\mathrm{I}_{\mathrm{DDQ}}$	Quiescent Supply Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$ or V_{SS} V_{DD} from 3.6 V to 5.5 V			
$\Delta \mathrm{I}_{\mathrm{DDQ}}$	Quiescent Supply Current Delta	For input under test $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}-2.1 \mathrm{~V}$ For all other inputs $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$ or V_{SS} $\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	25	$\mu \mathrm{~A}$	
C_{IN}	Input capacitance ${ }^{5}$	$f=1 \mathrm{MHz}$ $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		1.6	mA
$\mathrm{C}_{\mathrm{OUT}}$	Output capacitance ${ }^{5}$	$f=1 \mathrm{MHz}$ $\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$		15	pF

Notes:

1. Functional tests are conducted in accordance with MIL-STD-883 with the following input test conditions: $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{min})+20 \%,-0 \% ; \mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}}(\max)+0 \%$, 50%, as specified herein, for TTL, CMOS, or Schmitt compatible inputs. Devices may be tested using any input voltage within the above specified range, but are guaranteed to $\mathrm{V}_{\mathrm{IH}}(\min)$ and V_{IL} (max).
2. Supplied as a design limit but not guaranteed or tested.
3. Per MIL-PRF-38535, for current density $\leq 5.0 \mathrm{E} 5 \mathrm{amps} / \mathrm{cm}^{2}$, the maximum product of load capacitance (per output buffer) times frequency should not exceed 3,765pF/ MHz.
4. Not more than one output may be shorted at a time for maximum duration of one second.
5. Capacitance measured for initial qualification and when design changes may affect the value. Capacitance is measured between the designated terminal and $\mathrm{V}_{\text {SS }}$ at frequency of 1 MHz and a signal amplitude of 50 mV rms maximum.
6. Maximum allowable relative shift equals 50 mV .
7. For devices procured with a total ionizing dose tolerance guarantee, the post-irradiation performance is guaranteed at $25^{\circ} \mathrm{C}$ per MIL-STD-883 method 1019 condition A up to the maximum TID level procured.
8. Power dissipation specified per switching output.
9. Power does not include power contribution of any TTL output sink current.
10. Guaranteed by characterization, but not tested.

AC ELECTRICAL CHARACTERISTICS FOR THE UT54ACTS00E ${ }^{2}$
($\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}^{1} ;-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{C}}<+125^{\circ} \mathrm{C}$)

SYMBOL	PARAMETER	CONDITION	V_{DD}	MINIMUM	MAXIMUM	UNIT
$\mathrm{t}_{\text {PLH }}$	Input to Yn	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4.5 V to 5.5 V	1	8	ns
			3.0 V to 3.6 V	3	15	
$\mathrm{t}_{\text {PHL }}$	Input to Yn	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4.5 V to 5.5 V	1	8	ns
			3.0 V to 3.6 V	3	15	

Notes:

1. Maximum allowable relative shift equals 50 mV .
2. For devices procured with a total ionizing dose tolerance guarantee, the post-irradiation performance is guaranteed at $25^{\circ} \mathrm{C}$ per MIL-STD-883 method 1019 condition A up to the maximum TID level procured.

Packaging

	INC	MILLIME TER
DIM	MIN. MAX	MIN. MAX.
A	0.0790 .101	2.0072 .575
D	0.0150 .019	0.3810 .483
C	0.0040 .006	0.1020 .152
D	0.3330 .347	8.4388 .814
E	0.2500 .260	6.3506 .604
E 1	0.290	7.366
E2	0.1700 .180	4.3184 .572
E3	0.030	0.762
e	0.050 BSC	1.270 BSC
L	0.3400 .360	8.6369 .144
0	0.026	0.660
S 1	0.005	0.127

SECTION A-A

Figure 1. 14 Lead Flatpack

Ordering Information: UT54ACTS00E: SMD

Notes:

1. Lead finish (A,C, or X) must be specified.
2. If an " X " is specified when ordering, part marking will match the lead finish and will be either "A" (solder) or "C" (gold).
3. Total dose radiation must be specified when ordering. QML Q and QML V not available without radiation hardening. For prototype inquiries, contact factory.
4. Device type 02 is only offered with a TID tolerance guarantee of $3 \mathrm{E} 5 \mathrm{rads}(\mathrm{Si})$ or $1 \mathrm{E} 6 \mathrm{rads}(\mathrm{Si})$ and is tested in accordance with MIL-STD-883 Test Method 1019 Condition A and section 3.11.2. Device type 03 is only offered with a TID tolerance guarantee of 1E5 rads(Si), 3E5 rads(Si), and 5E5 rads(Si), and is tested in accordance with MIL-STD-883 Test Method 1019 Condition A.
```
Advanced Datasheet - Product In Development
Preliminary Datasheet - Shipping Prototype
Datasheet - Shipping QML & Reduced HiRel
```

This product is controlled for export under the U.S. Department of Commerce (DoC). A license may be required prior to the export of this product from the United States.
www.aeroflex.com info-ams@aeroflex.com authorized sales representative to verify that the information in this data sheet is current before using this product. Aeroflex does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing by Aeroflex; nor does the purchase, lease, or use of a product or service from Aeroflex convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual rights of Aeroflex or of third parties.

Datasheet Revision History

Revision Date	Description of Change
April 2015	Initial Release of Datasheet
Version 1.0.0	

