

Preliminary Specification

PE33241

UltraCMOS® Integer-N PLL Frequency Synthesizer for Low Phase Noise **Applications**

Features

- Frequency range
 - 5 GHz in 10/11 prescaler modulus
 - 4 GHz in 5/6 prescaler modulus
- Phase noise floor figure of merit: -230 dBc/Hz
- Selectable prescaler modulus of 5/6 or 10/11
- Low power: 80 mA at 2.8V
- Serial or direct mode access
- Internal phase detector
- Packaged in a 48-lead 7x7 mm QFN

Product Description

Peregrine's PE33241 is a high-performance Integer-N PLL capable of frequency synthesis up to 5 GHz. The device is designed for superior phase noise performance with a direct or serial programming option.

The PE33241 features a selectable prescaler modulus of 5/6 or 10/11, counters and a phase comparator as shown in *Figure 1*. Counter values are programmable through either a serial interface or directly hard-wired.

The PE33241 is available in a 48-lead 7x7 mm QFN and is manufactured on Peregrine's UltraCMOS® process, a patented variation of silicon-on-insulator (SOI) technology on a sapphire substrate, offering excellent RF performance.

Applications

- Industrial applications
- Military applications
- Point-to-point radios
- Cellular base stations
- CATV equipment

Figure 1. Functional Diagram

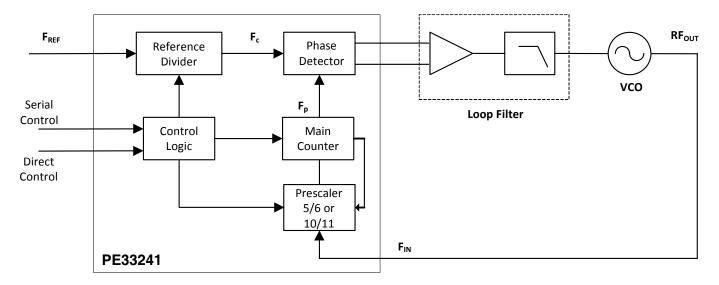


Figure 2. Pin Configurations (Top View)

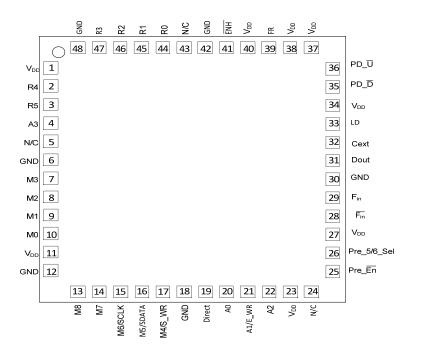


Figure 3. Package Type 48-lead 7x7 mm QFN

Table 1. Pin Descriptions

Pin No.	Pin Name	Interface Mode	Туре	Description
1	V_{DD}	Both	Note 1	Power supply input. Input may range from 2.65 to 2.95V. Bypassing recommended
2	R4	Direct	Input	R counter bit 4
3	R5	Direct	Input	R counter bit 5
4	А3	Direct	Input	A counter bit 3
5	N/C	Both	Note 3	No connect
6	GND	Both		Ground
7	М3	Direct	Input	M counter bit 3
8	M2	Direct	Input	M counter bit 2
9	M1	Direct	Input	M counter bit 1
10	MO	Direct	Input	M counter bit 0
11	V_{DD}	Both	Note 1	Power supply input. Input may range from 2.65 to 2.95V. Bypassing recommended
12	GND	Both		Ground
13	M8	Direct	Input	M counter bit 8
14	M7	Direct	Input	M counter bit 7
15	SCLK	Serial	Input	Serial clock input. Sdata is clocked serially into the 20-bit primary register (E_WR "low") or the 8-bit enhancement register (E_WR "high") on the rising edge of Sclk
	M6	Direct	Input	M counter bit 6
40	SDATA	Serial	Input	Binary serial data input. Input data entered MSB first
16	M5	Direct	Input	M counter bit 5
17	S_WR	Serial	Input	Serial load enable input. While S_WR is "low", Sdata can be serially clocked. Primary register data is transferred to the secondary register on S_WR or Hop_WR rising edge
	M4	Direct	Input	M counter bit 4

Table 1. Pin Descriptions (continued)

Pin No.	Pin Name	Interface Mode	Туре	Description
18	GND	Both		Ground
19	Direct	Direct	Input	Select "high" enables Direct Mode. Select "low" enables Serial Mode
20	A0	Direct	Input	A counter bit 0
21	E_WR	Serial	Input	Enhancement register write enable. While E_WR is "high", Sdata can be serially clocked into the enhancement register on the rising edge of Sclk
	A1	Direct	Input	A counter bit 1
22	A2	Direct	Input	A counter bit 2
23	V_{DD}	Both	Note 1	Power supply input. Input may range from 2.65 to 2.95V. Bypassing recommended
24	N/C	Both	Note 3	No connect
25	Pre_en	Direct	Input	Prescaler enable, active "low". When "high", Fin bypasses the prescaler
26	Pre_5/6_Sel	Direct	Input	5/6 modulus select, active "high." When "low," 10/11 modulus selected
27	V_{DD}	Both	Note 1	Power supply input. Input may range from 2.65 to 2.95V. Bypassing recommended
28	$\overline{\mathrm{F}_{\mathrm{in}}}$	Both	Input	Prescaler complementary input. A 22 pF bypass capacitor should be placed as close as possible to this pin and be connected in series with a 50Ω resistor to ground
29	F _{in}	Both	Input	Prescaler input from the VCO, 5 GHz max frequency. A 22 pF coupling capacitor should be placed as close as possible to this pin and be connected in shunt to a 50Ω resistor to ground
30	GND	Both		Ground
31	Dout	Serial	Output	Data Out. The MSEL signal and the raw prescaler output are available on Dout through enhancement register programming
32	Cext	Both	Output	Logical "NAND" of PD_ \overline{D} and PD_ \overline{U} terminated through an on chip, 2 k Ω series resistor. Connecting Cext to an external capacitor will low pass filter the input to the inverting amplifier used for driving LD
33	LD	Both	Output	Lock detect and open drain logical inversion of Cext. When the loop is in lock, LD is high impedance, otherwise LD is a logic low ("0")
34	V_{DD}	Both	Note 1	Power supply input. Input may range from 2.65 to 2.95V. Bypassing recommended
35	$PD_\overline{D}$	Both	Output	$PD_{\overline{D}}$ is pulse down when f_p leads f_c
36	$PD_{-}\overline{\mathrm{U}}$	Both	Output	$PD_{-}\overline{U}$ is pulse down when f_c leads f_p
37	V_{DD}	Both	Note 1	Power supply input. Input may range from 2.65 to 2.95V. Bypassing recommended
38	V_{DD}	Both	Note 1	Power supply input. Input may range from 2.65 to 2.95V. Bypassing recommended
39	f _r	Both	Input	Reference frequency input
40	V_{DD}	Both	Note 1	Power supply input. Input may range from 2.65 to 2.95V. Bypassing recommended
41	ENH	Serial	Input	Enhancement mode. When asserted low ("0"), enhancement register bits are functional
42	GND	Both		Ground
43	N/C	Both	Note 3	No connect
44	R0	Direct	Input	R counter bit 0
45	R1	Direct	Input	R counter bit 1
46	R2	Direct	Input	R counter bit 2
47	R3	Direct	Input	R counter bit 3
48	GND	Both		Ground

Notes: 1. V_{DD} pins 1, 11, 23, 27, 34, 37, 38 and 40 are connected by diodes and must be supplied with the same positive voltage level 2. All digital input pins have 70 kΩ pull-down resistors to ground 3. No connect pins can be left open or floating

Table 2. Absolute Maximum Ratings

Symbol	Parameter/Condition	Min	Max	Unit
V_{DD}	Supply voltage	-0.3	3.3	٧
Vı	Voltage on any input	-0.3	V _{DD} + 0.3	V
l _i	DC into any input	-10	+10	mA
Io	DC into any output	-10	+10	mA
T _{stg}	Storage temperature range	-65	150	°C

Table 3. Operating Ratings

Symbol	Parameter/Condition	Min	Max	Unit
V_{DD}	Supply voltage	2.65	2.95	V
T _A	Operating ambient temperature range	-40	85	ô

Moisture Sensitivity Level

The Moisture Sensitivity Level rating for the PE33241 in the 48-lead 7x7 mm QFN package is MSL3.

Table 4. ESD Ratings

Symbol	Parameter/Condition	Level	Unit
V _{ESD}	ESD voltage (Human Body Model) ¹	1000	٧

Note 1: Periodically sampled, not 100% tested. Tested per MIL-STD-883, M3015 C2

Electrostatic Discharge (ESD) Precautions

When handling this UltraCMOS® device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the rating specified.

Latch-Up Avoidance

Unlike conventional CMOS devices, UltraCMOS[®] devices are immune to latch-up.

Table 5. DC Characteristics: V_{DD} = 2.65 to 2.95V, -40°C < T_A < 85°C, unless otherwise specified

Symbol	Parameter	Condition	Min	Тур	Max	Unit
	Operational supply current	Pre_5/6_Sel = "low"				
I_{DD}	Prescaler disabled	Fc = 50 MHz, Fin = 500 MHz		40		mA
	Prescaler enabled	Fc = 50 MHz, Fin = 3 GHz		80		mA
Digital Inputs: All ex	cept f_r , F_{in} , $\overline{F_{in}}$				·	
V _{IH}	High level input voltage		0.7 x V _{DD}			V
V _{IL}	Low level input voltage				0.3 x V _{DD}	V
I _{IH}	High level input current	$V_{IH} = V_{DD} = 2.95V$			70	μΑ
I _{IL} Low level input current		$V_{IL} = 0, V_{DD} = 2.95V$	-1			μΑ
Reference Divider in	put: f _r	•			1	
I _{IHR}	High level input current	$V_{IH} = V_{DD} = 2.95V$			100	μΑ
I _{ILR}	Low level input current	$V_{IL} = 0, V_{DD} = 2.95V$	-100			μΑ
Counter and phase of	detector outputs: PD_D , PD_U				1	
V_{OLD}	Output voltage LOW	I _{out} = 6 mA			0.4	V
V_{OHD}	Output voltage HIGH	I _{out} = -3 mA	V _{DD} - 0.4			٧
Lock detect outputs:	Cext, LD	•			1	
V _{OLC}	Output voltage LOW, Cext	I _{out} = 100 μA			0.4	V
V _{OHC}	Output voltage HIGH, Cext	I _{out} = -100 μA	V _{DD} - 0.4			V
V _{OLLD} Output voltage LOW, LD		I _{out} = 1 mA			0.4	V

Table 6. AC Characteristics: V_{DD} = 2.65 to 2.95V, -40°C < T_A < 85°C, unless otherwise specified

Symbol	Parameter	Condition	Min	Typical	Max	Unit
Control interfac	ce and latches (see Figures 4, 5, 6)					"
f_{Clk}	Serial data clock frequency ¹				10	MHz
t _{ClkH}	Serial clock HIGH time		30			ns
t _{ClkL}	Serial clock LOW time		30			ns
t _{DSU}	Sdata set-up time after Sclk rising edge, D[7:0] set-up time to M1_WR, M2_WR, A_WR, E_WR rising edge		10			ns
t _{DHLD}	Sdata hold time after Sclk rising edge, D[7:0] hold time to M1_WR, M2_WR, A_WR, E_WR rising edge		10			ns
t _{PW}	S_WR, M1_WR, M2_WR, A_WR, E_WR pulse width		30			ns
t _{CWR}	Sclk rising edge to S_WR rising edge. S_WR, M1_WR, M2_WR, A_WR falling edge to Hop_WR rising edge		30			ns
t _{CE}	Sclk falling edge to E_WR transition		30			ns
twrc	S_WR falling edge to Sclk rising edge. Hop_WR falling edge to S_WR, M1_WR, M2_WR, A_WR rising edge		30			ns
t _{EC}	E_WR transition to Sclk rising edge		30			ns
t _{MDO}	MSEL data out delay after Fin rising edge	C _L = 12 pF		8		ns
Main divider 10	D/11 (including prescaler) ⁴			•		•
P _{Fin}	Input level range	External AC coupling 800 MHz ≤ Freq < 1200 MHz 1200 MHz ≤ Freq ≤ 5 GHz	0 -3 ⁵		5 5	dBm dBm
Main divider 5/	6 (including prescaler)4					
P_{Fin}	Input level range	External AC coupling 800 MHz ≤ Freq < 1200 MHz 1200 MHz ≤ Freq ≤ 4 GHz	0 -3 ⁵		5 5	dBm dBm
Main divider (p	prescaler bypassed) ⁴					
Fin	Operating frequency ²		50		800	MHz
P _{Fin}	Input level range	External AC coupling	-5 ⁵		5	dBm
Reference divi	der					
f _r	Operating frequency ³				100	MHz
P_{fr}	Reference input power ²	Single-ended input	-5 ⁶		7	dBm
Phase detecto	r					
f _c	Comparison frequency ³				100	MHz

Table 6. AC Characteristics: V_{DD} = 2.65 to 2.95V, -40°C < T_A < 85°C, unless otherwise specified (continued)

Symbol	Parameter	Condition	Min	Typical	Max	Unit			
SSB phase no	oise 5/6 prescaler (F _{in} = 3 GHz, F _c = 50 MHz,	LBW = 500 kHz)							
Φ_{N}	Phase noise	100 Hz offset		-95		dBc/Hz			
Φ_{N}	Phase noise	1 kHz offset		-102		dBc/Hz			
Φ_{N}	Phase noise	10 kHz offset		-112		dBc/Hz			
Φ_{N}	Phase noise 100 kHz offset -116								
SSB phase no	oise 10/11 prescaler (F _{in} = 3 GHz, F _c = 50 MH	Iz, LBW = 500 kHz)							
Φ_{N}	Phase noise	100 Hz offset		-92		dBc/Hz			
Φ_{N}	Phase noise	-99		dBc/Hz					
Φ_{N}	Phase noise	10 kHz offset		-109		dBc/Hz			
Φ_{N}	Phase noise	100 kHz offset	100 kHz offset -114						
Phase noise f	igure of merit (FOM)								
F014		5/6 prescaler		-263		dBc/Hz			
FOM _{flicker}	Flicker figure of merit	10/11 prescaler		-260		dBc/Hz			
FOM		5/6 prescaler		-230		dBc/Hz			
FOM_{floor}	Floor figure of merit	10/11 prescaler		-228		dBc/Hz			
FOM _{flicker}	FOM _{flicker} $PN_{flicker} = FOM_{flicker} + 20log (f_{vco}) - 10log (f_{offset})$								
FOM_{floor}	$PN_{floor} = FOM_{floor} + 10log (f_{pfd}) + 20log (f_{vco})$	(f _{pfd})				dBc/Hz			
FOM _{total}	PN _{total} = 10log (10 [PN _{flicker} /10] + 10 [PN _{floor} /	/10])				dBc/Hz			

Notes: 1. Fclk is verified during the functional pattern test. Serial programming sections of the functional pattern are clocked at 10 MHz to verify Fclk specification

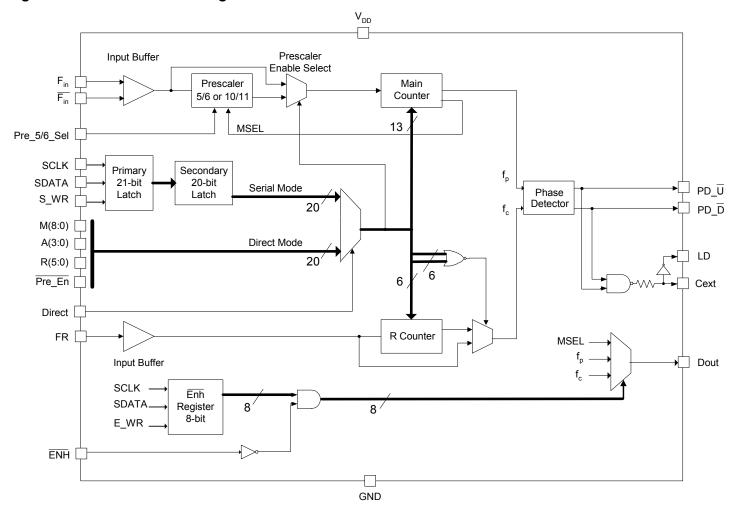
^{2.} CMOS logic levels can be used to drive the reference input. If the V_{DD} of the CMOS driver matches the V_{DD} of the PLL IC, then the reference input can be DC coupled. Otherwise, the reference input should be AC coupled. For sine-wave inputs, the minimum amplitude needs to be 0.5 Vpp. The maximum level should be limited to prevent ESD diodes at the pin input from turning on. Diodes will turn on at one forward-bias diode drop above V_{DD} or below GND. The DC voltage at the Reference input is $V_{DD}/2$

^{3.} Parameter is guaranteed through characterization only and is not tested

^{4.} Parameters below are not tested for die sales. These parameters are verified during the element evaluation

^{5. 0} dBm minimum is recommended for improved phase noise performance when sine-wave is applied

^{6. +2} dBm or higher is recommended for improved phase noise performance



Functional Description

The PE33241 consists of a prescaler, counters, a phase detector, and control logic. The dual modulus prescaler divides the VCO frequency by either 5/6 or 10/11, depending on the value of the modulus select. Counters "R" and "M" divide the reference and prescaler output, respectively, by integer values stored in a 21-bit register. An additional counter ("A") is used in the modulus

select logic. The phase-frequency detector generates up and down frequency control signals. The control logic includes a selectable chip interface. Data can be written via serial bus or hardwired directly to the pins. There are also various operational and test modes and a lock detect output.

Figure 4. Functional Block Diagram

Main Counter Chain

Normal Operating Mode

The main counter chain divides the RF input frequency, F_{in}, by an integer derived from the user-defined values in the "M" and "A" counters. It is composed of the 5/6 or 10/11 selectable modulus prescaler, modulus select logic, and 9-bit M counter. The prescaler can be set to either 5/6 or 10/11 based on the Pre_5/6_SEL pin. Setting Pre_en "low" enables the 5/6 or 10/11 prescaler. Setting Pre_en "high" allows F_{in} to bypass the prescaler and powers down the prescaler.

The output from the main counter chain, f_p , is related to the VCO frequency, F_{in} , by the following equation:

$$f_p = F_{in} / [10 \times (M + 1) + A]$$
 (1)
where $A \le M + 1$, $1 \le M \le 511$

Or

$$f_p = F_{in} / [5 \times (M + 1) + A]$$

where $A \le M + 1, 1 \le M \le 511$

When the loop is locked, F_{in} is related to the reference frequency, f_r , by the following equation:

$$F_{in} = [10 \times (M + 1) + A] \times [f_r / (R + 1)]$$
 (2)
where $A \le M + 1$, $1 \le M \le 511$

Or

$$F_{in} = [5 \times (M + 1) + A] \times [f_r / (R + 1)]$$

where $A \le M + 1$, $1 \le M \le 511$

A consequence of the upper limit on A is that: in Integer-N mode, to obtain contiguous channels,

$$F_{in}$$
 must be = 90 x [FR / (R + 1)] with 10/11 modulus F_{in} must be = 20 x [FR / (R + 1)] with 5/6 modulus

The A counter can accept values as high as 15, but in typical operation it will cycle from 0 to 9 between increments in M. Programming the M counter with the minimum allowed value of "1" will result in a minimum M counter divide ration of "2".

Prescaler Bypass Mode

Setting Pre_en "high" allows F_{in} to bypass and power down the prescaler. In this mode, the 5/6 or 10/11 prescaler and A register are not active, and the input VCO frequency is divided by the M counter directly. The following equation relates F_{in} to the reference frequency, f_r:

$$F_{in} = (M + 1) \times [f_r / (R + 1)]$$
 (3)

where $1 \le M \le 511$

Reference Counter

The reference counter chain divides the reference frequency, f_r , down to the phase detector comparison frequency, f_c .

The output frequency of the 6-bit R counter is related to the reference frequency by the following equation:

$$f_c = f_r / (R + 1)$$
 (4)

where $0 \le R \le 63$

Note that programming R with "0" will pass the reference frequency, f_r, directly to the phase detector.

Serial Interface Mode

While the E WR input is "low" and the S WR input is "low", serial input data (Sdata input), B₀ to B₂₀, is clocked serially into the primary register on the rising edge of Sclk, MSB (B₀) first. The contents from the primary register are transferred into the secondary register on the rising edge of S_WR according to the timing diagram shown in Figure 5. Data is transferred to the counters as shown in Table 7.

While the E_WR input is "high" and the S_WR input is "low", serial input data (Sdata input), B₀ to B₇, is clocked serially into the enhancement register on the rising edge of Sclk, MSB (B₀) first.

The enhancement register is double buffered to prevent inadvertent control changes during serial loading, with buffer capture of the serially-entered data performed on the falling edge of E WR according to the timing diagram shown in Figure 5. After the falling edge of E_WR, the data provides control bits as shown in Table 8 with bit functionality enabled by asserting the ENH input "low".

Direct Interface Mode

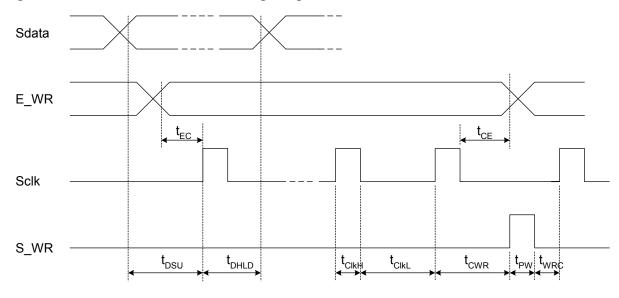
Direct Interface Mode is selected by setting the Direct input "high".

Counter control bits are set directly at the pins as shown in Table 7 and Table 8.

Table 7. Primary Register Programming

Interface Mode	ENH	R ₅	R ₄	M ₈	M ₇	Pre_en	M ₆	M ₅	M ₄	M ₃	M ₂	M ₁	Mo	R ₃	R ₂	R ₁	R ₀	A ₃	A ₂	A ₁	A ₀	ADDR
Serial *	1	B ₀	B ₁	B ₂	B ₃	B ₄	B ₅	B ₆	B ₇	B ₈	B ₉	B ₁₀	B ₁₁	B ₁₂	B ₁₃	B ₁₄	B ₁₅	B ₁₆	B ₁₇	B ₁₈	B ₁₉	B ₂₀
Direct	1	R ₅	R ₄	M ₈	M ₇	Pre_en	M ₆	M ₅	M ₄	M ₃	M ₂	M ₁	M ₀	R ₃	R ₂	R ₁	R ₀	A ₃	A ₂	A ₁	A ₀	0

^{*} Serial data clocked serially on Sclk rising edge while E_WR "low" and captured in secondary register on S_WR rising edge


Table 8. Enhancement Register Programming

Interface Mode	ENH	Direct	Reserved	Reserved	f _p output	Power Down	Counter load	MSEL output	f _c output	LD Disable
Serial*	0	0	B ₀	B ₁	B ₂	B ₃	B ₄	B ₅	B ₆	B ₇

^{*} Serial data clocked serially on Sclk rising edge while E_WR "high" and captured in the double buffer on E_WR falling edge.

Figure 5. Serial Interface Mode Timing Diagram

Enhancement Register

The functions of the enhancement register bits are shown below with all bits active "high".

Table 9. Enhancement Register Bit Functionality

1	Bit Function	Description			
Bit 0	Reserve**	Reserved			
Bit 1	Reserve**	Reserved			
Bit 2	f _p output	Drives the M counter output onto the Dout output			
Bit 3	Power down	Power down of all functions except programming interface			
Bit 4	Counter load	Immediate and continuous load of counter programming			
Bit 5	MSEL output	Drives the internal dual modulus prescaler modulus select (MSEL) onto the Dout output			
Bit 6	f _c output	Drives the reference counter output onto the Dout output			
Bit 7	Bit 7 LD Disable Disables the LD pin for quieter operation				

^{**} Program to 0

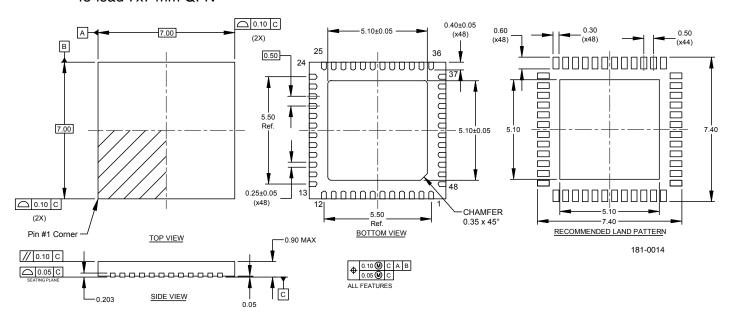
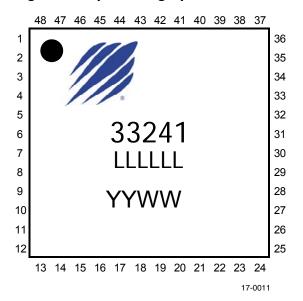
Phase Detector

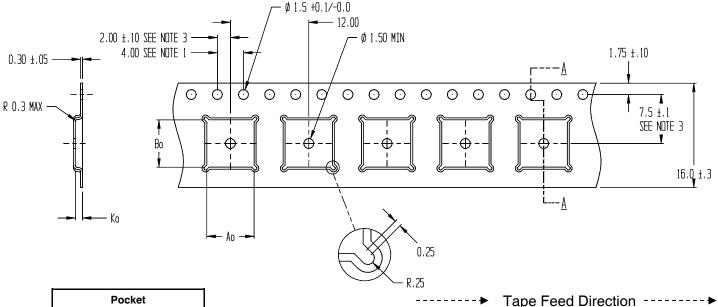
The phase detector is triggered by rising edges from the main Counter (f_p) and the reference counter (f_c). It has two outputs, namely PD_ \overline{U} , and PD \overline{D} . If the divided VCO leads the divided reference in phase or frequency (fp leads fc), PD D pulses "low". If the divided reference leads the divided VCO in phase or frequency (fr leads f_p), PD \overline{U} pulses "low". The width of either pulse is directly proportional to phase offset between the two input signals, fp and fc. The phase detector gain is 400 mV/radian.

PD_\overline{U} and PD_\overline{D} are designed to drive an active loop filter which controls the VCO tune voltage. PD Upulses result in an increase in VCO frequency and $PD_{\overline{D}}$ results in a decrease in VCO frequency.

A lock detect output, LD is also provided, via the pin Cext. Cext is the logical "NAND" of PD \overline{U} and PD_\overline{D} waveforms, which is driven through a series 2k ohm resistor. Connecting Cext to an external shunt capacitor provides integration. Cext also drives the input of an internal inverting comparator with an open drain output. Thus LD is an "AND" function of PD \overline{U} and PD \overline{D} . See Figure 4 for a functional block diagram of this circuit.

Figure 6. Package Drawing 48-lead 7x7 mm QFN


Figure 7. Top Marking Specifications

Line	Char	Code	Values	Description
1	1	•	Symbol	
1	7	Logo	Symbol	Peregrine logo
2	8	Logo	Symbol	Pin 1 designator Peregrine logo
3	8	PPPPPP	Alphanumeric	Part number
4	8	LLLLLL	Numeric	Lot number
5	8	YYWW	Numeric	Date code
6	8			Blank



Pocket		
Nominal		
Ao	7.25	
Во	7.25	
Ko	Ko 1.10	

- Notes: 1. 10 sprocket hole pitch cumulative tolerance ±0.2
 - 2. Camber in compliance with EIA 481
 - 3. Pocket position relative to sprocket hole measured as

true position of pocket, not pocket hole

Device Orientation in Tape

Table 10. Ordering Information

Order Code	Description	Package	Shipping Method
PE33241MLDA-F	PE33241G-48QFN 7x7mm-2000C	48-lead 7x7 mm QFN	Tray
EK33241-12	PE33241-48QFN 7x7mm-EK	Evaluation kit	1/Box

Sales Contact and Information

For sales and contact information please visit www.psemi.com.

Advance Information: The product is in a formative or design stage. The datasheet contains design target specifications for product development. Specifications and features may change in any manner without notice. <u>Preliminary Specification:</u> The datasheet contains preliminary data. Additional data may be added at a later date. Peregrine reserves the right to change specifications at any time without notice in order to supply the best possible product. Product Specification: The datasheet contains final data. In the event Peregrine decides to change the specifications, Peregrine will notify customers of the intended changes by issuing a CNF (Customer

The information in this datasheet is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user's own risk.

No patent rights or licenses to any circuits described in this datasheet are implied or granted to any third party. Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant, reregimes products are not resigned or interface for use in devices or systems interface for supplications in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

The Peregrine name, logo, UltraCMOS and UTSi are registered trademarks and HaRP, MultiSwitch and DuNE are trademarks of Peregrine Semiconductor Corp. Peregrine products are protected under one or more of the following U.S. Patents: http://patents.psemi.com.