Standard Products UT01VS33D Voltage Supervisor

Data Sheet July 28, 2014 www.aeroflex.com/voltsupv

A passion for performance.

FEATURES

- □ 3.15V to 3.6V Operating voltage range
- □ Power supply (V_{DD}) monitor set by the internal voltage reference at 3.08V
- Precision Input Voltage Monitor using an internal 0.6V voltage reference
- Watchdog Timer Circuit monitoring activity on WDI input
 Nominal timeout 1.6s
- □ RESET_OD output responding to the V_{DD} monitor and the manual reset input MR

- Nominal RESET_OD pulse width 200ms

- \Box RESET_OD level valid for V_{DD}>=1.2V
- □ Operating Temperature Range -55°C to +125°C
- □ Low Power, Typical 400uA
- □ Operational environment:
 - Total dose: 300 krad(Si)
 - SEL Immune: $\leq 110 \text{ MeV-cm}^2/\text{mg} @ 125^{\circ}\text{C}$
 - SET Immune: <80 MeV-cm²/mg
- Packaging options:
- 8-lead dual-in-line flatpack
- □ Standard Microelectronics Drawing 5962-11213
 - QML Q and V

INTRODUCTION

The UT01VS33D's function is to monitor vital supply and signal voltages in microprocessor systems. It provides for safe reset during power up, power down and brownout conditions by using an internal precision voltage reference.

The UT01VS33D monitors activity at an independent watchdog input by employing an internal timer and a watchdog output that goes low if the input is not toggled within 1.6s. It provides for precision voltage threshold detection on an independent voltage input which could be used for battery or supply-low monitoring of a supply voltage other than V_{DD} .

The UT01VS33D includes an active low manual reset with an open drain output.

APPLICATIONS

- □ Voltage Supervisor function for various systems including microprocessors, microcontrollers, DSPs and FPGAs
- □ Critical battery and power supply monitoring
- Replacement of older discrete solutions to improve reliability, accuracy and reduce complexity of the systems

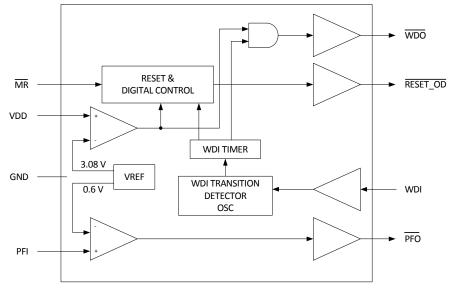


Figure 1. UT01VS33D Functional Block Diagram

PIN DESCRIPTIONS

Number	Pins	Туре	Description			
1	MR	Digital Input	Manual Reset Input with an internal pull-up. Active low. MR low forces the reset output RESET_OD low. Required minimum MR pulse width is 150ns. RESET_OD is held low for duration of the reset timer.			
2	VDD	Supply	Power supply . Operating voltage range is 3.15V to 3.6V. V_{DD} level is monitored internally by a dedicated comparator circuit, which employs an internal bandgap voltage reference nominally equal to 1.25V. Every time V_{DD} falls below the threshold voltage, nominally 3.08V, RESET_OD and WDO outputs are forced low. (See WDO and RESET_OD descriptions.) (Figure 4.)			
3	GND	Supply	Ground. This pin should be tied to ground and establishes the reference for voltage detection.			
4	PFI	Analog Input	Threshold detector input. Voltage on this input is fed directly to an internal comparator where it is compared to the voltage reference of 0.6V. It can be used for detection of low battery or power failure of voltage supplies other than V_{DD} . When voltage at PFI input drops below its threshold value of 0.6V, PFO output is forced low, otherwise, stays high.			
5	PFO	Digital Output	Threshold detector output. Active low. It responds directly to PFI input. If PFI voltage is below the bandgap reference voltage, PFO is low. If PFI is above the reference voltage, PFO output is high.			
6	WDI	Digital Input	Watchdog timer input pin. This pin is typically used to monitor microprocessor activity. It can assume three states: low, high and float. If WDI is floating or connected to a high impedance three state buffer, the watchdog timer is not active, and the corresponding watchdog output \overline{WDO} is high. Watchdog timer is also not active any time \overline{RESET}_{OD} is low. Providing that \overline{RESET}_{OD} is not asserted, any change of state at WDI that is longer than 100ns will start the timer, or restart it, if the timer is already running (Figure 3.). If there is no activity within the timeout period, nominally 1.6sec, the timer will stop running and \overline{WDO} output will go low (Figure 3).			
7	RESET_OD	Open Drain Digital Output	Reset output. Active low open drain output. This pin is pulled up with a resistor consistant with the sink and voltage current as specified in the electrical characteristics table. This output responds to both: V_{DD} monitoring circuits and the manual reset input \overline{MR} . On power up, $\overline{RESET_OD}$ is guaranteed to be logic low for all V_{DD} values from 1.2V up to the reset threshold, nominally 3.08V. Once this threshold is reached, an internal RESET_OD timer is activated. During the countdown $\overline{RESET_OD}$ output is kept low. It is raised high upon completion of countdown, typically after 200ms. If a brown out condition occurs during the reset timer countdown, the reset timer would be reset and another countdown would start after V_{DD} levels were restored above the reset threshold. On power down, when V_{DD} falls below the threshold voltage, $\overline{RESET_OD}$ goes low and is guaranteed to stay low until V_{DD} drops below 1.2V. If \overline{MR} is asserted low, $\overline{RESET_OD}$ is forced low and the reset timer is kept reset. When \overline{MR} is released high, the timer is activated and $\overline{RESET_OD}$ is kept low until completion of the reset timer is raised high.			

Number	Pins	Туре	Description
8	WDO	Digital Output	Watchdog output. Active low. This pin is usually connected to a non-maskable interrupt input of a microprocessor. On power up, WDO responds to V _{DD} monitoring
			circuitry. It stays low until the reset threshold, 3.08V nominally, is reached. At that point, WDO is raised high. The internal watchdog timer is activated after RESET_OD is released. If there is no activity on WDI input, WDO goes low after the watchdog timer times out, which is typically after 1.6sec. Any activity on WDI will force WDO output to go high and the watchdog timer will be activated. If WDI is floating or connected to a high impedance buffer output, the timer is kept in a reset state and WDO stays high. When VDD drops below 3.08V, WDO goes low regardless of whether the watchdog timer has timed out or not. RESET_OD goes low simultaneously which prevents an interrupt. If WDI input is left unconnected, WDO can be used as a low line output. Since a floating WDI disables the internal watchdog timer, WDO goes low when V _{DD} drops below 3.08V, thus, functioning as a low line output. (Figure 4.)

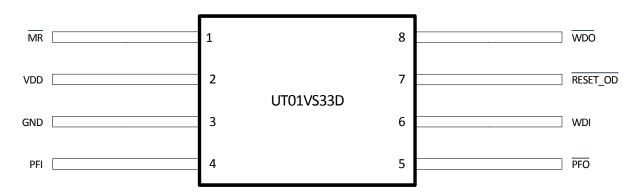


Figure 2. UT01VS33D Pin Configuration

OPERATIONAL ENVIRONMENT

PARAMETER	LIMIT	UNITS			
Total Ionizing Dose (TID)	300	krad(Si)			
Single Event Latchup Immune (SEL)	<u>≤</u> 110	MeV-cm ² /mg			
Single Event Transient Immune (SET)	<u>≤</u> 80	MeV-cm ² /mg			

ABSOLUTE MAXIMUM RATINGS 1

(Referenced to GND)

SYMBOL	PARAMETER	LIMITS	UNITS
V _{DD}	Voltage supply	7.2	V
T _J	Maximum junction temperature	175	°C
Т	Storage temperature	-65 to +150	°C
P _D	Power dissipation	2.5	W
V _{in}	Input voltages	-0.3V to (V _{DD} +0.3V)	V
T _{iead}	Lead Temperature (soldering, 10 seconds)	+300	°C
θ_{JC}	Thermal resistance, junction-to-case	15	°C/W
V _{ESD}	ESD _{HBM}	1000	V

Notes:

Stresses outside the listed absolute maximum ratings may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions beyond limits indicated in the operational sections of this specification is not recommended. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS	UNITS
V _{DD}	Positive supply voltage	3.15 to 3.6	V
T _C	Case temperature range	-55 to +125	°C
GND	Negative supply voltage	0.0	V

ELECTRICAL CHARACTERISTICS ^{1,2} (V_{DD} = 3.15V to 3.6V: -55°C \leq T_C \leq +125°C)

SYMBOL	PARAMETER	CONDITION	MIN	MAX	UNI
Power Supply					
I _{DD}	V _{DD} supply current	V _{DD} =3.6V		450	μΑ
Digital Inputs and	Outputs (MR, RESET_OD, WDI,	WDO, PFO)	1	1	1
V _{IL_WDI}	Digital input low	V _{DD} =3.15V		0.6	V
V _{IH_WDI}	Digital input high	V _{DD} =3.6V	0.7xV _{DD}		V
$V_{IL}\overline{MR}$	Manual reset input low	V _{DD} =3.15V		0.6	V
$V_{IH}\overline{MR}$	Manual reset input high	V _{DD} =3.6V	0.7xV _{DD}		v
V_{OL} _WDO	Digital output low	V _{DD} =3.15V, I _{SINK} = 500µA		0.3	V
V _{OL-RESET_OD}	RESET_OD digital output low	V _{DD} =3.15V, I _{SINK} =1.2mA		0.3	v
$V_{OL}\overline{PFO}$	\overline{PFO} digital output low	V _{DD} =3.15V, I _{SINK} =1.2mA		0.3	
V _{OH} ³	Digital output high	V _{DD} =3.15V, I _{SOURCE} =500μA	0.8xV _{DD}		V
Timing and Thres	hold Voltages				
t _{RST-ASSRT} 4	V _{DD} falling reset assertion	V _{DD} < 3.0V	0.7	1.8	μs
t _{RS}	Reset pulse width	V _{DD} =3.15V	140	280	ms
t _{WD}	Watchdog time-out period	V _{DD} =3.6V	1.0	2.25	s
t _{WP}	Watchdog input pulse width	V _{DD} =3.15V	100		ns
V _{RT}	Reset threshold voltage	V _{DD} =3.15V	3.0	3.15	V
V _{RTHYS}	Reset threshold voltage hysteresis		20		mV
t _{MR}	Manual reset (\overline{MR}) input pulse width	V _{DD} =3.15V	150		ns
t _{MD}	Manual reset (\overline{MR}) to reset out delay	V _{DD} =3.15V		100	ns
Analog Input PFI		I		I	1
I _{PFI} ⁴	Threshold detector input (PFI) current	V _{DD} =3.6V	-20	-20	nA
V _{PFI}	Threshold detector input (PFI) threshold voltage	V _{DD} =3.3V	0.576	0.624	v
I _{MR}	Manual reset pull-up current	V _{DD} =3.6V, <u>MR</u> =0.0V	-250	-25	μA
t _{RPFI}	PFI rising threshold crossing to PFO delay			20	μs
t _{FPFI}	PFI falling threshold crossing to PFO delay			40	μs
I _{LEAK}	Reset output leakage current	$V_{OUT} = V_{DD}$		1	μΑ
I _{WDI}	Watchdog input current	WDI pin = V_{DD} = 3.6V WDI pin = 0V, V_{DD} = 3.6V	-20	20	μA μA

Notes:

- 1. For devices procured with a total ionizing dose tolerance guarantee, the post-irradiation performance at 25°C per MIL-STD-883 Method 1019, Condition A, up to the maximum TID level procured (see ordering information).
- 2. Unless otherwise specified, $V_{DD} = 3.15V$ to 3.6V, $-55^{\circ}C \le T_C \le +125^{\circ}C$. RESET_OD is the only parameter operable within 1.2V and the minimum recommended operating supply voltage.
- 3. V_{OH} characterization applies to WDO, and PFO. V_{OH} for RESET_OD is within 10mV of V_{DD} . 4. Guaranteed by design, not tested.

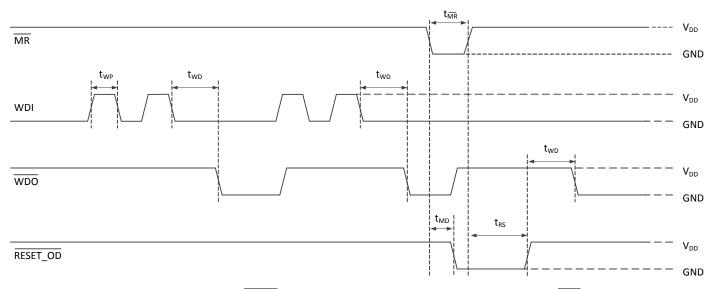
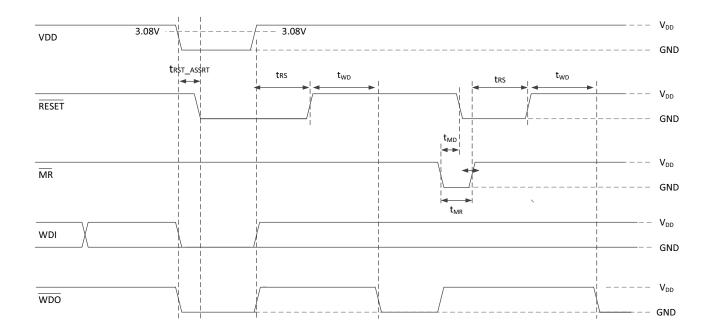
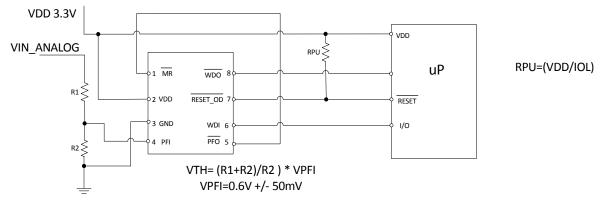
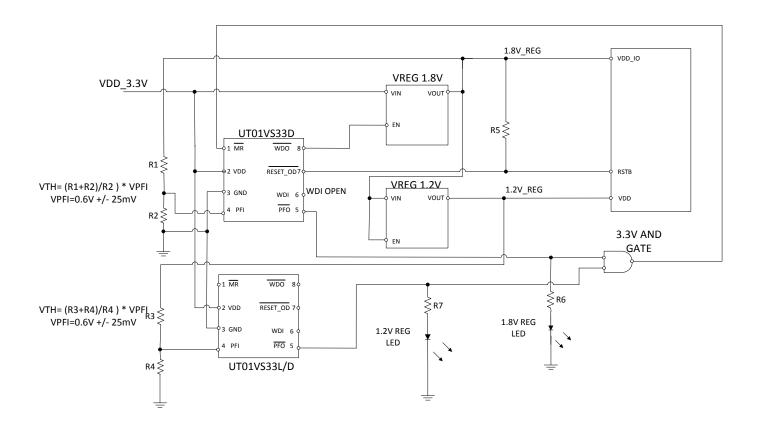




Figure 3. WDI and WDO timing waveforms. Reset externally triggered by MR



Shown in Figure 5 is an application for monitoring the under voltage of a power supply connected to a microprocessor or ASIC. If the analog voltage monitored falls below the desired threshold value, the \overrightarrow{PFO} output connected to the \overrightarrow{MR} input will transition low causing the $\overrightarrow{RESET_OD}$ output to be asserted low indicating an under voltage condition.

Figure 6. Under Voltage Monitoring and sequencing of 1.8V and 1.2V Power Supplies

Shown in Figure 6 are two Voltage Supervisors configured to monitor both the 1.8V and 1.2V power supplies of a system. The 1.8V regulated supply is monitored by the PFI pin of the top Voltage Supervisor, while the 1.2V regulated supply is monitored by the PFI pin of the bottom Voltage Supervisor. The cross coupled connection of \overrightarrow{PFO} to \overrightarrow{MR} assures that \overrightarrow{RESET} _OD will be asserted when a brown out occurs on either the 1.8V or 1.2V regulated supplies.

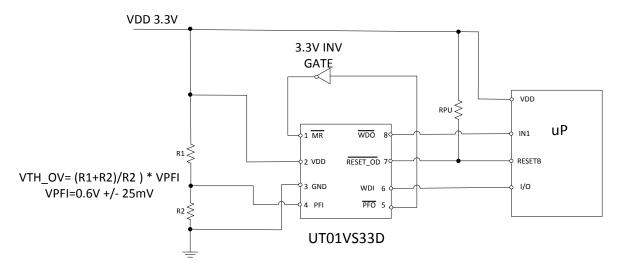


Figure 7. UT01VS33D Over Voltage Power Supply Monitoring and Reset

Shown in Figure 7 is an application to monitor and detect power supply over voltage through the use of the PFI pin. When the voltage at the PFI input, (VTH) exceeds VREF, (0.6V) the \overline{PFO} output transitions from low to high causing the \overline{MR} output to transition from high to low. This asserts a $\overline{RESET_{OD}}$ indicating the voltage being monitored has exceeded the over voltage monitor limit.

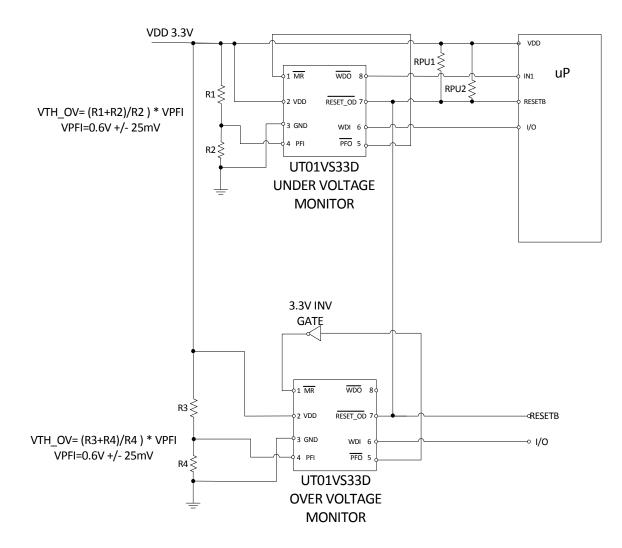


Figure 8. UT01VS33D Under Voltage and Over Voltage Power Supply Monitoring and Reset

Shown in Figure 8 is an application using two UT01VS33D Voltage Supervisors to monitor both under voltage and over voltage of a power supply. In this application the top Voltage Supervisor monitors the under-voltage of a 3.3V power supply while the bottom Voltage Supervisor monitors the over voltage of the same 3.3V power supply.

The 3.3V supply is monitored through the PFI input of both Voltage Supervisors. Resistor values for both under voltage and over voltage monitoring can be set to accommodate a range of power supply voltages.

During normal operation where VDD is within the allowed range (VDD_UND < VDD < VDD_OV), $\overline{\text{RESET}_{OD}}$ of both Voltage Supervisors will be at logic high level. The Table 1 below shows the truth table for functional, under voltage detection and over voltage detection.

VDD	PFO_UND	PFO_OV	RESET_OD_UND	RESET_OD_OV	RESET_OD	uP or ASIC Mode
Normal Operation	HIGH	LOW	HIGH	HIGH	HIGH	Normal
VDD < VDD_UND	LOW	LOW	LOW	HIGH	LOW	Reset Asserted
VDD > VDD_OV	HIGH	HIGH	HIGH	LOW	LOW	Reset Asserted

 Table 1. Under Voltage Over Voltage Truth Table

Notes: -UND specifies under voltage case. -OV specifies overvoltage case

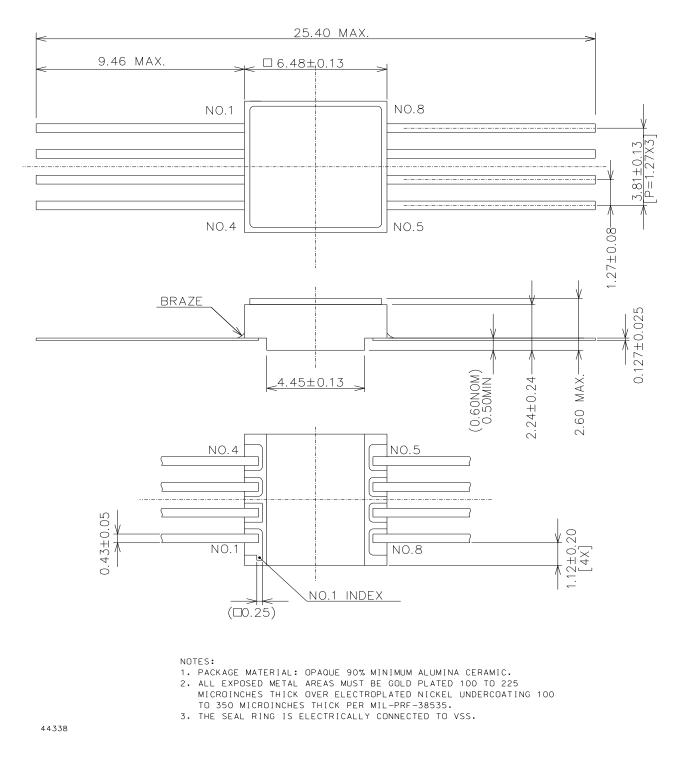
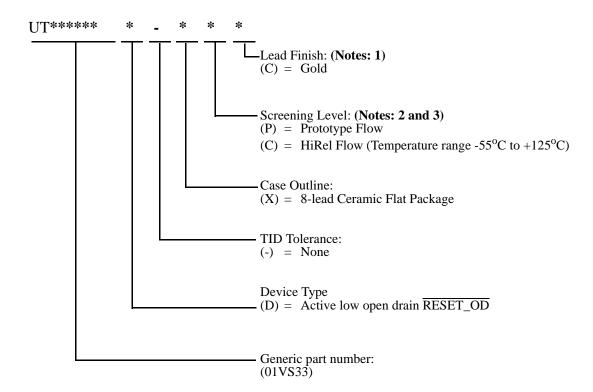
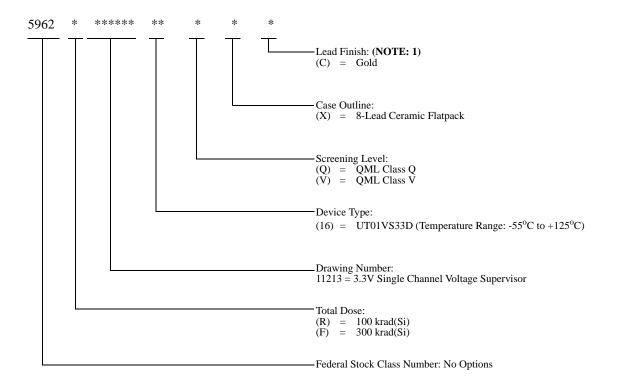



Figure 9. 8-pin Dual-In-Line Flatpack

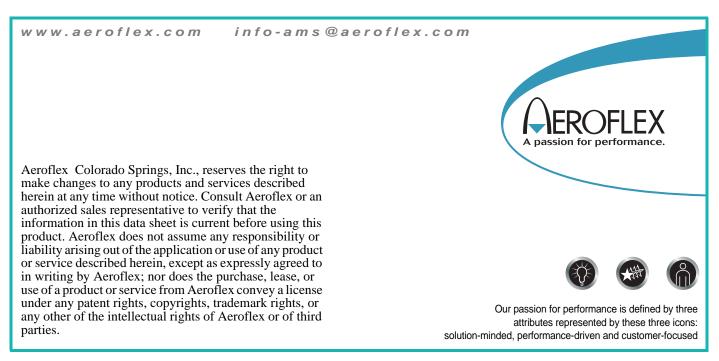
ORDERING INFORMATION


UT01VS33D VOLTAGE SUPERVISOR

Notes: 1. Lead finish is "C" (Gold) only.

2. Prototype flow per Aeroflex Manufacturing Flows Document. Devices are tested at 25°C only. Lead finish is Gold "C" only. Radiation neither tested nor HiRel Flow per Aeroflex Manufacturing Flows Document. Radiation neither tested nor guaranteed.

UT01VS33D VOLTAGE SUPERVISOR



Notes: 1. Lead finish is "C" (gold) only.

Aeroflex Colorado Springs - Datasheet Definition

Advanced Datasheet - Product In Development Preliminary Datasheet - Shipping Prototype Datasheet - Shipping QML & Reduced Hi-Rel

This product is controlled for export under the International Traffic in Arms Regulations (ITAR). A license from the U.S. Government is required prior to the export of this product from the United States.

