Monolithic Linear IC

LA73026AV
 Double Scart Interface IC

Overview

This LA73026AV is a double scart (PAL/SECAM 21pin) interface IC.

Functions

- AV switches •6dB AMP + driver
- Changeable Gain AMP
- FSS output

Specifications

Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	
Maximum supply voltage	$\mathrm{V}_{\mathrm{CC}} \mathrm{V}$ max	$24,29 \mathrm{pin}$	6.0	V
	$\mathrm{~V}_{\mathrm{CC}} \mathrm{Amax}$	14 pin	V	
Allowable power dissipation	$\mathrm{Pd} \max$	$\mathrm{Ta} \leq 80^{\circ} \mathrm{C}^{*}$	13.0	V
Operating temperature	Topr		760	mW
Storage temperature	Tstg		-20 to +80	${ }^{\circ} \mathrm{C}$

* When mounted on a $114.3 \times 76.1 \times 1.6 \mathrm{~mm}^{3}$ glass epoxy board.

Operating Conditions at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	
Recommending operation voltage	$\mathrm{V}_{\mathrm{CC}} \mathrm{V}$	$24,29 \mathrm{pin}$	5.0	V
	$\mathrm{~V}_{\mathrm{CC}} \mathrm{A}$	14 pin	V	
Operating voltage range	$\mathrm{V}_{\mathrm{CC}} \mathrm{V}$ op	$24,29 \mathrm{pin}$	12.0	V
	$\mathrm{~V}_{\mathrm{CC}} \mathrm{A}$ op	14 pin	4.5 to 5.5	V

■ Any and all SANYO Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO Semiconductor representative nearest you before usingany SANYO Semiconductor products described or contained herein in such applications.

■ SANYO Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor products described or contained herein.

LA73026AV

Electrical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}= \pm 5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCA}}=12.0 \mathrm{~V}$

Parameter	Symbol	Conditions		Ratings			Unit
				min	typ	max	
Current dissipation 1	${ }^{\text {I CcV1 }}$	Pin 24 Flow in current when non-signal		16.0	24.0	32.0	mA
Current dissipation 2	$\mathrm{I}_{\mathrm{CCV}}$	Pin 29 Flow in current when non-signal		12.0	18.0	24.0	mA
Current dissipation 3	ICCA	Pin 14 Flow in current when non-signal		13.0	21.0	29.0	mA
FSS output H voltage	$\mathrm{V}_{\mathrm{H}} \mathrm{FSS}$	Serial control select FSS OUT H $\mathrm{V}_{\mathrm{CC}} \mathrm{A}<13.0 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}} \mathrm{A}-1.0$	$\mathrm{V}_{\mathrm{CC}} \mathrm{A}-0.5$	$\mathrm{V}_{\mathrm{CC}}{ }^{\text {A }}$	V
FSS output M voltage	$\mathrm{V}_{\mathrm{M}} \mathrm{FSS}$	Serial control select FSS OUT M $\mathrm{V}_{\mathrm{CC}} \mathrm{A}<13.0 \mathrm{~V}$		5.0	6.0	7.0	V
FSS output L voltage	$\mathrm{V}_{\mathrm{L}} \mathrm{FSS}$	Serial control select FSS OUT L V $\mathrm{CCA} \mathrm{A}<13.0 \mathrm{~V}$		0	0.1	0.5	V
FSS output cut off current	ICUTOFF	Flow out current when Pin 20 connecting to GND.	M	2.0	3.61	10.0	mA
			H	2.0	3.78	10.0	mA
External control terminal H voltage	$\mathrm{V}_{\text {EXTH }}$	$\mathrm{RL}=1.8 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CC}} \mathrm{RL}<13 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}} \mathrm{RL}^{\text {-0.2 }}$	$\mathrm{V}_{\mathrm{CC}} \mathrm{RL}$		V
External control terminal	$\mathrm{V}_{\text {EXTL }}$	$\mathrm{RL}=1.8 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CC}} \mathrm{RL}=5 \mathrm{~V}$		0	0.7	1.0	V
L voltage		$\mathrm{RL}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CC}} \mathrm{RL}=5 \mathrm{~V}$		0	0.15	1.0	V
External control terminal drive current	IDR	$\mathrm{RL}=1.8 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CC}} \mathrm{RL}=5 \mathrm{~V}$		2.2	2.4	2.78	mA
		$\mathrm{RL}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CC}} \mathrm{RL}=5 \mathrm{~V}$		400	485	500	$\mu \mathrm{A}$
Power Save control H	VPSAVECTLH	Power Save H, control voltage of Pin 8.		3.0		$\mathrm{V}_{\mathrm{CC}} \mathrm{V}$	V
Power Save control L	VPSAVECTLL	Power Save L, control voltage of Pin 8.		0		1.0	V
External mute control H	$\mathrm{V}_{\text {MUTECTLH }}$	External mute H, control voltage of Pin 9.		3.0		$\mathrm{V}_{\mathrm{CC}} \mathrm{V}$	V
External mute control L	$\mathrm{V}_{\text {MUTECTLL }}$	External mute L, control voltage of Pin 9.		0		1.0	V
Video switches part							
Voltage gain V1	$\mathrm{VG}_{1} \mathrm{~V}$	25, 26 pin output, 100% white		5.6	6.1	6.6	dB
Voltage gain V2	$V G_{2 V}$	5 pin output G2 D6-L, 100\% white		-0.4	0.1	0.6	dB
Voltage gain V3	$\mathrm{VG}_{3 \mathrm{~V}}$	5 pin output G2 D6-H, 100\% white		5.6	6.1	6.6	dB
Frequency characteristics	VF	$\mathrm{f}=100 \mathrm{kHz} / 7 \mathrm{MHz}$		-0.5	-0.0	0.5	dB
DG differential gain	DG	$\mathrm{V}_{\text {IN }}=1 \mathrm{Vp}-\mathrm{p}$		-1.0	0.0	1.0	\%
DP differential phase	DP	$\mathrm{V}_{\mathrm{IN}}=1 \mathrm{Vp}-\mathrm{p}$		-1.5	0.0	1.5	deg
Output voltage	$\mathrm{V}_{\text {OUT }}$	Pin 25, 26 DC voltage when non-signal.			1.15	2.0	V
Audio switches part							
Voltage gain 1A	$\mathrm{V}_{\mathrm{G} 1 \mathrm{~A}}$	Serial control select 0dB.		-0.3	0.2	0.7	dB
Voltage gain 2A	$\mathrm{V}_{\mathrm{G} 2 \mathrm{~A}}$	Serial control select 2dB.		1.7	2.2	2.7	dB
Voltage gain 3A	$V_{G 3 A}$	Serial control select 4dB.		2.7	4.2	4.7	dB
Voltage gain 4A	$\mathrm{V}_{\mathrm{G} 4 \mathrm{~A}}$	Serial control select 6dB.		5.7	6.2	6.7	dB
Voltage gain 5A	$\mathrm{V}_{\mathrm{G} 5 \mathrm{~A}}$	Serial control select 12dB.		11.7	12.2	12.7	dB
Maximum output level	$\mathrm{V}_{\mathrm{O}} \mathrm{MAX}$	Output level at the time of $f=1 \mathrm{kHz}, \mathrm{THD}=2 \%$		2	3.0		Vrms
Total harmonic distortion	THD	$\mathrm{V}_{\text {OUT }}=2 \mathrm{Vrms}, \mathrm{f}=1 \mathrm{kHz}$, AMP 0dB			0.007	0.015	\%
Output noise voltage	$\mathrm{V}_{\text {ONOISE }}$	$\mathrm{Rg}=1 \mathrm{k} \Omega$, JIS-A FILTER			-100	-90	dBm
Cross talk between channel	$\mathrm{V}_{\text {CTKA }}$	$\mathrm{V}_{\text {IN }}=1 \mathrm{Vrms}, \mathrm{f}=1 \mathrm{kHz}$			-90	-75	dB
Mute attenuation	$\mathrm{V}_{\text {MUTEA }}$	$\mathrm{V}_{\mathrm{IN}}=1 \mathrm{Vrms}, \mathrm{f}=1 \mathrm{kHz}$			-90	-75	dB
Input impedance	$\mathrm{Z}_{\text {IN }}$			40	50	60	$\mathrm{k} \Omega$
Output off set voltage	$\mathrm{V}_{\text {OFSET }}$	Off set voltage at the time of changeover SW.		-20	0	20	mV

${ }^{*} V_{C C} R L$:see Test Circuit.
Design guarantee Items

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Mute attenuation	$\mathrm{V}_{\text {MUTEV }}$	$\mathrm{V}_{\text {IN }}=1 \mathrm{Vp}-\mathrm{p}, \mathrm{f}=4.43 \mathrm{MHz}$		-60	-50	dB
Cross-talk between channel	$\mathrm{V}_{\text {CTKV }}$	$V_{I N}=1 V p-p, f=4.43 M H z$ Driver output terminated with 75Ω.		-60	-50	dB

Package Dimensions

unit : mm (typ)
3277

Block Diagram

Pin Function

Pin No.	Pin name	Function	DC voltage	Equivalent circuit
$\begin{gathered} 1 \\ 2 \\ 10 \\ 11 \\ 15 \\ 16 \\ 16 \\ 33 \\ 34 \\ 36 \\ 37 \end{gathered}$	$A_{I N} 1 R$ $A_{I N}{ }^{1 L}$ $\mathrm{A}_{\mathrm{IN}} 2 \mathrm{R}$ $\mathrm{A}_{\mathrm{IN}} 2 \mathrm{~L}$ $\mathrm{A}_{\mathrm{IN}} 3 \mathrm{R}$ $\mathrm{A}_{\text {IN }}{ }^{3 L}$ $A_{\text {IN }} 4 \mathrm{~L}$ $\mathrm{A}_{\mathrm{IN}} 4 \mathrm{R}$ $A_{I N} 5 \mathrm{~L}$ $A_{I N} 5 R$	Audio input terminal.	5.58 V	
$\begin{gathered} 3 \\ 4 \\ 19 \\ 35 \end{gathered}$	EXTCTL1 EXTCTL2 EXTCTL3 EXTCTL4	General purpose output. Open collector.	$\begin{gathered} 2.5 \mathrm{~mA}, \mathrm{ON} \\ \rightarrow 0.75 \mathrm{~V} \\ \\ \quad \text { OFF } \\ \rightarrow \text { OPEN } \end{gathered}$	
5	VOUT	Video output terminal. Push-pull output Low-impedance.	1.10 V	
		Output Pin DC Signal wave form (AmpGain OdB)		
$\begin{gathered} \hline 6 \\ 17 \\ 27 \\ 32 \\ 38 \end{gathered}$	GND GND GND GND GND	(EXT-75 Ω Driver) (DEC-75 Ω Driver)	OV	

LA73026AV
Continued from preceding page.

Pin No.	Pin name	Function	DC voltage	Equivalent circuit
$\begin{gathered} 7 \\ 13 \\ 18 \\ 23 \\ 28 \end{gathered}$	$\begin{aligned} & \mathrm{V}_{I N^{1}} \\ & \mathrm{~V}_{I N^{2}} \\ & \mathrm{~V}_{I N^{3}} \\ & \mathrm{~V}_{I N^{4}} \\ & \mathrm{~V}_{I N} \end{aligned}$	Video input terminal. Sync-tip clamp input Hi-impedance.	1.8 V	
		Input Signal wave form		
8	PWRSAV	Power save mode select pin. OPEN: L	0.2V	
9	AUMUTE	Control terminal for audio mute. OPEN: LOW	0.05 V	
12	REFFIL	Terminal for Ref_DC ripple removing.	4.94 V	
14	$\mathrm{V}_{\mathrm{CC}}{ }^{12}$	V_{CC} for audio.		

Continued from preceding page.				
Pin No.	Pin name	Function	DC voltage	Equivalent circuit
$\begin{aligned} & 30 \\ & 31 \\ & 42 \\ & 43 \end{aligned}$	$\mathrm{A}_{\mathrm{OUT}}{ }^{2 \mathrm{~L}}$ AOUT2R AOUT3L AOUT3R	Audio output terminal Push-pull output Low-Impedance	4.91 V	
$\begin{aligned} & 39 \\ & 40 \end{aligned}$	AOUT1L AOUT ${ }^{1 R}$	Audio output terminal Push-pull output Low-Impedance	4.91 V	
$\begin{aligned} & 41 \\ & 44 \end{aligned}$	PWRMUTE1 PWRMUTE2	Output terminal of audio muting	OV	Always $\mathrm{V}_{\mathrm{CC}}(5 \mathrm{~V})$

Power Save

LA73024AV has two supplies 5V for Video part and 12V for audio part and FSS output. LA73024AV separates perfectly 5 V system from 12 V system, so it can be individually movement. For example when in the stand-by mode, if you open 14 pins but 5 V supplies 24 and 29 pins, Video part and serial control part work normally. In this case audio part and FSS output don't work normally. And when you pull up 8pin and open 24 pin, IC chooses automatically video sw3-B.Consequently Ext input and Decoder output only move, you can save more power dissipation .

Audio Mute

LA73024AV builds in two mute transistors for reduce audio pop-noise when occur at power on and off. You can control both on serial control and on external parallel control for audio mute.

Serial Control Specification

Slave address

Slave receiver

Data format

Sub address and data byte table

Sub address Hexadecimal	Data byte (Underline is initial setting.)							
	$\begin{gathered} \hline \text { MSB } \\ \text { D8 } \end{gathered}$	D7	D6	D5	D4	D3	D2	$\begin{gathered} \text { LSB } \\ \text { D1 } \end{gathered}$
$\begin{gathered} 01 \\ (0000 \text { 0001) } \end{gathered}$	$\begin{aligned} & \text { SW1 } \\ & \text { 00: } \mathrm{C} \\ & \underline{01: B} \\ & \hline 10: A \\ & \text { 11: } A \end{aligned}$		$\begin{aligned} & \text { SW2 } \\ & \text { 00: D } \\ & \text { 01: C } \\ & \text { 10: B } \\ & \text { 11: } \end{aligned}$		$\begin{aligned} & \text { SW3 } \\ & \text { 00: } C \\ & \frac{01: B}{10: A} \\ & \text { 11: * } \end{aligned}$		FSSOUT 00: HIGH 01: HIGH 10: MID 11: LOW	
$\begin{gathered} 02 \\ (0000 \text { 0010) } \end{gathered}$	$\begin{aligned} & \text { EXT } \\ & \text { CTL1 } \\ & \frac{0: \mathrm{L}}{1: \mathrm{H}} \end{aligned}$	$\begin{aligned} & \text { EXT } \\ & \text { CTL2 } \\ & \frac{0: \mathrm{L}}{1: \mathrm{H}} \end{aligned}$	AMP GAIN VPS OUT $\frac{0: 0 \mathrm{~dB}}{1: 6 \mathrm{~dB}}$		DIO AMP GA (DEC OUT) 000: 0dB 001: 2dB 010: 4dB 011: 6dB 100:12dB			AIN2
$\begin{gathered} 03 \\ (00000011) \end{gathered}$	MUTE1 VSW1 OUT 0 : through 1: MUTE	MUTE2 VSW2 OUT 0 : through 1: MUTE	MUTE3 VSW3 OUT 0: through 1: MUTE	MUTE4 ASW1 OUT 0: through 1: MUTE	MUTE5 ASW2 OUT 0 : through 1: MUTE	MUTE6 ASW3 OUT 0: through 1: MUTE	$\begin{aligned} & \text { EXT } \\ & \text { CTL3 } \\ & \frac{0: \mathrm{L}}{1: \mathrm{H}} \end{aligned}$	$\begin{aligned} & \text { EXT } \\ & \text { CTL4 } \\ & \frac{0: L}{1: H} \end{aligned}$

Data transfer

I^{2} C-BUS control system is adopted in SW IC and SW IC is controlled by SCL (Serial Clock) and SDA (Serial Data) At first, please set up the START condition ${ }^{* 1}$ by these two terminals (SCL and SDA). And next, please input the 8bits data which should be synchronized with SCL into SDA terminal. Still more, please give priority to high rank bit at data transfer order (MSB \rightarrow LSB). The 9th bit is called as ACK (Acknowledge), SW IC sends [0] to the SDA terminal during SCL [1] period. So, please open the port of micro-processor during this period. LA73026AV adopt auto-increment, so you input only first sub-address data (called as Group) and you can transfer data in order. As thus the Data transfer Stop condition ${ }^{* 2}$ is finished.
${ }^{* 1}$ SDA rise up during SCI is [1]
${ }^{* 2}$ SDA fall down during SCL is [1]

LA73026AV

Transfer data format

The transfer data is composed by START condition, Slave address data ${ }^{* 3}$, and STOP condition.
After setting up the START condition, please transfer the Slave Address (regulated as " 10010100 " in SW IC). Group and next control data (Please see "Data structure")
Slave Address is composed by 7 bits , and this bit 8 th $\mathrm{bit}^{* 4}$ should be set as [0].
But SW IC is not equipped with such a data out function, please keep this bit as [0].
The both of Group data and control data are composed by 8 bits, and the one control action is defined with combination of these two data. And if you want to control 2 or more groups at the same mode, you can realize it by sending some control data together.
The data makes meaning with all bits, so you cannot stop the sending until all data transfer is over. But LA73026AV adopt auto-increment, for example you can stop to transfer STOP condition after group 2 data. If you want to stop transfer action, please transfer the STOP condition without fail.
${ }^{* 3}$ There are 3 control groups.
${ }^{*} 4$ This 8th bit called as R/W bit, and this bit shows the data transmission direction. [0] means send mode (accept mode with SW IC) and [1] means accept mode (send mode with SW IC) fundamentally.

Data structure

START condition	Slave Address	R/W	ACK	Group	ACK	Control data	ACK	\cdots	STOP condition

Initialize

SW IC is initialized as the following mode for circuit protection. Please see "Sub address and data byte table" on page 9.
Characteristics of the SDA and SCL $1 / 0$ stages for SW IC

Parameter	Symbol	Min	Max	Unit
LOW level input voltage	V_{IL}	0	1.0	V
HIGH level input voltage	V_{IH}	2.0	5.0	V
LOW level output current	${ }^{\text {I OL }}$		3.0	mA
SCL clock frequency	${ }^{\text {f SCL }}$		100	kHz
Set-up time for a repeated START condition	tSU: STA	4.7		$\mu \mathrm{S}$
Hold time START condition. After this period, the first clock pulse is generated.	thD: STA	4.0		$\mu \mathrm{s}$
LOW period of the SCL clock	tLOW	4.7		$\mu \mathrm{S}$
Rise time of both SDA and SDL signals	$t^{\text {R }}$	0	1.0	$\mu \mathrm{S}$
HIGH period of the SCL clock	thigh	4.0		$\mu \mathrm{S}$
Fall time of both SDA and SDL signals	${ }^{\text {t }}$ F	0	1.0	$\mu \mathrm{S}$
Data hold time	thD: DAT	0		$\mu \mathrm{S}$
Data set-up time	tSU: DAT	250		ns
Set-up time for STOP condition	tSU: STO	4.0		$\mu \mathrm{S}$
BUS free time between a STOP and START condition	tBUF	4.7		$\mu \mathrm{S}$

Definition of timing

Test Circuit

Sample Application Circuit

- Specifications of any and all SANYO Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
■ SANYO Semiconductor Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
■ In the event that any or all SANYO Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Semiconductor Co., Ltd.
■ Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of June, 2006. Specifications and information herein are subject to change without notice.

