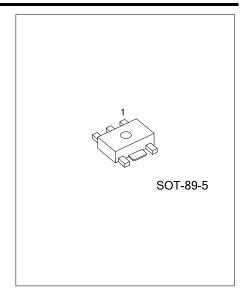


UNISONIC TECHNOLOGIES CO., LTD

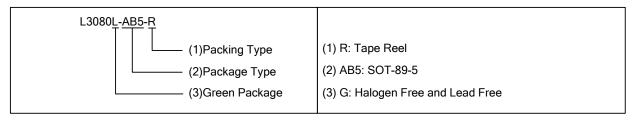

L3080 Preliminary CMOS IC

30V/800mA INTEGRATED POWER LED DRIVER

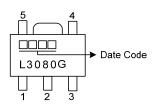
DESCRIPTION

The UTC **L3080** is a continuous conduction mode inductive step-down converter, designed for driving single or multiple series connected LEDs. Using a few external components.

The UTC **L3080** has a build-in power switch, based on different input voltage, The UTC **L3080** can drive several 1W or 3W LEDs. The device has the function of thermal shutdown protection and LED short-circuit/open-circuit protection.

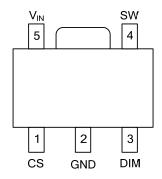


■ FEATURES


- * Up to 800mA output current
- * High efficiency (up to 97%)
- * Wide input voltage range: 5V~30V
- * Typical ±5% output current accuracy
- * Single DIM pin on/off and brightness control using DC voltage or PWM signal
- * LED open-circuit protection
- * LED short-circuit protection
- * Internal thermal shutdown protection.
- * Adjustable Constant LED Current

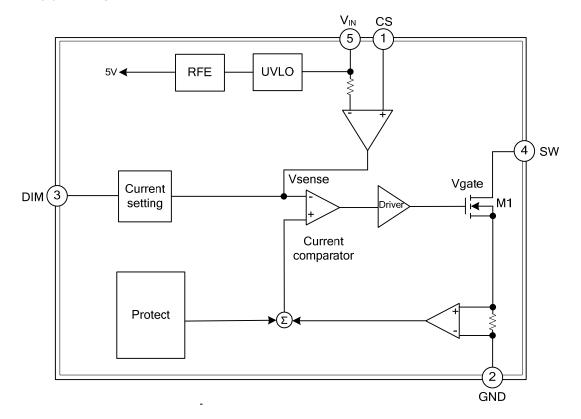
■ ORDERING INFORMATION

Ordering Number	Package	Packing
L4120G-AB5-R	SOT-89-5	Tape Reel



■ MARKING

<u>www.unisonic.com.tw</u> 1 of 4


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	CS	Current sense input
2	GND	Signal and power ground
3	DIM	Enable switch, analog and PWM dimming input.
4	SW	Switch output.
5	V_{IN}	Input supply pin.

■ BLOCK DIAGRAM

■ **ABSOLUTE MAXIMUM RATING** (T_A=25°C, unless specified otherwise)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V_{IN}	40	V
Drain Voltage of the Internal Power Switch	SW	40	V
Current Sense Input (Respect to V _{IN})	CS	-6.0	٧
Logic Level Dimming Input	DIM	-0.3 ~ 6	V
Switch Output Current	I _{SW}	1	Α
Power Dissipation	P_{D}	0.8	W
Operation Junction Temperature Range	TJ	-40 ~ +150	°C
Storage Temperature	T _{STG}	-55 ~ + 150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

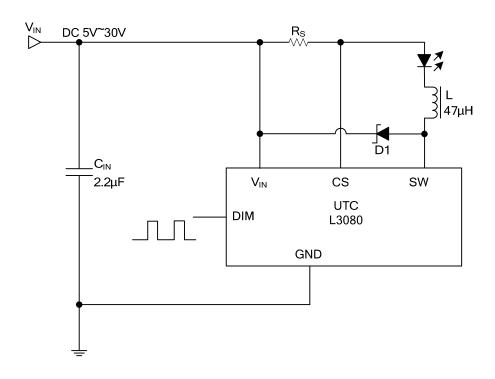
Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER	SYMBOL RATINGS		UNIT	
Junction to Ambient	θ_{JA}	160	°C/W	

■ ELECTRICAL CHARACTERISTICS (Note 1, 2)

(The following specifications apply for V_{IN} =12V, T_A =25°C, unless specified otherwise.)


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
Input Voltage	V_{IN}		5		30	V	
Under Voltage Lock Out	V_{UVLO}	V _{IN} Falling		4.7		V	
UVLO Hysteresis	V _{UVLO, HYS}	V _{IN} Rising		100		mV	
CURRENT SENSE							
Mean Current Sense Threshold Voltage	V_{CS}	V _{IN} -V _{CS}		100		mV	
Sense Threshold Hysteresis	V _{CS_HYS}			±15		%	
OPERATING FREQUENCY							
Maximum Operation Frequency	F _{SW}				1	MHz	
OPERATING CURRENT							
Quiescent Supply Current with Output Off	I _{OFF}	V _{DIM} <0.3V		60		μΑ	
DIM INPUT							
Internal Supply Voltage	V_{DIM}	DIM Floating		5		V	
DIM Input Voltage High	$V_{\text{DIM_H}}$			2.5		V	
DIM Input Voltage Low	V_{DIM_L}			0.1		V	
DIM Pull Up Resistor to Internal Supply Voltage	R _{DIM}			150		ΚΩ	
DIM BRIGHTNESS DIMMER							
DC Brightness Control Range	V _{DIM_DC}		0.5		2.5	V	
Duty Cycle Range of Low Frequency Dimming	D _{PWM_LF}			3000:1			
Duty Cycle Range of High Frequency Dimming	D _{PWM_HF}			10:1			
OUTPUT POWER SWITCH							
SW On Resistance	Rsw			0.6		Ω	
Continuous SW Current	I _{SWmean}				8.0	Α	
SW Leakage Current	I _{LEAK}			0.5	5	μΑ	
THERMAL SHUTDOWN							
Thermal Shutdown Threshold	T_{SD}			150		°C	
Thermal Shutdown hysteresis	T _{SD-hys}			20		°C	

Notes: 1. Typical parameters are measured at 25°C and represent the parametric norm.

^{2.} Human body model, 100pF capacitor discharged through a 1.5k $\!\Omega$ resistor.

^{2.} Datasheet min/max specification limits are guaranteed by design, test, or statistical analysis.

TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.