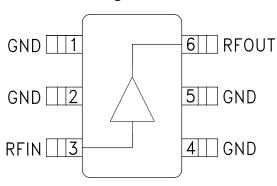


v04 0814


InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 8 GHz

Typical Applications

The HMC311SC70(E) is ideal for:

- Cellular / PCS / 3G
- WiBro / WiMAX / 4G
- Fixed Wireless & WLAN
- CATV & Cable Modem
- Microwave Radio & Test Equipment

Functional Diagram

Features

P1dB Output Power: +15 dBm

Output IP3: +30 dBm

Gain: 15 dB

Cascadable, 50 Ohm I/O's

Single Supply: +5V

Industry Standard SC70 Package

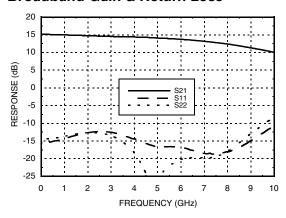
General Description

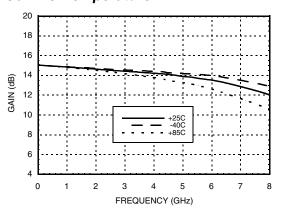
The HMC311SC70(E) is a GaAs InGaP Heterojunction Bipolar Transistor (HBT) Gain Block MMIC SMT DC to 8 GHz amplifier. Packaged in an industry standard SC70, the amplifier can be used as either a cascadable 50 Ohm gain stage or to drive the LO port of HMC mixers with up to +15 dBm output power. The HMC311SC70(E) offers 15 dB of gain and an output IP3 of +30 dBm while requiring only 54 mA from a +5V supply. The Darlington topology results in reduced sensitivity to normal process variations, and yields excellent gain stability over temperature while requiring a minimal number of external bias components.

Electrical Specifications, Vs=5V, Rbias=22 Ohm, $T_A=+25^{\circ}$ C

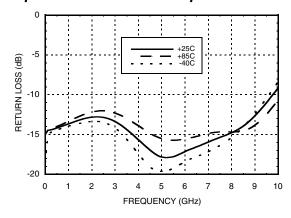
Parameter		Min.	Тур.	Max.	Units
Gain	DC - 1.0 GHz 1.0 - 4.0 GHz 4.0 - 6.0 GHz 6.0 - 8.0 GHz	14.0 13.0 12.5 11.0	15.0 15.0 14.5 13.0		dB dB dB dB
Gain Variation Over Temperature	DC - 1.0 GHz 1.0 - 4.0 GHz 4.0 - 6.0 GHz 6.0 - 8.0 GHz		0.004 0.007 0.012 0.018	0.007 0.012 0.016 0.022	dB/ °C dB/ °C dB/ °C
Return Loss Input / Output	DC - 8.0 GHz		15		dB
Reverse Isolation	DC - 8.0 GHz		18		dB
Output Power for 1 dB Compression (P1dB)	DC - 2.0 GHz 2.0 - 4.0 GHz 4.0 - 6.0 GHz 6.0 - 8.0 GHz	13.5 12.0 10.0 8.0	15.5 15.0 13.0 11.0		dBm dBm dBm dBm
Output Third Order Intercept (IP3)	DC - 2.0 GHz 2.0 - 6.0 GHz 6.0 - 8.0 GHz		30 27 24		dBm dBm dBm
Noise Figure	DC - 8.0 GHz		5		dB
Supply Current (Icq)			55	74	mA

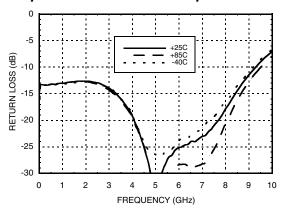
Note: Data taken with broadband bias tee on device output.

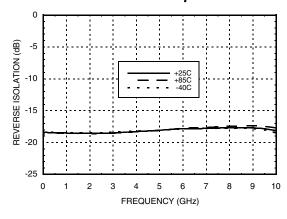


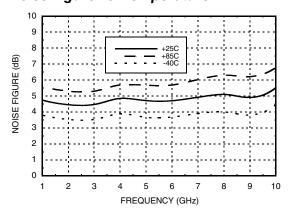

v04 081/

InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 8 GHz


Broadband Gain & Return Loss

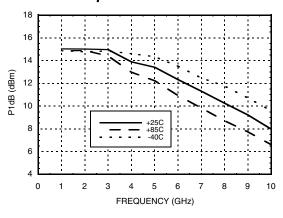

Gain vs. Temperature

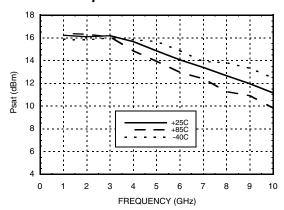

Input Return Loss vs. Temperature


Output Return Loss vs. Temperature

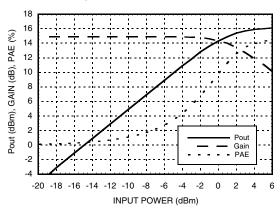
Reverse Isolation vs. Temperature

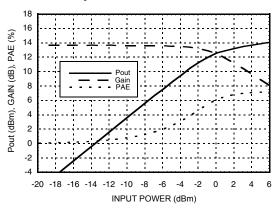
Noise Figure vs. Temperature

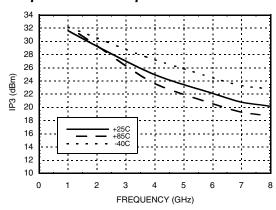


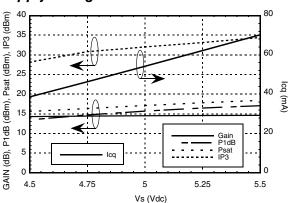

v04 081/

InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 8 GHz


P1dB vs. Temperature


Psat vs. Temperature


Power Compression @ 1 GHz

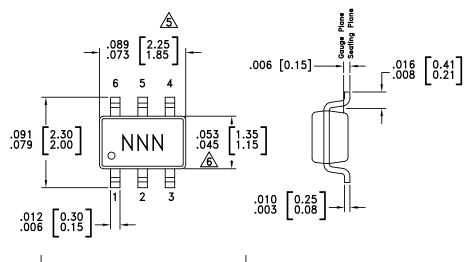

Power Compression @ 6 GHz

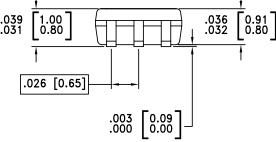
Output IP3 vs. Temperature

Gain, Power, IP3 & Supply Current vs. Supply Voltage @ 1 GHz

<u>νΩ4 Ω814</u>

InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 8 GHz




Absolute Maximum Ratings

Collector Bias Voltage (Vcc)	+7V
RF Input Power (RFIN)(Vcc = +3.9V)	+10 dBm
Junction Temperature	150 °C
Continuous Pdiss (T = 85 °C) (derate 5.21 mW/°C above 85 °C)	0.34 W
Thermal Resistance (junction to lead)	191 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C

Outline Drawing

NOTES:

- PACKAGE BODY MATERIAL: LOW STRESS INJECTION MOLDED PLASTIC SILICA AND SILICON IMPREGNATED.
- 2. LEAD MATERIAL: COPPER ALLOY
- 3. LEAD PLATING: Sn/Pb
- 4. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
 - 7. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.

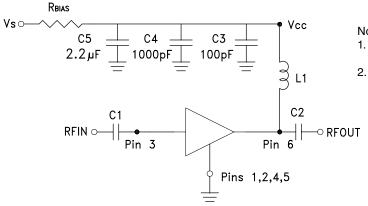
Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking
HMC311SC70	Low Stress Injection Molded Plastic	Sn/Pb	MSL1 [1]	311E
HMC311SC70E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	311E

^[1] Max peak reflow temperature of 235 $^{\circ}\text{C}$

^[2] Max peak reflow temperature of 260 °C

v04.0814



InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 8 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 2, 4, 5	GND	These pins must be connected to RF/DC ground.	GND =
3	RFIN	This pin is DC coupled. An off chip DC blocking capacitor is required.	RFOUT
6	RFOUT	RF output and DC Bias for the output stage.	<u></u>

Application Circuit

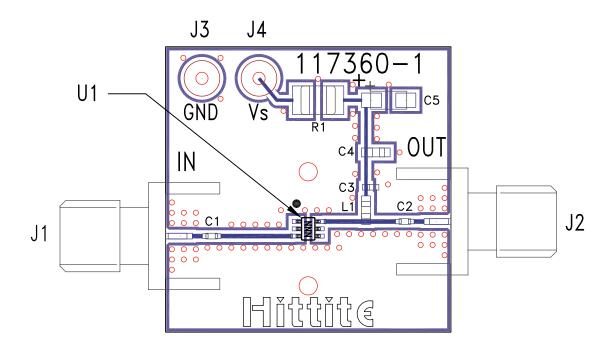
Note:

- Select Rbias to achieve Icq using equation below, Rbias ≥ 22 Ohm.
- 2. External blocking capacitors are required on RFIN and RFOUT.

$$Icq = \frac{Vs - 3.8}{Rbias}$$

Recommended Component Values

Component		Frequency (MHz)						
Component	50	900	1900	2200	2400	3500	5200	5800
L1	270 nH	56 nH	22 nH	22 nH	15 nH	8.2 nH	3.3 nH	3.3 nH
C1, C2	0.01 μF	100 pF	100 pF	100 pF	100 pF	100 pF	100 pF	100 pF



/04 081*4*

InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 8 GHz

Evaluation PCB

List of Materials for Evaluation PCB 118040 [1]

Item	Description	
J1 - J2	PCB Mount SMA Connector	
J3 - J4	DC Pin	
C1 - C3	100 pF Capacitor, 0402 Pkg.	
C4	1000 pF Capacitor, 0603 Pkg.	
C5	2.2 μF Capacitor, Tantalum	
R1	22 Ohm Resistor, 1210 Pkg.	
L1	22 nH Inductor, 0603 Pkg.	
U1	HMC311SC70 / HMC311SC70E	
PCB [2]	117360 Evaluation PCB	

^[1] Reference this number when ordering complete evaluation PCB $\,$

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.