
QPL6216 High-Linearity SDARS LNA

Product Description

The QPL6216 is a high linearity, ultra-low noise gain block amplifier in a small 2x2 mm surface-mount package. At 2332 MHz, the amplifier typically provides +36 dBm OIP3. The amplifier does not require any negative supplies for operation and can be biased from positive supply rails from 3.3 to 5.25 V. The device is housed in a lead- free/green/RoHS-compliant industry-standard 2x2 mm package.

The QPL6216 uses a high performance E-pHEMT process. The low noise amplifier contains an internal active bias to maintain high performance over temperature.

Functional Block Diagram

Package: DFN, 8-pin 2.0mm x 2.0mm x 0.85mm

Feature Overview

- High Gain device Typical value 15.5dB
- Ultra-low noise figure, 0.45 dB NF at 2332 MHz
- High linearity, +36 dBm Output IP3
- High input power ruggedness, >22 dBm PIN, MAX
- Unconditionally stable
- Externally controlled Icq with Vbias
- Integrated shutdown control pin
- 3.3-5.25 V positive supply voltage: -Vgg not required

Applications

SDARS Active Antenna

Ordering Information

PART NUMBER	DESCRIPTION
QPL6216SB	5 PIECE SAMPLE BAG
QPL6216SQ	25 PIECE SAMPLE BAG
QPL6216SR	100 PIECE 7" REEL
QPL6216TR7	2500 PIECE 7" REEL
QPL6216PCK-01	EVALUATION BOARD + 5 PC SAMPLE BAG

Standard T/R Size = 2500 pieces on a reel

High-Linearity SDARS LNA

Absolute Maximum Ratings

PARAMETER	RATING	UNITS
Storage Temperature	-65 to 150°	С
Supply Voltage (V _{DD})	+7	V
RF Input Power, CW, 50Ω, T = 25°C	+22	dBm

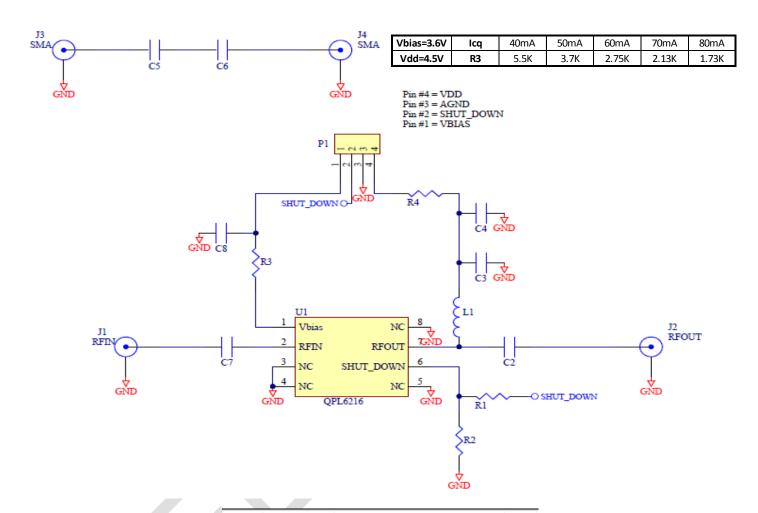
Recommended Operating Conditions

PARAMETER	MIN	TYP	MAX	UNITS
Supply Voltage (V _{DD})	+3.3	+4.5	+5.25	V
Bias Voltage (V _{bias})	+3.3	+3.6	+5.25	V
TCASE	-40		+105	°C
TJ (for >10 ⁶ hours MTTF)			+190	°C

Electrical Specifications at +25°C

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Operational Frequency Range		2320	2332	2345	MHz
Gain		14.0	15.5	16.5	dB
Input Return Loss			9		dB
Output Return Loss			15		dB
Output P1dB		+18.0	+22.5		dBm
Output IP3	Pout=+2 dBm/tone, Δf=1 MHz	+30	+36		dBm
Noise Figure ¹			0.45	0.65	dB
Power Shutdown Control (Pin 6)	On state	0		0.63	V
rower Shutdown Control (Fill 6)	Off state (Power down)	1.17	1.8	V_{DD}	V
Current, I _{DD} ²	On state	45	60	75	mA
	Off state (Power down)		3	4	mA
Shutdown pin current, ISD	VPD ≥ 1.17 V		140		μΑ
Thermal Resistance, θjc	channel to case		62		°C/W

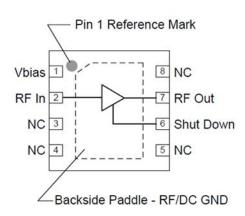
Test conditions unless otherwise noted: $V_{DD} = +4.5V$, $V_{bias} = +3.6V$, Temp =+25°C, 50 Ω system


Note: 1) Noise Figure data has input trace loss de-embedded

2) Icq set by external 2.75K resistor

High-Linearity SDARS LNA

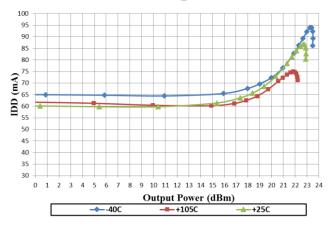
Application Schematic

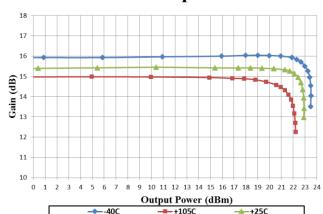


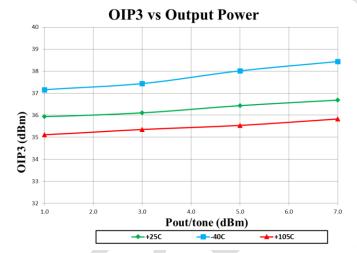
Qty	Ref Des	Description	UOM
1	U1	SDARS	EA
1		PCB, QPL6216	EA
5	C2,C5,C6,C7,C8	CAP, 100pF, 5%, 50V, C0G, 0402	EA
1	C3	CAP, 1000pF, 10%, 50V, X7R, 0402	EA
1	C4	CAP, 1uF, 10%, 6.3V, X7R, 0402	EA .
1	R1	RES, 0 OHM, 5%, 1/10W, 0402	EA
1	R4	RES, 3.3 OHM, 5%, 1/16W, 0402	EA
1	R3	RES, 2.7K, 5%, 1/16W, 0402	EA
1	R2	RES, 20K, 5%, 1/16W, 0402	EA
1	L1	IND, 18nH, 5%, M/L, 0402	EA
1	P1	CONN, HDR, ST, PLRZD, 4-PIN, 0.100"	EA
4	J1,J2,J3,J4	ConnSMA Female PCB Edge Mount	EA

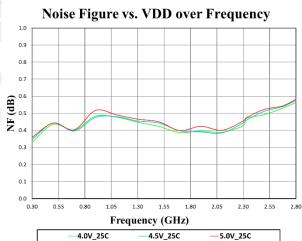
QPL6216 High-Linearity SDARS LNA

Pin Configuration and Description

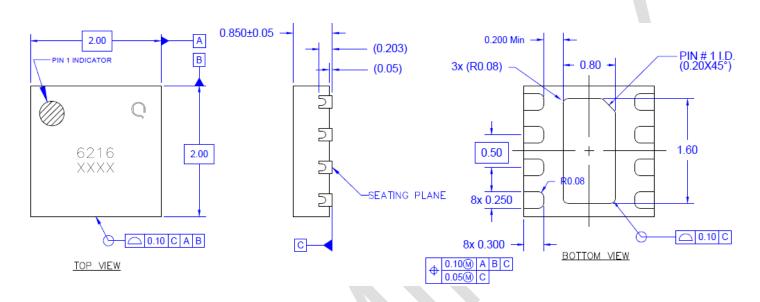

Pin No.	Label	Description
1	Vbias	Sets the Icq bias point for the device.
2	RF In	RF Input pin. A DC Block is required.
6	Shut Down	A high voltage (>1.17V) turns off the device. If the pin is pulled to ground or driven with a voltage less than 0.63V, then the device will operate under LNA ON state.
7	RF Out / DCBias	RF Output pin. DC bias will also need to be injected through a RF bias choke/inductor for operation.
3, 4, 5, 8	NC	No electrical connection. Provide grounded land pads for PCB mounting integrity.
Backside Paddle	RF/DC GND	RF/DC ground. Use recommended via pattern to minimize inductance and thermal resistance; see PCB Mounting Pattern for suggested footprint.




High-Linearity SDARS LNA


IDD vs. Output Power

Gain vs. Output Power

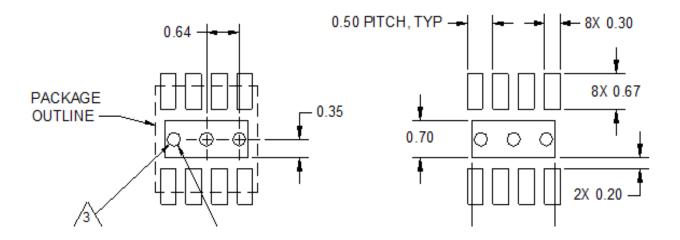


High-Linearity SDARS LNA

Mechanical Information

Marking: Part number – 6216

Trace Code – XXXX


NOTES:

- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. Except where noted, this part outline conforms to JEDEC standard MO-220, Issue E (Variation VGGC) for thermally enhanced plastic very thin fine pitch quad flat no lead package (QFN).
- 3. Dimension and tolerance formats conform to ASME Y14.4M-1994.
- 4. The terminal #1 identifier and terminal numbering conform to JESD 95-1 SPP-012.

High-Linearity SDARS LNA

PCB Mounting Pattern

NOTES:

- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. Use 1 oz. copper minimum for top and bottom layer metal.
- 3. Vias are required under the backside paddle of this device for proper RF/DC grounding and thermal dissipation. We recommend a 0.35mm (#80/.0135") diameter bit for drilling via holes and a final plated thru diameter of 0.25 mm (0.10").
- 4. Ensure good package backside paddle solder attach for reliable operation and best electrical performance.

High-Linearity SDARS LNA

Product Compliance Information

ESD Sensitivity Ratings

Caution! ESD-Sensitive Device

ESD Rating: Class 1B

Value: Passes ≥ 500 V to < 1000V Test: Human Body Model (HBM)

Standard: JS-001

ESD Rating: Class C3

Value: Passes ≥ 1000 V to <2000V Test: Charged Device Model (CDM)

Standard: JS-002

MSL Rating

MSL Rating: Level 2

Test: 260°C convection reflow

Standard: JEDEC Standard IPC/JEDEC J-STD-020

Solderability

Compatible with both lead-free (260 °C max. reflow temperature) and tin/lead (245 °C max. reflow temperature) soldering processes.

Package contact plating: NiPdAu

This part is compliant with EU 2002/95/EC RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

RoHs Compliance

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄O₂) Free
- PFOS Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Tel: 1-844-890-8163 Web: www.gorvo.com

Email: customer.support@gorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2016 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.