
AN912/1098 1/14

APPLICATION NOTE

A SIMPLE GUIDE TO DEVELOPMENT TOOLS
by K. Bigué

WHAT ARE DEVELOPMENT TOOLS ?

A microcontroller is a highly integrated device which generally carries out an application con-
trol function. To achieve this specific task, you must program several (usually several hun-
dred!) instructions in the microcontroller. To develop and load the program, you require a set
of devices. There are tools to create efficient and clearly structured programs and tools to
transfer and to test these programs in the microcontroller.

The creation tools are software tools. They will allow you to generate your program code. This
code is loaded in the microcontroller by the transfer tools which are hardware tools. These de-
vices also allow all the microcontroller functions to be evaluated. You require hardware devel-
opment tools for final debugging and test.

Development tools consist of a package of software tools and hardware tools. They serve to
program and to evaluate one or several microcontrollers. Each microcontroller family needs
both hardware and software development tools. All software development tools must follow
the same principles: reliability, efficiency, ease of use, flexibility. These characteristics are es-
pecially important for embedded applications.

1



A SIMPLE GUIDE TO DEVELOPMENT TOOLS

2/14

1 SOFTWARE DEVELOPMENT TOOLS

The software tools allow the development of your application code. This code will be loaded in
the microcontroller to execute the corresponding functions.

To produce a code ready for execution, you must run the C compiler (if program is written in
C language), the assembler and the linker . Then, you must evaluate this code with the de-
bugger or the simulator .

Figure 1. Code development flow chart

The C compiler used with the assembler and linker , allows the generation of executable ob-
ject code. The generated object code may be used to debug, to generate EPROM devices test
or to produce ROM mask data.

C source file

Assembly source file

C COMPILER

ASSEMBLER

LINKER

DEBUGGER SIMULATOR

Object file

Hexadecimal file

EMULATOR

software tool

hardware tool

Assembly file

PROGRAMMER Factory Mask ROM

(executable object code)



3/14

A SIMPLE GUIDE TO DEVELOPMENT TOOLS

Figure 2. Typical object code production

1.1 C COMPILER

The C compiler translates C-code into assembly code. It allows you to write in C and to benefit
from all its advantages. It is easier to program using a high level language. But for small appli-
cations, the generated code can be less compact than by direct assembly programming.

1.1.1 High level language characteristics

It is highly advisable to write your software using a high level language. It allows you to struc-
ture your source code and improve program portability and reusability. Routines written in high
level language can be also used in other firmware or applications. Furthermore, development
costs are usually lower because code generation time is shortened and debugging is made
easier.

HOST

Host machine
dedicated to development

&
object code generation

Target machine dedicated
to execution

&
debugging

Downloading of a target
file via parallel link

&
debugging via monitor

on target
and user interface

on host



A SIMPLE GUIDE TO DEVELOPMENT TOOLS

4/14

Figure 3. High level language programming characteristics

1.1.2 Advantages and drawbacks of C language

The C language is an example of a high level language i.e. the instructions are expressed in
a language similar to natural language. It was developed in Bell laboratories by Brian Kernigan
and David Ritchie in the early seventies. The language is rich: it offers a library of ready-pro-
grammed functions. The C language is very flexible and permits functions to be written with
very few lines of code. This makes program development much easier.

Furthermore the program is more reliable because C language is a standardized language fol-
lowing the ANSI norm. It ensures that your code will meet some standard criteria.

Sometimes C language is not practical. For example, when a part of the program requires very
fast processing, this section should be written in assembly language. Also to get precise con-
trol of hardware resources, it is sometimes useful to write a part of an application in assembly
language. It is quite easy to interface an assembly function with a C program or a C function
in an assembly program.

HIGH LEVEL LANGUAGE
PROGRAMMING

REDUCED DEVELOPMENT
COST

•code generation time short-
ened (time to market)
•debugging made easier

IMPROVED CODE
PORTABILITY

•between applications
(upgrades, new products)
•between firmware

SIMPLIFIED CODE
MAINTENANCE



5/14

A SIMPLE GUIDE TO DEVELOPMENT TOOLS

Figure 4. C language programming advantages

It is possible to mix other languages with the C compiler. You can include assembly instruc-
tions with access to C program symbols. Assembler must be used for critical instructions.
Thus execution time is optimized.

1.1.3 Low level language characteristics

A low level language is a language close to machine code i.e. it generates fast and compact
code which means faster execution and lower memory requirements. It is more difficult to
write and harder to read. But you can use all the capabilities of the machine.

Figure 5. Low level language programming characteristics

C LANGUAGE

STRUCTURED

WORLWIDE
USED

STANDARDIZED
(ANSI C)

EASY
PROGRAMMING

LOW LEVEL LANGUAGE
PROGRAMMING

COMPLEX
TO WRITE OR

TO READ

EFFECTIVE FOR
TIME CRITICAL
APPLICATION



A SIMPLE GUIDE TO DEVELOPMENT TOOLS

6/14

1.1.4 Advantages and drawbacks of assembly language

Assembly language is a low level language. It provides very fast execution times and is very
useful for programs which continuously calculate large amounts of data. However, it often re-
quires a large number of code lines whereas a high level language uses only one statement.
Its complexity results in high level languages being used more and more often and assembly
language only for time critical applications.

1.2 ASSEMBLER

The assembler transforms an assembly file into an object file. It assembles the instructions be-
fore translating it automatically into a language understandable by the machine. This machine
language is hexadecimal code. It would be hard for you to write or to read machine language
directly so you must use assembly language to make programming possible.

The assembler works as follows: it accepts one or more source files written in assembly lan-
guage and changes them into relocatable object files. During the process, the assembler
checks for many types of errors and it reports when you use a wrong instruction or operator.

Figure 6. Advantages of assembler use

After having separately assembled all the component modules in your program, the next step
is to link them together into a file which can then be sent onto its final destination.

PRECISE CONTROL OF HARDWARE RESSOURCE

REDUCED CODE SIZE REDUCED EXECUTION TIME



7/14

A SIMPLE GUIDE TO DEVELOPMENT TOOLS

1.3 LINKER

Nearly all applications are too large to be developed in a single file: this file would become too
long to be easily managed by editors, and editing it would become tedious. Applications
broken down to several pieces of code are much easier to work with. Separating each appli-
cation into functional units and managing one file simplifies development and maintenance.

As a final step, it is necessary to group all these parts of the application together, and to pro-
duce one file containing the whole application. This is what the linker does.

Figure 7. Linker overview

The linker combines the different object code files issued by the assembler and places the
code at predefined addresses in memory. It produces an output file in a hexadecimal format,
which can be downloaded to the emulator by the debugger .

It is the last step in building a compiled program and making an executable application. In
some cases, additional steps may follow, but these are only to format the output of the linker
in another structure.

After your program has been assembled and linked to form a executable file, it needs to be
sent to the place where it will be executed.

The linker
combines several object

files each performing
an elementary task

&
generates one file containing

the whole application.



A SIMPLE GUIDE TO DEVELOPMENT TOOLS

8/14

1.4 SIMULATOR

Using a simulator, you can debug programs written for a microcontroller and execute them on
a computer, with no need for additional hardware.

The simulator functionally duplicates the operation of the microcontroller and completely sup-
ports the instruction set. It uses its clock frequency with the number of clock cycles needed by
each instruction to keep track of the real time execution speed.

1.5 DEBUGGER

The debugger is a powerful tool, helpful when writing, executing and debugging programs for
microcontrollers.

The debugger controls the downloading of the output file of the linker in a target machine. As-
sociated with an emulator, it allows to monitor your program in the context of the application.
For debugging purposes, the debugger provides several commands for displaying and setting
memory and registers, for executing programs, setting breakpoints, tracing instructions.

Figure 8. Example of a Windows debugger

The debugger is typically a multiwindow environment. This type of debugger provides some
very useful features. First, it is easy to use using the familiar Windows environment. The pro-
gram or the microcontroller resources are directly accessible: you can examine resources, ac-
cess variables or functions, control memory and access registers.

The debugger should be very flexible. It must be adapted to your needs by displaying only in-
formation you require for your debugging. You can choose the basic characteristics of each
window by selecting filters. In this way, you customize your environment and get only the in-
formation you need for a particular problem.



9/14

A SIMPLE GUIDE TO DEVELOPMENT TOOLS

Using source level debugging, it is easy to identify which part of the program is displayed. The
source and generated codes are on the same screen. The environment is easy to learn since
it makes full use of window controls such as toolbars, tooltips, drag-and-drop, and context-
sensitive pop up menus. From these windows, you fully control the execution of your program.

Figure 9. State-of-the-art Debugger Characteristics

The debugger is an essential part of the development chain. By improving your productivity in
the debug phases, a windowed symbolic debugger reduces your development costs and
speeds up your time to market.

DEBUGGER

EASE OF USERELIABILITY

ADAPTABILITY



A SIMPLE GUIDE TO DEVELOPMENT TOOLS

10/14

2 HARDWARE DEVELOPMENT TOOLS

There are three different types of development system that are in common use. Most of these
systems require a host computer (PC, station) to run the device. Usually they come with soft-
ware to interface with the host computer.

2.1 EMULATOR

Figure 10. Emulator with its probe plugged in dedicated board

An emulator is an electronic device that reproduces the behavior and functionality of a specific
microcontroller in real time (that is it runs at the full speed of the microcontroller even in debug
mode). The emulator is used to replace the component being emulated in your system. It al-
lows interactive debugging of the software and can control your program execution while op-
erating in the system.

The emulator is connected to your application by a probe which is plugged directly into the ap-
plication and controlled by a powerful software debugger which sends and receives informa-
tion to and from the emulator.

By means of a graphic interface which displays all available information on the PC screen, you
can access the microcontroller internal resources (such as registers) and its internal memo-
ries. This enables the development of application programs and the system emulation in real
time or in single step mode. You can set breakpoints on specific instructions or addresses.
The emulator stops the program execution when the CPU reaches that particular instruction.
Then you can consult all microcontroller registers and trace the preceding executed instruc-



11/14

A SIMPLE GUIDE TO DEVELOPMENT TOOLS

tions. There is a wide range of debug commands which give you full control of the emulator
hardware and several commands for controlling program execution. Memory and registers
can be read and written in different formats, while macro commands and conditional block
constructs are available for use in automated debugging sessions.

2.2 STARTER KIT OR DEVELOPMENT BOARD

A starter kit is a basic development system for the evaluation and design of microcontroller ap-
plications. This evaluation kit can include emulation capabilities and provide a quick introduc-
tion to the microcontroller world. The starter kit may include all hardware, software and docu-
mentation required to evaluate the microcontroller and to develop simple applications.

Figure 11. Starter kit content

The hardware used to debug an application and to program a device, is an evaluation or de-
velopment board. It is a board which includes the microcontroller in the version which offers all
the most important features of the family to be tested. The microcontroller operates in a spe-
cial mode that allows internal bus access. Code delivered from the host is put into memory
that the microcontroller can access, and the microcontroller can operate as if the code was
contained within its internal memory.

For maximum flexibility, the board can run in different modes of operation. Without a host com-
puter, you can prototype an application and build an easy-to-use demonstration board by con-
necting your own application board to the starter kit. The main mode of operation allows you
to debug your target system. Your code can be downloaded into emulation memory and then
executed under control of a Windows debugger . You have the possibility to program the de-
bugged program into an EPROM or OTP member.



A SIMPLE GUIDE TO DEVELOPMENT TOOLS

12/14

The software includes a assembler which supports modular programming, a linker, an ar-
chiver that manages relocatable objects modules, a functional simulator, a Windows de-
bugger which drives the evaluation board and the EPROM programming software.

The starter kit also includes full documentation on the microcontroller family, on how to con-
nect and program it and the software manuals which describe how to use the development
tools, as well as a diskette containing several application programs for microcontroller de-
vices.

This full evaluation kit provides a low cost platform for developing and evaluating embedded
applications.

2.3 EPROM AND GANG PROGRAMMER

The EPROM programmer (or EPROM programming board) is a programming tool for EPROM
and OTP members of the microcontroller families.

Figure 12. EPROM programming board

This board is designed to program the EPROM versions of microcontroller, including both the
ceramic windowed and plastic OTP packages. Several sockets are provided to receive the dif-
ferent existing packages types.

The EPROM programming board uses a RAM in which your code is downloaded. The
EPROM device will be programmed from the contents of this RAM.



13/14

A SIMPLE GUIDE TO DEVELOPMENT TOOLS

The board can perform three operations:

n verify the blank state of the microcontroller EPROM;

n program microcontroller with the content of hexadecimal file;

n verify the microcontroller.

The gang programmer is a programmer which has several EPROM programmers put in par-
allel.

Figure 13. Gang programmer



A SIMPLE GUIDE TO DEVELOPMENT TOOLS

14/14

THE PRESENT NOTE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH INFORMATION
REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A RESULT, STMICROELECTRONICS
SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO
ANY CLAIMS ARISING FROM THE CONTENT OF SUCH A NOTE AND/OR THE USE MADE BY CUSTOMERS OF
THE INFORMATION CONTAINED HEREIN IN CONNEXION WITH THEIR PRODUCTS.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

 1998 STMicroelectronics - All Rights Reserved.

Purchase of I2C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these components in an
I2C system is granted provided that the system conforms to the I2C Standard Specification as defined by Philips.

STMicroelectronics Group of Companies
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands -

Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

http:/ /www.st.com


