\square MN101E35 Series

Type	MN101E35A	MN101E35D	MN101EF35A	MN101EF35D	MN101EF35G
Internal ROM type	Mask ROM		FLASH		
ROM (byte)	32K	68K	32K	$64 \mathrm{~K}+4 \mathrm{~K}$	$128 \mathrm{~K}+4 \mathrm{~K}$
RAM (byte)	4K				8K
Package (Lead-free)	TQFP048-P-0707B			HQFP048-P-0707B, TQFP048-P-0707B	HQFP048-P-0707B
Minimum Instruction Execution Time	$0.042 \mu \mathrm{~s}$ (at 2.2 V to $3.6 \mathrm{~V}, 24 \mathrm{MHz}$, When USB unused) $0.0625 \mu \mathrm{~s}$ (at 3.0 V to $3.6 \mathrm{~V}, 16 \mathrm{MHz}$, When USB used) $62.5 \mu \mathrm{~s}$ (at 2.2 V to $3.6 \mathrm{~V}, 32 \mathrm{kHz}$)				

- Interrupts

RESET. Watchdog. External 0 to 4. External 5 (key interrupt dedicated). External 6. Timer 0 to 4 . Timer 6 . Timer 7 (2 systems). Timer 8 (2 systems). Timer 9 (2 systems). Time base. Serial 1 (2 systems). Serial 2 (2 systems). Serial 4 (2 systems). A/D conversion finish. USB interrupts

- Timer Counter

8 -bit timer $\times 6$
Timer 0Square-wave output. PWM output. Event count. Simple pulse width measurement. Square-wave/PWM output to large current terminal P03 (TM0IOB) possible
Timer 1 \qquad Square-wave output. Event count
Timer 2Square-wave output. PWM output. Event count. Simple pulse width measurement. Square-wave/PWM output to large current terminal P03 (TM2IOB) possible
Timer 3 \qquad .Square-wave output. Event count
Timer 4 \qquad .Square-wave output. PWM output. Event count. Simple pulse width measurement. Square-wave/PWM output to large current terminal P02 (TM4IOC) possible
Timer 6 \qquad .8-bit freerun timer
Timer 0,1 can be cascade-connected
Timer 2, 3 can be cascade-connected
Timer $0,1,2$ can be cascade-connected
Timer $0,1,2,3$ can be cascade-connected
16 -bit timer $\times 3$
Timer 7 . \qquad .Square-wave output. PWM output (cycle/duty continuous variable). Event count. Pulse width measurement. Input capture. Square-wave/PWM output to large current terminal P00 (TM7IOB) possible
Timer 8 \qquad .Square-wave output. PWM output (cycle/duty continuous variable). Event count. Pulse width measurement. Input capture. Square-wave/PWM output to large current terminal P01 (TM8IOB) possible
Timer 9 \qquad ..Square-wave output. PWM output (cycle/duty continuous variable). Event count. Pulse width measurement. Input capture
Time base timer: One-minute count setting
Watchdog timer $\times 1$

■ Serial interface

Synchronous type/UART (full-duplex) $\times 2$: Serial 1, 2
Synchronous type/Multi-master $\mathrm{I}^{2} \mathrm{C} \times 1$: Serial 4
Serial 4. \qquad 7-bit/10-bit address setting. General call

USB Functions

Conforms to USB 2.0: Full-speed (12 Mbps) supported
USB transceiver built-in. 3 end points (FIFO built-in independently)
FIFO size: EP0 $=16$ bytes. EP1 $=128$ bytes. EP2 $=128$ bytes
EP0: Control transfer. IN/OUT (two ways)
EP1 to EP2: Interrupt/Bulk/Isochronous transfer supported. Settable to IN or OUT. Double Buffering function supported When the MAXP size is set to a half or less of the MAXFIFO size for each EP, the Double Buffering function is made valid automatically

- I/O Pins

I/O 37: Common use. Specified pull-up resistor available. Input/output selectable (bit unit)

■ A/D converter

10-bit $\times 8$ channels (with S / H)

■ Extended Calculation

16-bit $\times 16$-bit multiplication. 32-bit / 16-bit division
Special Ports
USB ports (D+, D-). Buzzer output. Remote control carrier output. High-current drive port. Clock output

- ROM Correction

Correcting address designation: Up to 7 addresses possible

- Pin Assignment

HQFP048-P-0707B, TQFP048-P-0707B

Request for your special attention and precautions in using the technical information and semiconductors described in this book

(1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
(2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
(3) The products described in this book are intended to be used for general applications (such as office equipment, communications equipment, measuring instruments and household appliances), or for specific applications as expressly stated in this book.
Consult our sales staff in advance for information on the following applications:

- Special applications (such as for airplanes, aerospace, automotive equipment, traffic signaling equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
It is to be understood that our company shall not be held responsible for any damage incurred as a result of or in connection with your using the products described in this book for any special application, unless our company agrees to your using the products in this book for any special application.
(4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
(5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.
Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
(6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
(7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of our company.

