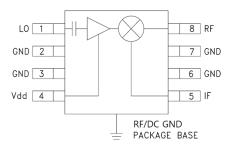


1.7~2.7GHz High IIP3 GaAs MMIC Mixer with Integrated LO AMP

#### **Device Features**

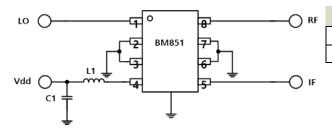
- +33.9 dBm Input IP3
- 8.3dB Conversion Loss
- Integrated LO Driver
- -2 to +4dBm LO drive level
- Available 3.3V to 5V single voltage
- MSL 1, MSOP 8, Lead-free / Green / RoHS compliant
- ESD HBM Class 1B




The BM851 is a high linearity and dynamic covering range from 1.7GHz to 2.7GHz on 3.3V to 5V with a passive GaAs FET converter and two stage LO driver. This is packaged in a plastic surface mountable MSOP8 with Lead-free / Green / RoHS compliant. Typical Input IP3 and Conversion loss are 33.9dBm and 8.3dB, respectively. All devices are 100% RF/DC screened.



MSOP 8 Package


#### **Functional Block Diagram**



#### **Applications**

- Base station /Repeaters Infrastructure/Small Cell
- Commercial/Industrial/Military wireless system
- LTE / WCDMA /CDMA Wireless Infrastructure

#### **Application Circuit**



| Bom | Value | Remark |
|-----|-------|--------|
| C1  | 1nF   |        |
| L1  | 56nH  |        |

#### **Absolute Maximum Ratings**

| Parameter                  | Rating      | Unit |
|----------------------------|-------------|------|
| Operating Case Temperature | -40 to +85  | °C   |
| Storage Temperature        | -55 to +155 | °C   |
| Junction Temperature       | +126        | °C   |
| Operating Voltage          | +7          | V    |
| LO Power                   | +10         | dBm  |
| Input RF/IF Power          | +25         | dBm  |

Operation of this device above any of these parameters may result in permanent damage.

BeRex •website: www.berex.com

•email: <u>sales@berex.com</u>

# **BM851**



#### Mixer

1.7~2.7GHz High IIP3 GaAs MMIC Mixer with Integrated LO AMP

### **Typical Performance**<sup>1</sup>

Test condition \_ Measured on BeRex E/B at 25°C, 50ohm system, Vdd=5V Ids=57.5mA

| Parameter              | Min | Тур      | Max | Units |
|------------------------|-----|----------|-----|-----|----------|-----|-----|----------|-----|-----|----------|-----|-----|----------|-----|-------|
| RF Frequency Range     | 17  | ′00 ~ 18 | 00  | 18  | 800 ~ 20 | 00  | 20  | 000 ~ 22 | 00  | 22  | .00 ~ 24 | 00  | 25  | 00 ~ 27  | 00  | MHz   |
| LO Frequency Range     | 14  | 00 ~ 17  | 50  | 15  | 00 ~ 19  | 50  | 17  | 700 ~ 21 | 50  | 19  | 000 ~ 23 | 50  | 22  | 00 ~ 26  | 50  | MHz   |
| IF Frequency Range     | =,  | 50 ~ 300 | )   |     | 50 ~ 300 | )   |     | 50 ~ 300 | )   | !   | 50 ~ 300 | )   | ı,  | 50 ~ 300 | )   | MHz   |
| SSB Conversion Loss    |     | 8.3      |     |     | 8.1      |     |     | 8.3      |     |     | 8.8      |     |     | 10.0     |     | dB    |
| Input IP3 <sup>2</sup> |     | 32.0     |     |     | 32.8     |     |     | 33.9     |     |     | 32.3     |     |     | 30.3     |     | dBm   |
| LO Leakage RF Port     |     | -12.7    |     |     | -9.1     |     |     | -6.0     |     |     | -4.6     |     |     | -5.1     |     | dBm   |
| LO Leakage IF Port     |     | -8.7     |     |     | -14.0    |     |     | -15.9    |     |     | -13.0    |     |     | -10.6    |     | dBm   |
| RF-IF Isolation        |     | -16.6    |     |     | -20.2    |     |     | -17.8    |     |     | -14.0    |     |     | -10.6    |     | dB    |
| RF Return Loss         |     | -11.5    |     |     | -13.2    |     |     | -15.5    |     |     | -16.6    |     |     | -15.7    |     | dB    |
| IF Return Loss         |     | -9.2     |     |     | -9.6     |     |     | -11.8    |     |     | -15.1    |     |     | -24.3    |     | dB    |
| Input P1dB             |     | 23.8     |     |     | 23.0     |     |     | 23.0     |     |     | 22.0     |     |     | 20.8     |     | dBm   |
| LO Drive Level         | -2  | 0        | +4  | -2  | 0        | +4  | -2  | 0        | +4  | -2  | 0        | +4  | -2  | 0        | +4  | dBm   |

Test condition \_ Measured on BeRex E/B at 25°C, 50ohm system, Vdd=3.3V lds= 44.5mA

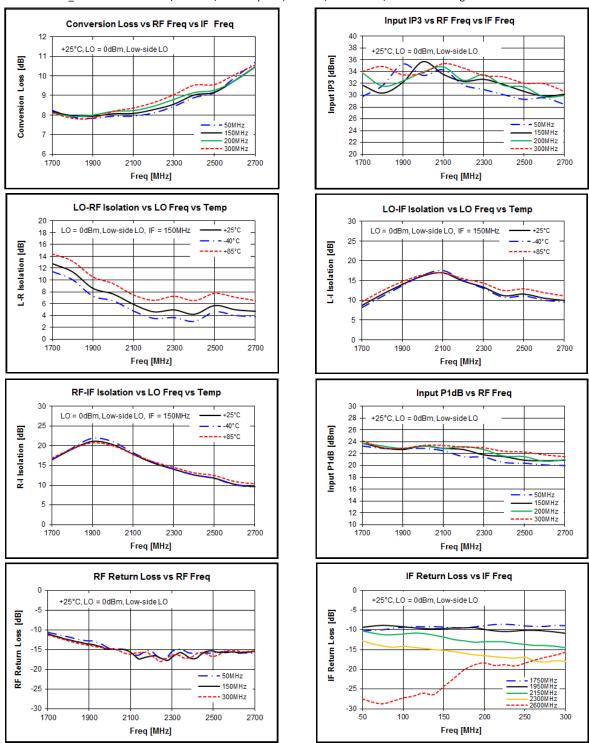
| Parameter              | Min | Тур      | Max | Units |
|------------------------|-----|----------|-----|-----|----------|-----|-----|----------|-----|-----|----------|-----|-----|----------|-----|-------|
| RF Frequency Range     | 17  | 700 ~ 18 | 00  | 18  | 00 ~ 20  | 00  | 20  | 000 ~ 22 | 00  | 22  | 200 ~ 24 | 00  | 25  | 00 ~ 27  | 00  | MHz   |
| LO Frequency Range     | 14  | 100 ~ 17 | 50  | 15  | 00 ~ 19  | 50  | 17  | 700 ~ 21 | 50  | 19  | 000 ~ 23 | 50  | 22  | 200 ~ 26 | 50  | MHz   |
| IF Frequency Range     | !   | 50 ~ 300 | )   |     | 50 ~ 300 | )   |     | 50 ~ 300 | )   |     | 50 ~ 300 | )   |     | 50 ~ 300 | )   | MHz   |
| SSB Conversion Loss    |     | 8.3      |     |     | 8.2      |     |     | 8.2      |     |     | 8.7      |     |     | 10.0     |     | dB    |
| Input IP3 <sup>2</sup> |     | 27.6     |     |     | 30.3     |     |     | 31.5     |     |     | 28.1     |     |     | 24.3     |     | dBm   |
| LO Leakage RF Port     |     | -14.0    |     |     | -12.2    |     |     | -11.0    |     |     | -10.9    |     |     | -10.5    |     | dBm   |
| LO Leakage IF Port     |     | -12.6    |     |     | -18.4    |     |     | -20.5    |     |     | -18.2    |     |     | -15.6    |     | dBm   |
| RF-IF Isolation        |     | -16.5    |     |     | -20.5    |     |     | -18.1    |     |     | -14.6    |     |     | -11.0    |     | dB    |
| RF Return Loss         |     | -11.6    |     |     | -12.4    |     |     | -13.3    |     |     | -13.5    |     |     | -14.5    |     | dB    |
| IF Return Loss         |     | -11.1    |     |     | -11.5    |     |     | -14.2    |     |     | -18.0    |     |     | -16.7    |     | dB    |
| Input P1dB             |     | 19.1     |     |     | 18.8     |     |     | 17.8     |     |     | 15.3     |     |     | 13.1     |     | dBm   |
| LO Drive Level         | -2  | 0        | +4  | -2  | 0        | +4  | -2  | 0        | +4  | -2  | 0        | +4  | -2  | 0        | +4  | dBm   |

| Parameter                    | Min. | Typical | Max. | Unit |
|------------------------------|------|---------|------|------|
| Bandwidth                    | 1700 |         | 2700 | MHz  |
| I <sub>d</sub> @ (Vd = 5.0V) |      | 57.5    |      | mA   |
| I <sub>d</sub> @ (Vd = 3.3V) |      | 44.5    |      | mA   |
| R <sub>TH</sub>              |      | 99.0    |      | °C/W |

<sup>&</sup>lt;sup>1</sup> Specifications show on OdBm-LO drived power and 150 MHz-IF frequency in a down converting configuration with a low-side LO.

**BeRex** 

•website: <u>www.berex.com</u>


 $<sup>^{2}</sup>$  IIP3 is measured on two tone with RF in power OdBm/ tone , F2—F1 = 1 MHz..

#### Mixer

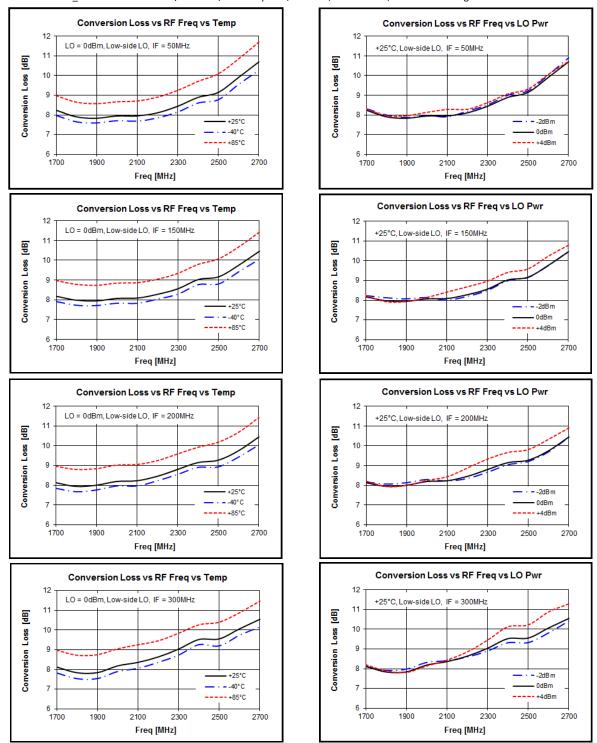
1.7~2.7GHz High IIP3 GaAs MMIC Mixer with Integrated LO AMP

## **Typical Test Data**

Test condition \_ Measured on BeRex E/B at 25°C, 50ohm system, Vdd=5V, Ids=57.5mA, Down converting



**BeRex** 


•website: www.berex.com

#### Mixer

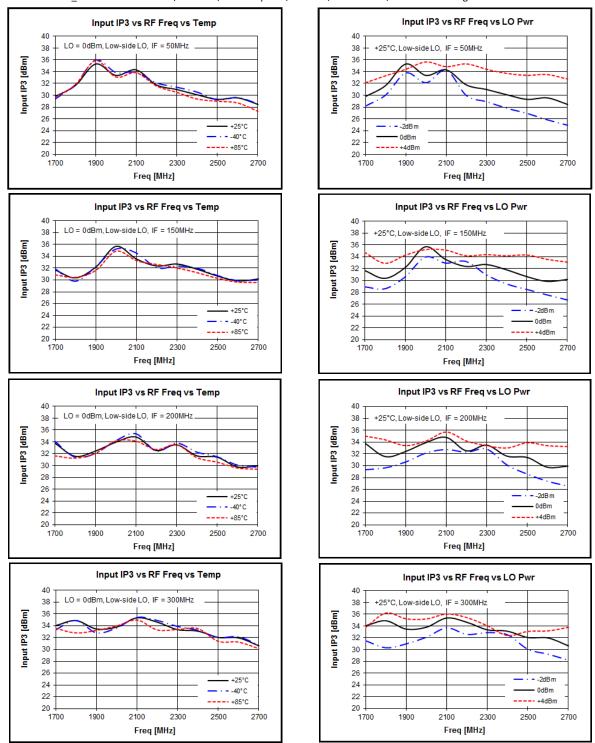
1.7~2.7GHz High IIP3 GaAs MMIC Mixer with Integrated LO AMP

## **Typical Test Data**

Test condition \_ Measured on BeRex E/B at 25°C, 50ohm system, Vdd=5V, Ids=57.5mA, Down converting



BeRex


•website: www.berex.com

#### Mixer

1.7~2.7GHz High IIP3 GaAs MMIC Mixer with Integrated LO AMP

## **Typical Test Data**

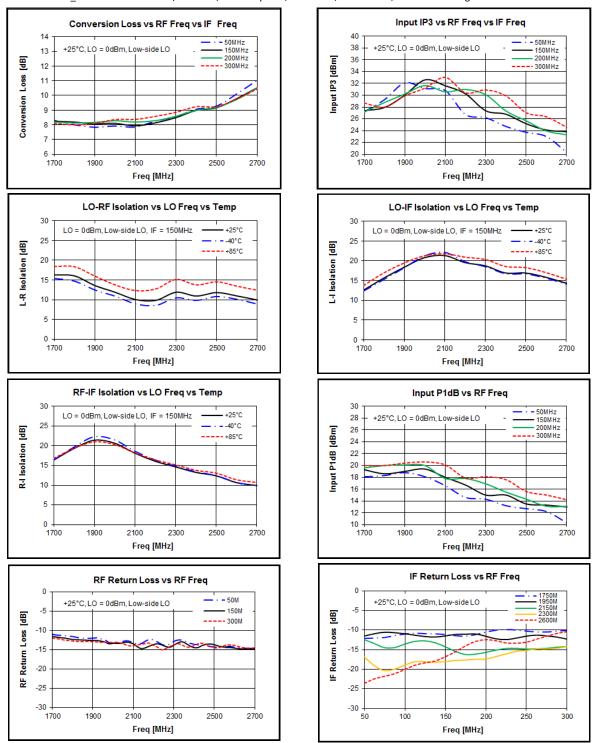
Test condition \_ Measured on BeRex E/B at 25°C, 50ohm system, Vdd=5V, Ids=57.5mA, Down converting



**BeRex** 

•website: www.berex.com

•email: sales@berex.com


Rev. B



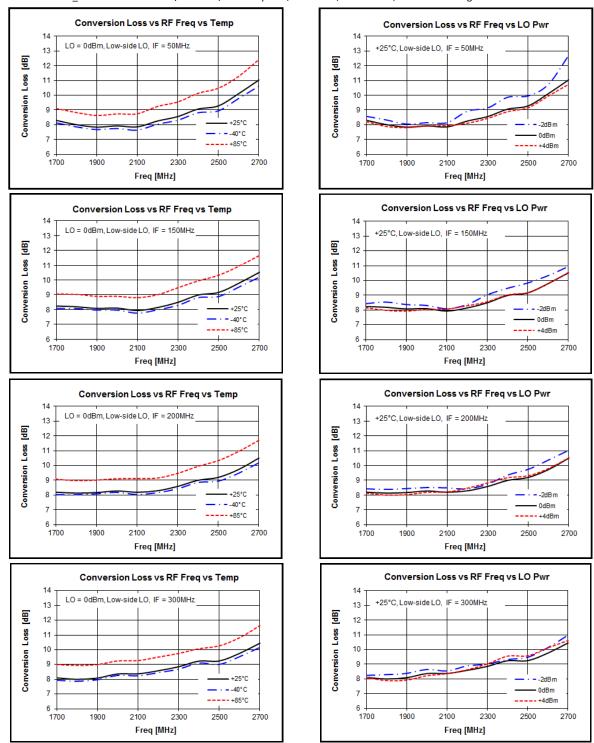
1.7~2.7GHz High IIP3 GaAs MMIC Mixer with Integrated LO AMP

# **Typical Test Data**

Test condition \_ Measured on BeRex E/B at 25°C, 50ohm system, Vdd=3.3V, Ids=44.5mA, Down converting



BeRex


•website: www.berex.com



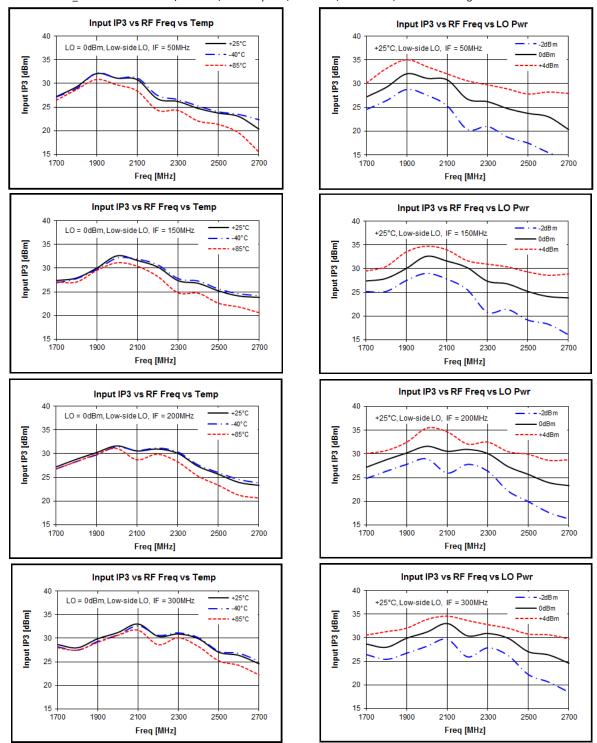
1.7~2.7GHz High IIP3 GaAs MMIC Mixer with Integrated LO AMP

# **Typical Test Data**

Test condition \_ Measured on BeRex E/B at 25°C, 50ohm system, Vdd=3.3V, Ids=44.5mA, Down converting



BeRex


•website: www.berex.com

#### Mixer

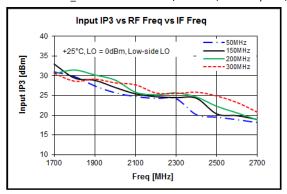
1.7~2.7GHz High IIP3 GaAs MMIC Mixer with Integrated LO AMP

# **Typical Test Data**

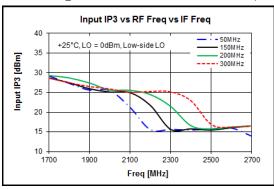
Test condition \_ Measured on BeRex E/B at 25°C, 50ohm system, Vdd=3.3V, Ids=44.5mA, Down converting



BeRex


•website: www.berex.com




1.7~2.7GHz High IIP3 GaAs MMIC Mixer with Integrated LO AMP

## **Typical Test Data**

Test condition \_ Measured on BeRex E/B at 25°C, 50ohm system, Vdd=5V, Ids=57.5mA , Up converting



Test condition \_ Measured on BeRex E/B at 25°C, 50ohm system, Vdd=3.3V, Ids=44.5mA, Up converting



## **Spur Table**

Ν

|   | 0   | 1  | 2   | 3   | 4   | 5  |
|---|-----|----|-----|-----|-----|----|
| 0 |     | 4  | 13  | 9   | 3   | 8  |
| 1 | 13  | 0  | 24  | 25  | 24  | 20 |
| 2 | 73  | 65 | 44  | 67  | 55  | 55 |
| 3 | 73  | 90 | 76  | 84  | 67  | 75 |
| 4 | 108 | 88 | 105 | 93  | 90  | 88 |
| 5 | 102 | 94 | 91  | 102 | 100 | 94 |

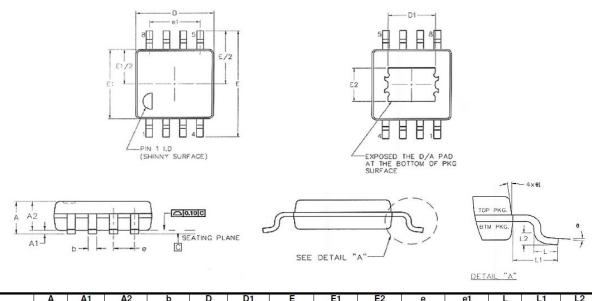
Spur table is  $N \times f_{RF} - M \times f_{LO}$  mixer spurious products for 0 dBm input power, unless otherwise noted.

RF Frequency = 1842 MHz

LO Frequency = 1642 MHz

All values in dBc relative to the IF Power Level.

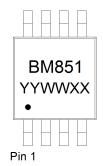
**BeRex** 


•website: www.berex.com

●email: <u>sales@berex.com</u>

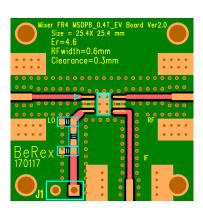


1.7~2.7GHz High IIP3 GaAs MMIC Mixer with Integrated LO AMP


## **Package Outline Drawing**



|     | Α  | A1 | A2 | b  | D   | D1 | E   | E1  | E2 | е        | e1       | L  | L1     | L2     |
|-----|----|----|----|----|-----|----|-----|-----|----|----------|----------|----|--------|--------|
| Min |    | 2  | 32 | 11 | 114 | 66 | 188 | 114 | 54 |          |          | 16 |        |        |
| Nom | 8  | 4  | 34 |    | 118 |    | 192 | 118 |    | 25.5 Typ | 76.7 Typ | 22 | 37 Ref | 10 Typ |
| Max | 42 | 6  | 36 | 15 | 122 | 70 | 196 | 122 | 58 |          |          | 27 |        |        |


\*Remark all unit in mils

## **Package Marking**

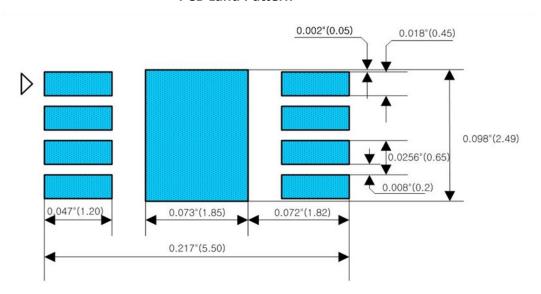


YY = Year, WW = Working Week, XX = Wafer No.

# **Evaluation Board Drawing**



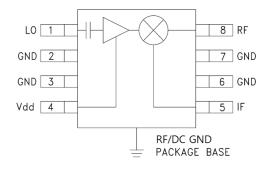
**BeRex** 


•website: www.berex.com

#### Mixer

1.7~2.7GHz High IIP3 GaAs MMIC Mixer with Integrated LO AMP

## **Suggested PCB Land Pattern and PAD Layout**


#### **PCB Land Pattern**



Note: 1. Connection to Bottom Ground with multiple via holes.

- 2. Via holes \_ as many as possible.
- 3. All Dimensions \_ millimeters.
- 4. PCB lay out \_ on BeRex website.

#### **Pin Configuration**



| Pin No.            | Label | Description                                                                                                             |
|--------------------|-------|-------------------------------------------------------------------------------------------------------------------------|
| 1                  | LO    | Local Oscillator Injection. Internally DC Blocked                                                                       |
| 2,3,6,7            | GND   | RF/DC Ground.                                                                                                           |
| 4                  | Vdd   | Power supply for LO amplifier                                                                                           |
| 5                  | IF    | Intermediate Frequency                                                                                                  |
| 8                  | RF    | Radio Frequency                                                                                                         |
| Backside<br>Paddle | GND   | RF/DC Ground. Follow recommended via pattern and ensure good solder attach for best thermal and electrical performance. |

**BeRex** 

•website: www.berex.com

•email: sales@berex.com

11



1.7~2.7GHz High IIP3 GaAs MMIC Mixer with Integrated LO AMP

## Tape & Reel



### Lead plating finish

#### 100% Tin Matte finish

(All BeRex products undergoes a 1 hour, 150 degree C, Anneal bake to eliminate thin whisker growth concerns.)

## MSL / ESD Rating

**ESD Rating:** Class 1B

Value: Passes <1000V

Test: Human Body Model (HBM)

Standard: JEDEC Standard JESD22-A114B

MSL Rating: Level 1 at +265°C convection reflow

Standard: JEDEC Standard J-STD-020



Proper ESD procedures should be followed when handling this device.

#### **NATO CAGE code:**

| 2 | Ν | 9 | 6 | F |
|---|---|---|---|---|

BeRex ●website: www.berex.com