

TPS65216

SLDS187-OCTOBER 2018

TPS65216 Power Management for AMIC110 and AMIC120 Processors

1 Device Overview

1.1 Features

- Three Adjustable Step-Down Converters With Integrated Switching FETs (DCDC1, DCDC2, DCDC3):
 - DCDC1: 1.1-V Default, up to 1.8 A
 - DCDC2: 1.1-V Default, up to 1.8 A
 - DCDC3: 1.2-V Default, up to 1.8 A
 - VIN Range From 3.6 V to 5.5 V
 - Adjustable Output Voltage Range 0.85 V to 1.675 V (DCDC1 and DCDC2)
 - Adjustable Output Voltage Range 0.9 V to 3.4 V (DCDC3)
 - Power Save Mode at Light Load Current
 - 100% Duty Cycle for Lowest Dropout
 - Active Output-Discharge When Disabled
- One Adjustable Buck-Boost Converter With Integrated Switching FETs (DCDC4):
 - DCDC4: 3.3 V Default, up to 1.6 A
 - VIN Range From 3.6 V to 5.5 V
 - Adjustable Output Voltage Range 1.175 V to 3.4 V
 - Active Output-Discharge When Disabled

1.2 Applications

- Industrial Automation
- Electronic Point of Sale (ePOS)
- · Test and Measurement
- Personal Navigation

- Adjustable General-Purpose LDO (LDO1)
 - LDO1: 1.8-V Default up to 400 mA
 - VIN Range From 1.8 V to 5.5 V
 - Adjustable Output Voltage Range From 0.9 V to 3.4 V
 - Active Output-Discharge When Disabled
- High-Voltage Load Switch (LS) With 100-mA or 500-mA Selectable Current Limit
 - VIN Range From 1.8 V to 10 V
 - 500-mΩ (Max) Switch Impedance
- Supervisor With Built-in Supervisor Function Monitors
 - DCDC1, DCDC2 ±4% Tolerance
 - DCDC3, DCDC4 ±5% Tolerance
 - LDO1 ±5% Tolerance
- Protection, Diagnostics, and Control:
 - Undervoltage Lockout (UVLO)
 - Always-on Push-Button Monitor
 - Overtemperature Warning and Shutdown
 - I²C Interface (Address 0x24) (See *Timing Requirements* for I²C Operation at 400 kHz)
- Industrial Communications
- Backplane I/O
- Connected Industrial Drives

1.3 Description

The TPS65216 is a single chip, power-management IC (PMIC) specifically designed to support the AMIC110 and AMIC120 line of processors in line-powered (5 V) applications. The device is characterized across a –40°C to +105°C temperature range, making it suitable for various industrial applications.

The TPS65216 is specifically designed to provide power management for all the functionalities of the AMIC110 and AMIC120 processors. The DC/DC converters DCDC1 through DCDC4 are intended to power the core, MPU, DDR memory, and 3.3-V analog and I/O, respectively. LDO1 provides the 1.8-V analog and I/O for the processor. GPIO2 allows for warm reset of the DCDC1 and DCDC2 converters. The I²C interface allows the user to enable and disable all voltage regulators, the load switch, and GPIOs. Additionally, UVLO and supervisor voltage thresholds, power-up sequence, and power-down sequence can be programmed through I²C. Interrupts for overtemperature, overcurrent, and undervoltage can be monitored as well. The supervisor monitors DCDC1 through DCDC4 and LDO1. The supervisor has two settings, one for typical undervoltage tolerance (STRICT = 0b), and one for tight undervoltage and overvoltage tolerances (STRICT = 1b). A power-good signal indicates proper regulation of the five voltage regulators.

Three hysteretic step-down converters are targeted at providing power for the processor core, MPU, and DDRx memory. The default output voltages for each converter can be adjusted through the I²C interface. DCDC1 and DCDC2 feature dynamic voltage scaling to provide power at all operating points of the processor. DCDC1 and DCDC2 also have programmable slew rates to help protect processor components. DCDC3 remains powered while the processor is in a sleep mode to maintain power to DDRx memory.

The TPS65216 device is available in a 48-pin VQFN package (6 mm x 6 mm, 0.4-mm pitch).

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TPS65216	VQFN (48)	6.00 mm × 6.00 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

1.4 Simplified Schematic

Copyright © 2018, Texas Instruments Incorporated

Figure 1-1. Simplified Schematic

Table of Contents

1	Devi	ce Overview	1		4.5	Register Maps	40
	1.1	Features	1	5	App	lication and Implementation	81
	1.2	Applications	1		5.1	Application Information	81
	1.3	Description	1		5.2	Typical Application	82
	1.4	Simplified Schematic	3	6	Pow	er Supply Recommendations	85
2	Pin (Configuration and Functions	<u>5</u>	7		out	
	2.1	Pin Functions	<u>5</u>		7.1	Layout Guidelines	<u>85</u>
3	Spec	cifications	<u>7</u>		7.2	Layout Example	86
	3.1	Absolute Maximum Ratings	7	8	Devi	ice and Documentation Support	87
	3.2	ESD Ratings	7		8.1	Device Support	87
	3.3	Recommended Operating Conditions	8		8.2	Documentation Support	87
	3.4	Thermal Information	8		8.3	Receiving Notification of Documentation Updates	87
	3.5	Electrical Characteristics	9		8.4	Community Resources	87
	3.6	Timing Requirements	<u>15</u>		8.5	Trademarks	87
	3.7	Typical Characteristics	17		8.6	Electrostatic Discharge Caution	88
4	Deta	iled Description1	8		8.7	Glossary	88
	4.1	Overview	18	9	Mec	hanical, Packaging, and Orderable	
	4.2	Functional Block Diagram	19		Info	rmation	88
	4.3	Feature Description	20		9.1	Package Option Addendum	<u>89</u>
	4.4	Device Functional Modes	38				

2 Pin Configuration and Functions

Figure 2-1 shows the 48-pin RSL Plastic Quad Flatpack No-Lead.

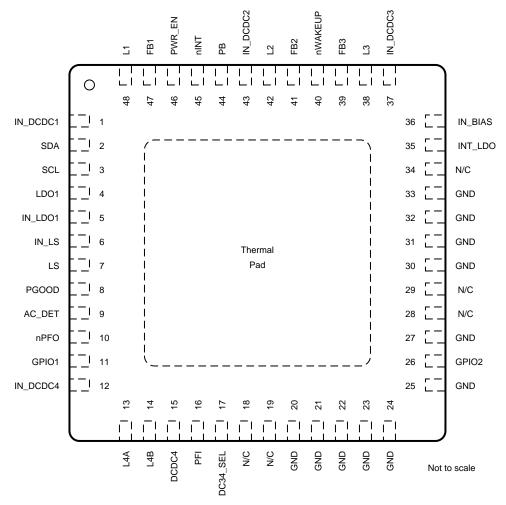


Figure 2-1. 48-Pin RSL VQFN With Exposed Thermal Pad (Top View, 6 mm × 6 mm × 1 mm With 0.4-mm Pitch)

2.1 Pin Functions

Pin Functions

	PIN		DESCRIPTION
NO.	NAME	TYPE	DESCRIPTION
1	IN_DCDC1	Р	Input supply pin for DCDC1.
2	SDA	I/O	Data line for the I ² C interface. Connect to pullup resistor.
3	SCL	I	Clock input for the I ² C interface. Connect to pullup resistor.
4	LDO1	0	Output voltage pin for LDO1. Connect to capacitor.
5	IN_LDO1	Р	Input supply pin for LDO1.
6	IN_LS	Р	Input supply pin for the load switch.
7	LS	0	Output voltage pin for the load switch. Connect to capacitor.
8	PGOOD	0	Power-good output (configured as open drain). Pulled low when either DCDC1-4 or LDO1 are out of regulation. Load switch does not affect PGOOD pin.
9	AC_DET	I	AC monitor input and enable for DCDC1-4, LDO1 and load switch. See Section 4.4.1 for details. Tie pin to IN_BIAS if not used.

Pin Functions (continued)

PIN					
NO.	NAME	TYPE	DESCRIPTION		
10	nPFO	0	Power-fail comparator output, deglitched (open drain). Pin is pulled low when PFI input is below power-fail threshold.		
11	GPIO1	I/O	General-purpose, open-drain output. See Section 4.3.1.11 for more information.		
12	IN_DCDC4	Р	Input supply pin for DCDC4.		
13	L4A	Р	Switch pin for DCDC4. Connect to inductor.		
14	L4B	Р	Switch pin for DCDC4. Connect to inductor.		
15	DCDC4	Р	Output voltage pin for DCDC4. Connect to capacitor.		
16	PFI	I	Power-fail comparator input. Connect to resistor divider.		
17	DC34_SEL	I	Power-up default selection pin for DCDC3 or DCDC4. Power-up default is programmed by a resistor connected to ground. See Section 4.3.1.10 for resistor options.		
18	N/C	_	No connect. Leave pin floating.		
19	N/C	_	No connect. Leave pin floating.		
20	GND				
21	GND				
22	GND	_	Connect pin to ground.		
23	GND		Connect pin to ground.		
24	GND				
25	GND				
26	GPIO2	I/O	Pin can be configured as warm reset (negative edge) for DCDC1/2 or as a general-purpose, open-drain output. See Section 4.3.1.11 for more details.		
27	GND	-	Connect pin to ground.		
28	N/C		No connect. Leave pin floating.		
29	N/C		No connect. Leave pin noating.		
30	GND				
31	GND		Connect pin to ground.		
32	GND		Connect pin to ground.		
33	GND				
34	N/C	_	No connect. Leave pin floating.		
35	INT_LDO	Р	Internal bias voltage. Connect to a $1-\mu F$ capacitor. TI does not recommended connecting any external load to this pin.		
36	IN_BIAS	Р	Input supply pin for reference system.		
37	IN_DCDC3	Р	Input supply pin for DCDC3.		
38	L3	Р	Switch pin for DCDC3. Connect to inductor.		
39	FB3	I	Feedback voltage pin for DCDC3. Connect to output capacitor.		
40	nWAKEUP	0	Signal to SOC to indicate a power on event (active low, open-drain output).		
41	FB2	I	Feedback voltage pin for DCDC2. Connect to output capacitor.		
42	L2	Р	Switch pin for DCDC2. Connect to inductor.		
43	IN_DCDC2	Р	Input supply pin for DCDC2.		
44	РВ	I	Push-button monitor input. Typically connected to a momentary switch to ground (active low). See Section 4.4.1 for details.		
45	nINT	0	Interrupt output (active low, open drain). Pin is pulled low if an interrupt bit is set. The pin returns to Hi-Z state after the bit causing the interrupt has been read. Interrupts can be masked.		
46	PWR_EN	I	Power enable input for DCDC1-4, LDO1 and load switch. See Section 4.4.1 for details.		
47	FB1	I	Feedback voltage pin for DCDC1. Connect to output capacitor.		
48	L1	Р	Switch pin for DCDC1. Connect to inductor.		
_	Thermal Pad	Р	Power ground and thermal relief. Connect to ground plane.		

3 Specifications

3.1 Absolute Maximum Ratings

Operating under free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT
Supply voltage		IN_BIAS, IN_LDO1, IN_DCDC1, IN_DCDC2, IN_DCDC3, IN_DCDC4	-0.3	7	<
		IN_LS	-0.3	11.2	
	Input voltage	All pins unless specified separately	-0.3	7	٧
	Output voltage	All pins unless specified separately	-0.3	7	٧
	Sink current	PGOOD, nWAKEUP, nINT, nPFO, SDA, GPIO1, GPIO2		6	mA
T_A	Operating ambient temperature		-40	105	°C
T_{J}	Junction temperature		-40	125	°C
T _{stg}	Storage temperatu	ıre	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

3.2 ESD Ratings

			VALUE	UNIT
V/EOD)	Electrostatic	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	V
	discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

TEXAS INSTRUMENTS

3.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
Supply voltage, IN_BIAS		3.6	5.5	V
Input voltage for DCDC1, DCDC2,	DCDC3, DCDC4	3.6	5.5	V
Input voltage for LDO1		1.8	5.5	V
Input voltage for LS		1.8	10	V
Output voltage for DCDC1		0.85	1.675	V
Output voltage for DCDC2		0.85	1.675	V
Output voltage for DCDC3		0.9	3.4	V
Output voltage for DCDC4		1.175	3.4	V
Output voltage for LDO1		0.9	3.4	V
Output current for DCDC1, DCDC	2, DCDC3	0	1.8	Α
	VIN_DCDC4 = 2.8 V		1	
Output current for DCDC4	VIN_DCDC4 = 3.6 V		1.3	Α
	VIN_DCDC4 = 5 V		1.6	
Output current for LDO1		0	400	mA
Output ourrent for LC	VIN_LS > 2.3 V	0	900	A
Output current for LS	VIN_LS ≤ 2.3 V	0	475	mA

3.4 Thermal Information

		TPS65216	
	THERMAL METRIC ⁽¹⁾	RSL (VQFN)	UNIT
		16 PINS	
$R_{\theta JC(top)}$	Junction-to-case (top)	17.2	°C/W
$R_{\theta JB}$	Junction-to-board	5.8	°C/W
$R_{\theta JA}$	Thermal resistance, junction to ambient. JEDEC 4-layer, high-K board.	30.6	°C/W
Ψ_{JT}	Junction-to-package top	0.2	°C/W
Ψ_{JB}	Junction-to-board	5.6	°C/W
R ₀ JC(bot)	Junction-to-case (bottom)	1.5	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

3.5 Electrical Characteristics

	PARAMETER	TEST COND	DITIONS	MIN	TYP	MAX	UNIT
INPUT VOL	TAGE AND CURRENTS						
		Normal operation		3.6		5.5	.,
V _{IN_BIAS}	Input supply voltage range	EEPROM programming		4.5		5.5	V
	Deglitch time				5		ms
I _{OFF}	OFF state current, total current into IN_BIAS, IN_DCDCx, IN_LDO1, IN_LS	V _{IN} = 3.6 V; All rails disabled T _J = 0°C to 85°C	i.		5		μА
I _{SUSPEND}	SUSPEND current, total current into IN_BIAS, IN_DCDCx, IN_LDO1, IN_LS	V _{IN} = 3.6 V; DCDC3 enabled load. All other rails disabled. T _J = 0°C to 105°C	d, low-power mode, no		220		μA
INT_LDO							
V	Output voltage				2.5		V
V_{INT_LDO}	DC accuracy	I _{OUT} < 10 mA		-2%		2%	
I _{OUT}	Output current range	Maximum allowable external	load	0		10	mA
I _{LIMIT}	Short circuit current limit	Output shorted to GND			23		mA
t _{HOLD}	Hold-up time	Measured from V _{INT_LDO} = to V _{INT_LDO} = 1.8 V All rails enabled before power off, V _{IN_BIAS} = 2.8 V to 0 V in < No external load on INT_LDO C _{INT_IDO} = , see Table 5-3		150			ms
Nominal output capacitor value		Ceramic, X5R or X7R, see Table 5-3		0.1	1	22	μF
C _{OUT}	Tolerance	Ceramic, X5R or X7R, rated	voltage ≥ 6.3 V	-20%		20%	
DCDC1 (1.1	-V BUCK)	1					
V _{IN_DCDC1}	Input voltage range	V _{IN BIAS} > V _{UVLO}		3.6		5.5	V
	Output voltage range	Adjustable through I ² C		0.85		1.675	V
V _{DCDC1}	DC accuracy	$3.6 \text{ V} \le \text{V}_{\text{IN}} \le 5.5 \text{ V}; 0 \text{ A} \le \text{I}_{\text{Ol}}$	-2%		2%		
	Dynamic accuracy	In respect to nominal output voltage $I_{OUT} = 50$ mA to 450 mA in < 1 μ s $C_{OUT} \ge 10$ μ F, over full input voltage range		-2.5%		2.5%	
I _{OUT}	Continuous output current	V _{IN DCDC1} > 3.6 V				1.8	Α
IQ	Quiescent current	Total current from I _{N_DCDC1} particular switching, no load	oin; Device not		25	50	μΑ
Б	High-side FET on resistance	V _{IN_DCDC1} = 3.6 V			230	355	0
$R_{DS(ON)}$	Low-side FET on resistance	V _{IN_DCDC1} = 3.6 V			90	145	mΩ
	High-side current limit	V _{IN_DCDC1} = 3.6 V			2.8		
I _{LIMIT}	Low-side current limit	$V_{IN_DCDC1} = 3.6 \text{ V}$			3.1		Α
	5		STRICT = 0b	88.5%	90%	91.5%	
	Power-good threshold	V _{OUT} falling	STRICT = 1b	96%	96.5%	97%	
		.,	STRICT = 0b	3.8%	4.1%	4.4%	
	Hysteresis	V _{OUT} rising	STRICT = 1b		0.25%		
V_{PG}			STRICT = 0b		1		ms
-	.	V _{OUT} falling	STRICT = 1b		50		μs
	Deglitch		STRICT = 0b		10		μs
		V _{OUT} rising	STRICT = 1b		10		μs
	Time-out				5		ms
	Overvoltage detection threshold	V _{OUT} rising, STRICT = 1b		103%	103.5%	104%	
V _{OV}	Hysteresis	V _{OUT} falling, STRICT = 1b			0.25%		
.	Deglitch	V _{OUT} rising, STRICT = 1b V _{OUT} rising, STRICT = 1b			50		μs
I _{INRUSH}	Inrush current	V _{IN DCDC1} = 3.6 V; C _{OUT} = 10	0 μF to 100 μF			500	mA

TEXAS INSTRUMENTS

Electrical Characteristics (continued)

	PARAMETER	TEST CONDITI	IONS	MIN	TYP	MAX	UNIT
R _{DIS}	Discharge resistor			150	250	350	Ω
	Nominal inductor value	See Table 5-2		1	1.5	2.2	μΗ
L	Tolerance			-30%		30%	
C _{OUT}	Output capacitance value	Ceramic, X5R or X7R, see Tab	le 5-3	10	22	100(1)	μF
DCDC2 (1.1	-V BUCK)						I
V _{IN_DCDC2}	Input voltage range	V _{IN_BIAS} > V _{UVLO}		3.6		5.5	V
	Output voltage range	Adjustable through I ² C		0.85		1.675	V
V_{DCDC2}	DC accuracy	3.6 V ≤ V _{IN} ≤ 5.5 V; 0 A ≤ I _{OUT} :	≤ 1.8 A	-2%		2%	
	Dynamic accuracy	In respect to nominal output vol I_{OUT} = 50 mA to 450 mA in < 1 C_{OUT} \geq 10 μ F, over full input vo	ltage µs	-2.5%		2.5%	
I _{OUT}	Continuous output current	V _{IN_DCDC2} > 3.6 V				1.8	Α
IQ	Quiescent current	Total current from I _{N_DCDC2} pin; switching, no load	Device not		25	50	μΑ
D	High-side FET on resistance	$V_{IN_DCDC2} = 3.6 \text{ V}$			230	355	
R _{DS(ON)}	Low-side FET on resistance	V _{IN_DCDC2} = 3.6 V			90	145	mΩ
	High-side current limit	$V_{IN_DCDC2} = 3.6 \text{ V}$			2.8		^
I _{LIMIT}	Low-side current limit	$V_{IN_DCDC2} = 3.6 \text{ V}$			3.1		Α
	Power-good threshold	V falling	STRICT = 0b	88.5%	90%	91.5%	
		V _{OUT} falling	STRICT = 1b	96%	96.5%	97%	
		V _{OUT} rising	STRICT = 0b	3.8%	4.1%	4.4%	
	Hysteresis		STRICT = 1b		0.25%		
V	Deglitch	\/ falling	STRICT = 0b		1		ms
V_{PG}		V _{OUT} falling	STRICT = 1b		50		μs
			STRICT = 0b		10		μs
		V _{OUT} rising STRICT = 1b			10		μs
	Time-out	Occurs at enable of DCDC2 and register write (register 0x17)		5		ms	
	Overvoltage detection threshold	V _{OUT} rising, STRICT = 1b		103%	103.5%	104%	
V_{OV}	Hysteresis	V _{OUT} falling, STRICT = 1b			0.25%		
	Deglitch	V _{OUT} rising, STRICT = 1b			50		μs
I _{INRUSH}	Inrush current	$V_{IN\ DCDC2} = 3.6\ V;\ C_{OUT} = 10\ \mu$	F to 100 μF			500	mA
R _{DIS}	Discharge resistor		·	150	250	350	Ω
	Nominal inductor value	See Table 5-2		1	1.5	2.2	μH
L	Tolerance			-30%		30%	
C _{OUT}	Output capacitance value	Ceramic, X5R or X7R, see Tab	le 5-3	10	22	100 ⁽¹⁾	μF
DCDC3 (1.2				_1			
V _{IN_DCDC3}	Input voltage range	V _{IN BIAS} > V _{UVLO}		3.6		5.5	V
	Output voltage range	Adjustable through I ² C		0.9		3.4	V
V_{DCDC3}	DC accuracy	3.6 V ≤ V _{IN} ≤ 5.5 V; 0 A ≤ I _{OUT} : V _{IN DCDC3} ≥ (V _{DCDC3} + 700 mV)	-2%		2%		
	Dynamic accuracy	In respect to nominal output vol I_{OUT} = 50 mA to 450 mA in < 1 C_{OUT} \geq 10 μ F, over full input vo	-2.5%		-2.5%		
I _{OUT}	Continuous output current	V _{IN_DCDC3} > 3.6 V				1.8	Α
IQ	Quiescent current	Total current from IN_DCDC3 p Device not switching, no load	oin;		25	50	μΑ

⁽¹⁾ $500-\mu F$ of remote capacitance can be supported for DCDC1/2.

Electrical Characteristics (continued)

	PARAMETER	TEST COI	NDITIONS	MIN	TYP	MAX	UNIT
D	High-side FET on resistance	$V_{IN_DCDC3} = 3.6 \text{ V}$			230	345	~ 0
R _{DS(ON)}	Low-side FET on resistance	V _{IN_DCDC3} = 3.6 V		100	150	mΩ	
1	High-side current limit	$V_{IN_DCDC3} = 3.6 \text{ V}$		2.8		^	
I _{LIMIT}	Low-side current limit	V _{IN_DCDC3} = 3.6 V			3		Α
	Davis and threehold	V fallian	STRICT = 0b	88.5%	90%	91.5%	
	Power-good threshold	V _{OUT} falling	STRICT = 1b	95%	95.5%	96%	
	Lhatarasia	V riging	STRICT = 0b	3.8%	4.1%	4.4%	
	Hysteresis	V _{OUT} rising	STRICT = 1b		0.25%		
V_{PG}		V folling	STRICT = 0b		1		ms
* PG	Doglitch	V _{OUT} falling	STRICT = 1b		50		μs
	Deglitch	V riging	STRICT = 0b		10		μs
		V _{OUT} rising	STRICT = 1b		10		μs
	Time-out	Occurs at enable of DCDC register write (register 0x1		5		ms	
	Overvoltage detection threshold	V _{OUT} rising, STRICT = 1b		104%	104.5%	105%	
V_{OV}	Hysteresis	V _{OUT} falling, STRICT = 1b			0.25%		
	Deglitch	V _{OUT} rising, STRICT = 1b			50		μs
I _{INRUSH}	Inrush current	$V_{IN_DCDC3} = 3.6 \text{ V; } C_{OUT} =$	10 μF to 100 μF			500	mA
R _{DIS}	Discharge resistor			150	250	350	Ω
L	Nominal inductor value	See Table 5-2		1.0	1.5	2.2	μH
L	Tolerance		-30%		30%		
C _{OUT}	Output capacitance value	Ceramic, X5R or X7R, see	Table 5-3	10	22	100	μF
DCDC4 (3.	3-V BUCK-BOOST) / ANALOG AND	0 1/0					
V _{IN_DCDC4}	Input voltage operating range	$V_{IN_BIAS} > V_{UVLO}, -40$ °C to	+105°C	3.6		5.5	V
V_{DCDC4}	Output voltage range	Adjustable through I ² C		1.175		3.3	V
		$4.2 \text{ V} \le \text{V}_{\text{IN}} \le 5.5 \text{ V};$ $3 \text{ V} < \text{V}_{\text{OUT}} \le 3.4 \text{ V}$ $0 \text{ A} \le \text{I}_{\text{OUT}} \le 1.6 \text{ A}$		-2%		2%	
V	D0	$3.3 \text{ V} \le \text{V}_{\text{IN}} \le 4.2 \text{ V};$ $3 \text{ V} < \text{V}_{\text{OUT}} \le 3.4 \text{ V}$ $0 \text{ A} \le \text{I}_{\text{OUT}} \le 1.3 \text{ A}$		-2%		2%	
V _{DCDC4}	DC accuracy	2.8 $V \le V_{IN} \le 5.5 V$; 1.65 $V < V_{OUT} \le 3 V$ 0 $A \le I_{OUT} \le 1 A$		-2%		2%	
		$2.8 \text{ V} \le \text{V}_{\text{IN}} \le 5.5 \text{ V};$ $1.175 \text{ V} < \text{V}_{\text{OUT}} \le 1.65 \text{ V}$ $0 \text{ A} \le \text{I}_{\text{OUT}} \le 1 \text{ A}$		-2.5%		2.5%	
	Output voltage ripple	PFM mode enabled; $4.2 \text{ V} \le \text{V}_{\text{IN}} \le 5.5 \text{ V};$ $0 \text{ A} \le \text{I}_{\text{OUT}} \le \text{V}_{\text{OUT}} = 3.3 \text{ V}$					mV_{pp}
	Minimum duty cycle in step- down mode					18%	
		V _{IN_DCDC4} = 2.8 V, V _{OUT} = 3.3 V				1	
I_{OUT}	Continuous output current	V _{IN_DCDC4} = 3.6 V, V _{OUT} = 3.3 V				1.3	Α
		$V_{IN_DCDC4} = 5 \text{ V}, V_{OUT} = 3$			1.6		
I _Q	Quiescent current	Total current from IN_DCDC4 pin; Device not switching, no load			25	50	μΑ
f _{SW}	Switching frequency				2400	_	kHz

INSTRUMENTS

Electrical Characteristics (continued)

over operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
	High-side FET on resistance	V - 26 V	IN_DCDC4 to L4A		166		
D		$V_{IN_DCDC3} = 3.6 \text{ V}$	L4B to DCDC4		149		
$R_{DS(ON)}$	Low-side FET on resistance	V 26V	L4A to GND		142	190	mΩ
	Low-side FET on resistance	$V_{IN_DCDC3} = 3.6 \text{ V}$	L4B to GND		144	190	
I _{LIMIT}	Average switch current limit	$V_{IN_DCDC4} = 3.6 \text{ V}$			3000		mA
	Power-good threshold	\/ folling	STRICT = 0b	88.5%	90%	91.5%	
	Fower-good threshold	V _{OUT} falling	STRICT = 1b	95%	95.5%	96%	
V_{PG}	Lhyotorooio	V riging	STRICT = 0b	3.8%	4.1%	4.4%	
	Hysteresis	V _{OUT} rising	STRICT = 1b		0.25%		
	Deglitch	V falling	STRICT = 0b		1		ms
		V _{OUT} falling	STRICT = 1b		50		μs
		\/ riging	STRICT = 0b		10		μs
		V _{OUT} rising STRICT = 1b			10		μs
	Time-out	Occurs at enable of DCDC4 an register write (register 0x19)	Occurs at enable of DCDC4 and after DCDC4 register write (register 0x19)				ms
	Overvoltage detection threshold	V _{OUT} rising, STRICT = 1b		104%	104.5%	105%	
V_{OV}	Hysteresis	V _{OUT} falling, STRICT = 1b			0.25%		
	Deglitch	V _{OUT} rising, STRICT = 1b			50		μs
I _{INRUSH}	Inrush current	V _{IN_DCDC4} = 3.6 V ≤ V _{INDCDC4} ≤ ≤ 100 μF	5.5 V; 40 μF ≤ C _{OUT}			500	mA
R _{DIS}	Discharge resistor		_	150	250	350	Ω
	Nominal inductor value	See Table 5-2		1.2	1.5	2.2	μΗ
L	Tolerance			-30%		30%	
C _{OUT}	Output capacitance value	Ceramic, X5R or X7R, see Tab	le 5-3	40	80	100	μF

12

Electrical Characteristics (continued)

•	ting free-air temperature range (PARAMETER	TEST COND	ITIONS	MIN	TYP	MAX	UNIT
LDO1 (1.8-		TEOT CONE	1110140	IVIIIV	• • • • • • • • • • • • • • • • • • • •	WAX	Oili
V _{IN_LDO1}	Input voltage range	V _{IN_BIAS} > V _{UVLO}		1.8		5.5	V
I _Q	Quiescent current	No load	1.0	35	0.0	μA	
iQ	Output voltage range	Adjustable through I ² C		0.9		3.4	V
V_{OUT}	DC accuracy	, ,	-2%		2%	•	
	Do decardey	$V_{OUT} + 0.2 \text{ V} \le V_{IN} \le 5.5 \text{ V}; 0 \text{ A} \le I_{OUT} \le 200 \text{ mA}$ $V_{IN_LDO1} - V_{DO} = V_{OUT}$		0		200	
I_{OUT}	Output current range	$V_{\text{IN LDO1}} > 2.7 \text{ V, } V_{\text{OUT}} = 1.8$	V	0		400	mA
I _{LIMIT}	Short circuit current limit	Output shorted to GND	•	445	550	400	mA
V _{DO}	Dropout voltage	$I_{OUT} = 100 \text{ mA}, V_{IN} = 3.6 \text{ V}$		110		200	mV
*DO	2.opout venage	1001 = 100 111/1, 1/10 = 0.0 1	STRICT = 0b	86%	90%	94%	
		V _{OUT} falling	STRICT = 1b	95%	95.5%	96%	
	Power-good threshold		STRICT = 0b	3%	4%	5%	
		Hysteresis, V _{OUT} rising	STRICT = 1b	370	0.25%	370	
V_{PG}			STRICT = 0b		1		ms
▼PG		V _{OUT} falling	STRICT = 1b		50		μs
	Deglitch		STRICT = 0b		10		μs
		V _{OUT} rising	STRICT = 1b		10		μs
	Time-out		011101 = 15		5		ms
	Overvoltage detection threshold	V _{OUT} rising, STRICT = 1b		104%	104.5%	105%	1113
	Hysteresis	V _{OUT} falling, STRICT = 1b		10470	0.25%	10070	
V_{OV}	Trystereolo	V _{OUT} rising, STRICT = 1b			50		μs
	Deglitch	V _{OUT} falling, STRICT = 1b			1		ms
R _{DIS}	Discharge resistor	V _{OUT} family, STRICT = 15		150	250	380	Ω
C _{OUT}	Output capacitance value	Ceramic, X5R or X7R	100	22	100	μF	
LOAD SWI	<u> </u>	Octamo, Nort of Att				100	μι
V _{IN_LS}	Input voltage range	V _{IN_BIAS} > V _{UVLO}		1.8		10	V
* IIN_LS	mpar voltage range	V _{IN_BIAS} = 9 V, I _{OUT} = 500 mA, over full temperature range		1.0			
						440	
		V _{IN_LS} = 5 V, I _{OUT} = 500 mA, over full temperature				526	
R _{DS(ON)}	Static on resistance	range				020	mΩ
20(0.1)		$V_{IN_LS} = 2.8 \text{ V}, I_{OUT} = 200 \text{ m/s}$	A, over full temperature			656	
			A over full temperature				
		$V_{\text{IN_LS}}$ = 1.8 V, I_{OUT} = 200 mA, over full temperature range				910	
			LSILIM[1:0] = 00b	98		126	
		V _{IN LS} > 2.3 V,	LSILIM[1:0] = 01b	194		253	
		Output shorted to GND	LSILIM[1:0] = 10b	475		738	
I _{LIMIT}	Short circuit current limit		LSILIM[1:0] = 11b	900		1234	mA
			LSILIM[1:0] = 00b	98		126	
		V _{IN_LS} ≤ 2.3 V, Output shorted to GND	LSILIM[1:0] = 01b	194		253	
		LSILIM[1:0] = 10b		475		738	
t _{BLANK}	Interrupt blanking time	Output shorted to GND until		15		ms	
R _{DIS}	Internal discharge resistor at output ⁽²⁾	LSDCHRG = 1	650	1000	1500	Ω	
-	Overtemperature shutdown ⁽³⁾			125	132	139	°C
T _{OTS}	Hysteresis				10		°C

⁽²⁾ Discharge function disabled by default.(3) Switch is temporarily turned OFF if input voltage drops below UVLO threshold.

TEXAS INSTRUMENTS

Electrical Characteristics (continued)

	PARAMETER	TEST CONDI	TIONS	MIN	TYP	MAX	UNIT
C _{OUT}	Nominal output capacitance value	Ceramic, X5R or X7R, see Ta	1	100	220	μF	
I/O LEVELS	S AND TIMING CHARACTERISTIC	S		1			
		PGDLY[1:0] = 00b			10		
PG_{DLY}	PGOOD delay time	PGDLY[1:0] = 01b			20		ms
	1 GOOD delay time	PGDLY[1:0] = 10b			50		1113
		PGDLY[1:0] = 11b			150		
		PB input	Rising edge		100		ms
		РБ Іприі	Falling edge		50		ms
		AC DET input	Rising edge		100		μs
		AC_DET input	Falling edge		10		ms
ı	Doublitch time	DWD FN innet	Rising edge		10		ms
t _{DG}	Deglitch time	PWR_EN input	Falling edge		100		μs
		ODIO4	Rising edge		1		ms
		GPIO1	Falling edge		1		ms
		GPIO2	Rising edge		5		μs
			Falling edge		5		μs
	Reset time	PB input held low TRST = 0b TRST = 1b			8		
t _{RESET}				15		S	
		SCL, SDA, GPIO1, GPIO2		1.3			
V_{IH}	High level input voltage	AC_DET, PB		0.66 × IN_BIAS			V
		PWR_EN		1.3			
V _{IL}	Low level input voltage	SCL, SDA, PWR_EN, AC_DE	T, PB, GPIO1, GPIO2	0		0.4	V
V _{OL}	Low level output voltage	nWAKEUP, nINT, SDA, PGOO I _{SINK} = 2 mA		0		0.3	V
· OL	Low level output voltage	nPFO; I _{SINK} = 2 mA		0		0.35	
	Power-fail comparator threshold				800		mV
	Hysteresis	Input rising			40		mV
V_{PFI}	Accuracy			-4%		4%	
		Input falling			25		μs
	Deglitch	Input rising			10		ms
I _{DC34_SEL}	DC34_SEL bias current	Enabled only at power-up		10		μA	
200OLL		Threshold 1			100		
	DCDC3 / DCDC4 power-up default selection thresholds	Threshold 2			163		
		Threshold 3			275		
V _{DC34_SEL}		Threshold 4			400		mV
DOJ4_OLL		Threshold 5			575		
		Threshold 6			825		
		Threshold 7			1200		

Electrical Characteristics (continued)

over operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
		Setting 0	0	0	7.7	
		Setting 1		12.1		
		Setting 2		20		
	DCDC3 / DCDC4 power-up	Setting 3	30.9	31.6	32.3	
R _{DC34_SEL}	default selection resistor values	Setting 4		45.3		kΩ
		Setting 5				
		Setting 6		95.3		
		Setting 7		150		
	Input bias current	SCL, SDA, GPIO1 ⁽⁴⁾ , GPIO2 ⁽⁴⁾ ; V _{IN} = 3.3 V		0.01	1	μΑ
I _{BIAS}		PB, AC_DET, PFI; V _{IN} = 3.3 V			500	nA
I _{LEAK}	Pin leakage current	nINT, nWAKEUP, nPFO, PGOOD, PWR_EN, GPIO1 $^{(5)}$, GPIO2 $^{(5)}$ V _{OUT} = 3.3 V			500	nA
OSCILLATO	OR					
ſ	Oscillator frequency			2400		kHz
fosc	Frequency accuracy	$T_J = -40^{\circ}\text{C to } +105^{\circ}\text{C}$	-12%		12%	
T _{OTS}	Overtemperature shutdown	Increasing junction temperature	135	145	155	°C
	Hysteresis	Decreasing junction temperature		20		
т	High-temperature warning	Increasing junction temperature	90	100	110	°C
T _{WARN}	Hysteresis	Decreasing junction temperature		15		0

Timing Requirements 3.6

			MIN	NOM	MAX	UNIT
,	0.11.17			100		
f _{SCL}	Serial clock frequency	frequency				kHz
	find time (repeated) 6174x1 condition. After this period, the	SCL = 100 kHz	4			μs
t _{HD;STA}		SCL = 400 kHz	600			ns
	LOW region of the COL sheet	SCL = 100 kHz	4.7			
t_{LOW}	LOW period of the SCL clock	SCL = 400 kHz	1.3			μs
t _{HIGH}	I II Cilinaria de esta de COI e la ele	SCL = 100 kHz	4	4		μs
	HIGH period of the SCL clock	SCL = 400 kHz ⁽¹⁾	1			
t _{SU;STA}	Set-up time for a repeated START condition	SCL = 100 kHz	4.7			μs
		SCL = 400 kHz	600			ns
	Data hold time	SCL = 100 kHz	0		3.45	μs
t _{HD;DAT}		SCL = 400 kHz	0		900	ns
	Data ant un tima	SCL = 100 kHz	250			
t _{SU;DAT}	Data set-up time	SCL = 400 kHz	100			ns
	Dies time of both CDA and CCI simple	SCL = 100 kHz	1	1000		
t _r	Rise time of both SDA and SCL signals	SCL = 400 kHz			300	ns
	Eall time of both SDA and SCI pignals	SCL = 100 kHz			300	
t _f	Fall time of both SDA and SCL signals	SCL = 400 kHz			300	ns
	Set up time for STOD condition	SCL = 100 kHz	4			μs
t _{SU;STO}	Set-up time for STOP condition	SCL = 400 kHz	600			ns

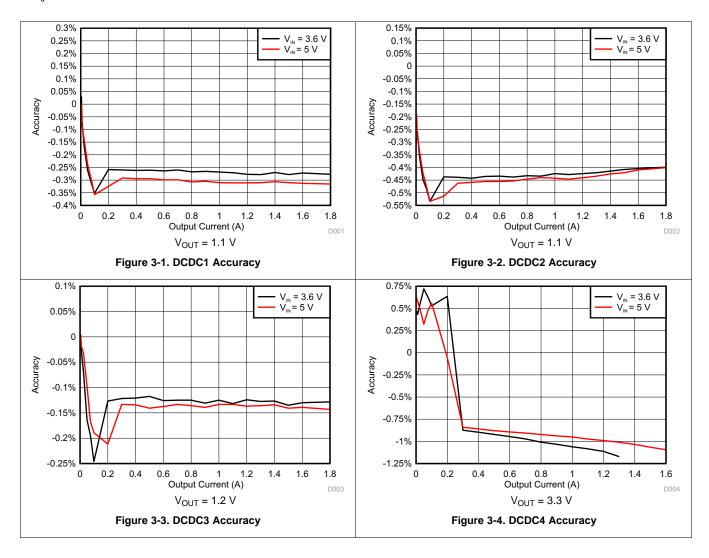
⁽¹⁾ The SCL duty cycle at 400 kHz must be > 40%.

Configured as input. Configured as output.

NSTRUMENTS

Timing Requirements (continued)

			MIN	NOM	MAX	UNIT
t _{BUF}	Bus free time between STOP and START condition	SCL = 100 kHz	4.7			μs
		SCL = 400 kHz	1.3			
t _{SP}	Pulse width of spikes which must be suppressed by the input filter	SCL = 100 kHz	(2)		(2)	
		SCL = 400 kHz	0		50	ns
C _b	Capacitive load for each bus line	SCL = 100 kHz			400	pF
		SCL = 400 kHz			400	


⁽²⁾ The inputs of I²C devices in Standard-mode do not require spike suppression.

16

www.ti.com SLDS187 – OCTOBER 2018

3.7 Typical Characteristics

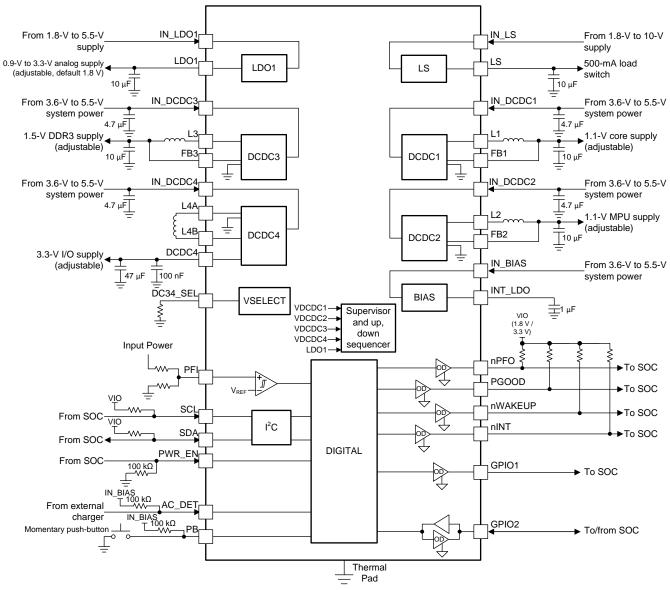
at T_J = 25°C unless otherwise noted

NSTRUMENTS

Detailed Description

4.1 Overview

The TPS65216 provides three step-down converters three general-purpose I/Os, one buck-boost converter, one load switch and one LDO. The system can be supplied by a regulated 5-V supply. The device is characterized across a -40°C to +105°C temperature range, which makes it suitable for various industrial applications.


The I²C interface provides comprehensive features for using TPS65216. All rails, the load switch, and GPIOs can be enabled / disabled. Voltage thresholds for the UVLO and supervisor can be customized. Power-up and power-down sequences can also be programmed through I²C. Interrupts for overtemperature, overcurrent, and undervoltage can be monitored for the load-switch.

The integrated voltage supervisor monitors DCDC 1-4 and LDO1. It has two settings; the standard settings only monitor for undervoltage, while the strict settings implement tight tolerances on both undervoltage and overvoltage. A power good signal is provided to report the regulation state of the five

The three hysteretic step-down converters can each supply up to 1.8 A of current. The default output voltages for each converter can be adjusted through the I²C interface. DCDC 1 and 2 feature dynamic voltage scaling with adjustable slew rate. The step-down converters operate in a low power mode at light load, and can be forced into PWM operation for noise sensitive applications.

18

4.2 Functional Block Diagram

Copyright © 2018, Texas Instruments Incorporated

TEXAS INSTRUMENTS

4.3 Feature Description

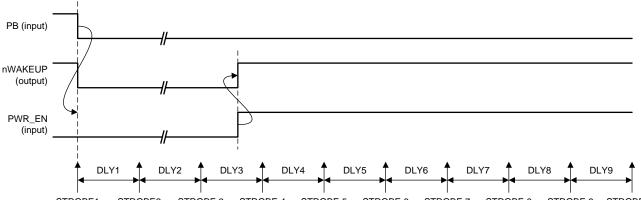
4.3.1 Wake-Up and Power-Up and Power-Down Sequencing

The TPS65216 has a predefined power-up and power-down sequence, which in a typical application does not need to be changed. The user can define custom sequences with I²C. The power-up sequence is defined by a series of ten strobes and nine delay times. Each output rail is assigned to a strobe to determine the order of enabling rails. A single rail is assigned to only one strobe, but multiple rails can be assigned to the same strobe. The delay times between strobes are between 2 ms and 5 ms.

4.3.1.1 Power-Up Sequencing

When the power-up sequence initiates, STROBE1 occurs, and any rail assigned to this strobe is enabled. After a delay time of DLY1, STROBE2 occurs and the rail assigned to this strobe is powered up. The sequence continues until all strobes occur and all DLYx times execute. Strobe assignments and delay times are defined in the SEQx registers, and are changed under I²C control. The power-up sequence executes if one of the following events occurs:

- From the OFF state:
 - The push-button (PB) is pressed (falling edge on PB) OR
 - The AC_DET pin is pulled low (falling edge) OR
 - The PWR_EN is asserted (driven to high-level) OR
 - The main power is connected (IN BIAS) and AC DET is grounded AND
 - The device is not in undervoltage lockout (UVLO) or overtemperature shutdown (OTS).
- · From the PRE OFF state:
 - The PB is pressed (falling edge on PB) OR
 - The AC_DET pin is pulled low (falling edge) OR
 - PWR EN is asserted (driven to high-level) AND
 - The device is not in UVLO or OTS.
- From the SUSPEND state:
 - The PB is pressed (falling edge on PB) OR
 - The AC_DET pin is pulled low (falling edge) OR
 - The PWR_EN pin is pulled high (level sensitive) AND
 - The device is not in UVLO or OTS.


When a power-up event is detected, the device enters a WAIT_PWR_EN state and triggers the power-up sequence. The device remains in WAIT_PWR_EN as long as the PWR_EN and either the PB or AC_DET pin are held low. If both, the PB and AC_DET return to logic-high state and the PWR_EN pin has not been asserted within 20 s of entering WAIT_PWR_EN state, the power-down sequence is triggered and the device returns to OFF state. Once PWR_EN is asserted, the device advances to ACTIVE state, which is functionally equivalent to WAIT_PWR_EN. However, the AC_DET pin is ignored and power-down is controlled by the PWR_EN pin only.

Rails not assigned to a strobe (SEQ = 0000b) are not affected by power-up and power-down sequencing and remain in their current ON/OFF state regardless of the sequencer. A rail can be enabled/disabled at any time by setting the corresponding enable bit in the ENABLEx register, with the exception that the ENABLEx register cannot be accessed while the sequencer is active. Enable bits always reflect the current enable state of the rail, for example the sequencer sets and resets the enable bits for the rails under its control.

NOTE

The power-up sequence is defined by strobes and delay times, and can be triggered by the PB, AC_DET (not shown, same as PB), or PWR_EN pin.

STROBE1 STROBE2 STROBE 3 STROBE 4 STROBE 5 STROBE 6 STROBE 7 STROBE 8 STROBE 9 STROBE 10 SEQ = 0001b SEQ = 0011b SEQ = 0101b SEQ = 0101b SEQ = 0111b SEQ = 1000b SEQ = 1001b SEQ = 1010b Push-button deglitch time is not shown.

Figure 4-1. Power-Up Sequences from OFF or SUSPEND State;
PB is Power-Up Event

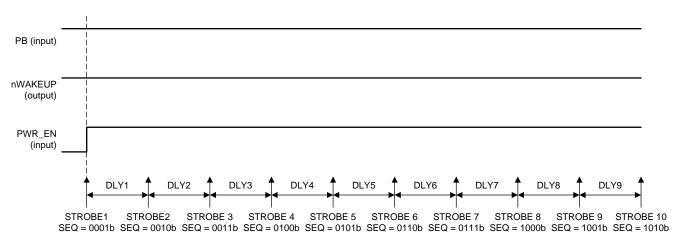


Figure 4-2. Power-Up Sequences from SUSPEND State; PWR EN is Power-Up Event

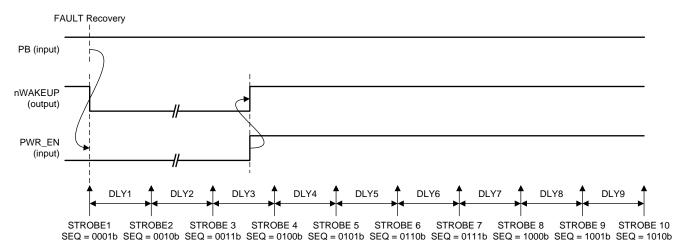


Figure 4-3. Power-Up Sequences from RECOVERY State

TEXAS INSTRUMENTS

4.3.1.2 Power-Down Sequencing

By default, the power-down sequence follows the reverse of the power-up sequence. When the power-down sequence is triggered, STROBE10 occurs and any rail assigned to STROBE10 is shut down and its discharge circuit is enabled. After a delay time of DLY9, STROBE9 occurs and any rail assigned to it is shut down and its discharge circuit is enabled. The sequence continues until all strobes occur and all DLYx times execute. The DLYx times are extended by a factor of 10x to provide ample time for discharge, and preventing output voltages from crossing during shut-down. The DLYFCTR bit is applied globally to all power-down delay times. Regardless of the DLYx and DLYFCTR settings, the PMIC enters OFF, SUSPEND, or RECOVERY state 500 ms after the power-down sequence initiates, to ensure that the discharge circuits remain enabled for a minimum of 150 ms before the next power-up sequence starts.

A power-down sequence executes if one of the following events occurs:

- The device is in the WAIT_PWR_EN state, the PB and AC_DET pins are high, PWR_EN is low, and the 20-s timer has expired.
- The device is in the ACTIVE state and the PWR_EN pin is pulled low.
- The device is in the WAIT_PWR_EN, ACTIVE, or SUSPEND state and the push-button is held low for > 8 s (15 s if TRST = 1b)
- A fault occurs in the IC (OTS, UVLO, PGOOD failure).

When transitioning from ACTIVE to SUSPEND state, rails not controlled by the power-down sequencer maintains the same ON/OFF state in SUSPEND state that it had in ACTIVE state. This allows for the selected power rails to remain powered up when in the SUSPEND state.

When transitioning to the OFF or RECOVERY state, rails not under sequencer control are shut-down as follows:

- DCDC1, 2, 3, 4, , and LDO1 shut down at the beginning of the power-down sequence, if not under sequencer control (SEQ = 0b).
- LS shuts down as the state machine enters an OFF or RECOVERY state; 500 ms after the powerdown sequence is triggered.

If the supply voltage on IN_BIAS drops below 2.5 V, the digital core is reset and all power rails are shut down instantaneously and are pulled low to ground by their internal discharge circuitry (DCDC1-4, and LDO1). The amount of time the discharge circuitry remains active is a function of the INT_LDO hold up time (see Section 4.3.1.5 for more details).

4.3.1.3 Strobes 1 and 2

STROBE1 and STROBE2 are special strobes that are not used in the TPS65216 device, but STROBE1 and STROBE2 are still executed for power-up. The power-up sequence starts at STROBE3 after DLY1 and DLY2 timers. The power-down sequence ends at STROBE3.

22

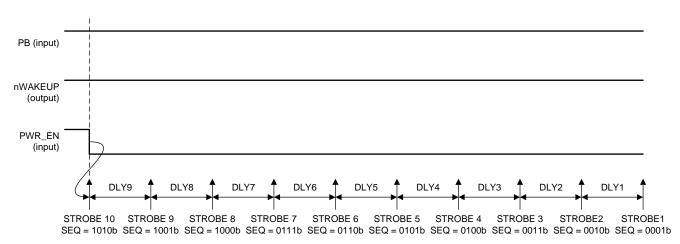
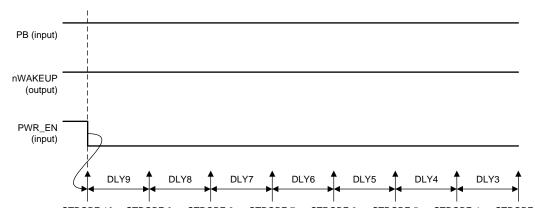
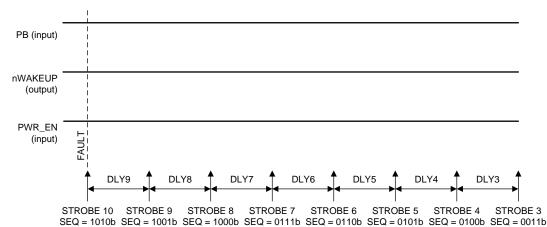




Figure 4-4. Power-Down Sequences to OFF State; PWR EN is Power-Down Event

STROBE 10 STROBE 9 STROBE 8 STROBE 7 STROBE 6 STROBE 5 STROBE 4 STROBE 3 SEQ = 1010b SEQ = 1001b SEQ = 1000b SEQ = 0111b SEQ = 0111b SEQ = 0110b SEQ = 0101b SEQ = 0100b SEQ = 0111b STROBE2 and STROBE1 are not shown.

Figure 4-5. Power-Down Sequences to SUSPEND State; PWR EN is Power-Down Event

STROBE2 and STROBE1 are not shown.

Figure 4-6. Power-Down Sequences to RECOVERY State; TSD or UV is Power-Down Event

TEXAS INSTRUMENTS

4.3.1.4 Supply Voltage Supervisor and Power Good (PGOOD)

Power-good (PGOOD) is an open-drain output of the built-in voltage supervisor that monitors DCDC1, DCDC2, DCDC3, DCDC4, and LDO1. The output is Hi-Z when all enabled rails are in regulation and driven low when one or more rails encounter a fault which brings the output voltage outside the specified tolerance range. In a typical application PGOOD drives the reset signal of the SOC.

The supervisor has two modes of operation, controlled by the STRICT bit. With the STRICT bit set to 0, all enabled rails of the five regulators are monitored for undervoltage only with relaxed thresholds and deglitch times. With the STRCT bit set to 1, all enabled rails of the five regulators are monitored for undervoltage and overvoltage with tight limits and short deglitch times. Table 4-1 summarizes these details.

PARAMETER STRICT = 0b (TYP) STRICT = 1b (TYP) 96.5% (DCDC1, DCDC2) Threshold (output falling) 90% 95.5% (DCDC3, DCDC4, LDO1) Undervoltage monitoring Deglitch (output falling) 50 µs 1 ms 10 µs Deglitch (output rising) 10 µs 103.5% (DCDC1, DCDC2) Threshold (output falling) N/A 104.5% (DCDC3, DCDC4, LDO1) Overvoltage monitoring Deglitch (output falling) N/A 1 ms Deglitch (output rising) N/A 50 µs

Table 4-1. Supervisor Characteristics Controlled by the STRICT Bit

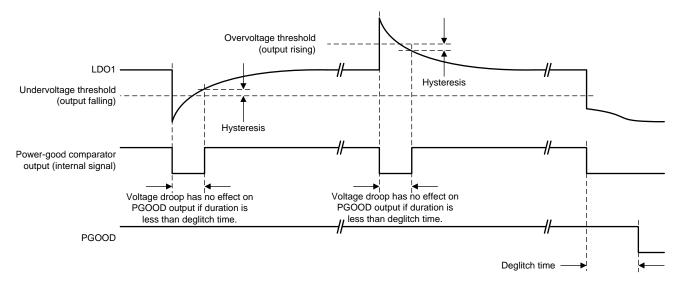


Figure 4-7. Definition of Undervoltage, Overvoltage Thresholds, Hysteresis, and Deglitch Times

The following rules apply to the PGOOD output:

- The power-up default state for PGOOD is low. When all rails are disabled, PGOOD output is driven low.
- Only enabled rails are monitored. Disabled rails are ignored.
- Power-good monitoring of a particular rail starts 5 ms after the rail is enabled and is continuously monitored thereafter. This allows the rail to power-up.
- PGOOD is delayed by PGDLY time after the sequencer is finished and the last rail is enabled.
- If an enabled rail is continuously outside the monitoring threshold for longer than the deglitch time, PGOOD is pulled low, and all rails are shut-down following the power-down sequence. PGDLY does not apply.

Detailed Description

www.ti.com SLDS187 – OCTOBER 2018

- Disabling a rail manually by resetting the DCx_EN or LDO1_EN bit has no effect on the PGOOD pin. If all rails are disabled, PGOOD is driven low as the last rail is disabled.
- If the power-down sequencer is triggered, PGOOD is driven low.
- PGOOD is driven low in SUSPEND state, regardless of the number of rails that are enabled.

Figure 4-8 shows a typical power-up sequence and PGOOD timing.

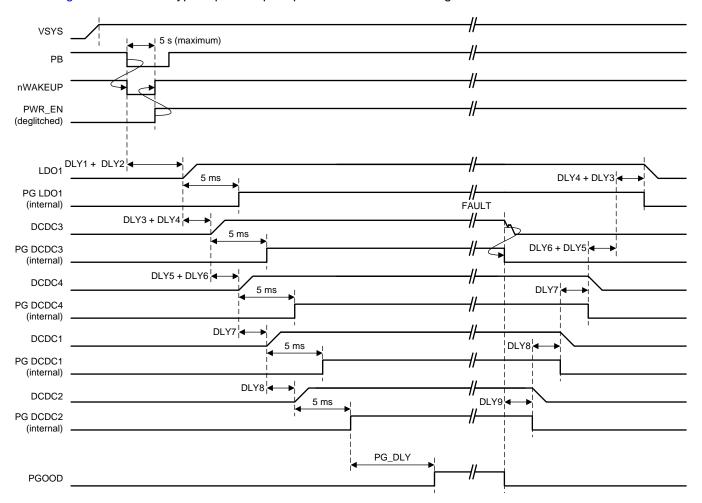


Figure 4-8. Typical Power-Up Sequence of the Main Output Rails

4.3.1.5 Internal LDO (INT LDO)

The internal LDO provides a regulated voltage to the internal digital core and analog circuitry. The internal LDO has a nominal output voltage of 2.5 V and can support up to 10 mA of external load.

When system power fails, the UVLO comparator triggers the power-down sequence. If system power drops below, the digital core is reset and all remaining power rails are shut down instantaneously and are pulled low to ground by their internal discharge circuitry (DCDC1-4, and LDO1).

The internal LDO reverse blocks to prevent the discharging of the output capacitor (C_{INT_LDO}) on the INT_LDO pin. The remaining charge on the INT_LDO output capacitor provides a supply for the power rail discharge circuitry to ensure the outputs are discharged to ground even if the system supply has failed. The amount of hold-up time specified in Section 3.5 is a function of the output capacitor value (C_{INT_LDO}) and the amount of external load on the INT_LDO pin, if any. The design allows for enough hold-up time to sufficiently discharge DCDC1-4, and LDO1 to ensure proper processor power-down sequencing.

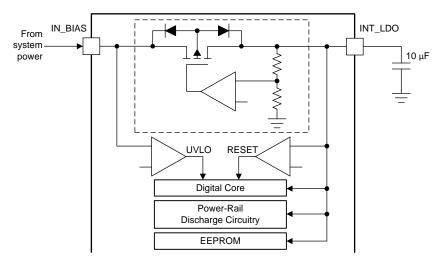


Figure 4-9. Internal LDO and UVLO Sensing

4.3.1.6 Current Limited Load Switch

The TPS65216 provides a current limited load switch with individual enable control. The load switch provides the following control and diagnostic features:

- The ON/OFF state of the switch is controlled by the corresponding LS_EN bit in the ENABLE register.
- The load switch can only be controlled through I²C communication. The sequencer has no control over the load switch.
- The load switch has an active discharge function, disabled by default, and enabled through the LSDCHRG bit. When enabled, the switch output is discharged to ground whenever the switch is disabled.
- When the PFI input drops below the power-fail threshold (the power-fail comparator trips), the load switch is automatically disabled to shed system load. This function must be individually through the corresponding LSnPFO bit. The switch does not turn back on automatically as the system voltage recovers, and must be manually re-enabled.
- An interrupt (LS_I) issues whenever the load switch actively limits the output current, such as when the
 output load exceeds the current limit value. The switch remains ON and provides current to the load
 according to the current-limit setting.
- The load switch has a local overtemperature sensor which disables the switch if the power dissipation
 and junction temperature exceeds safe operating value. The switch automatically recovers once the
 temperature drops below the OTS threshold value minus hysteresis. The LS_F (fault) interrupt bit is set
 while the switch is held OFF by the OTS function.

The load switch (LS) is a non-reverse blocking, medium-voltage (< 10 V), low-impedance switch that can be used to provide 1.8-V to 10-V power to an auxiliary port. LS has four selectable current limit values that are selectable through LSILIM[1:0].

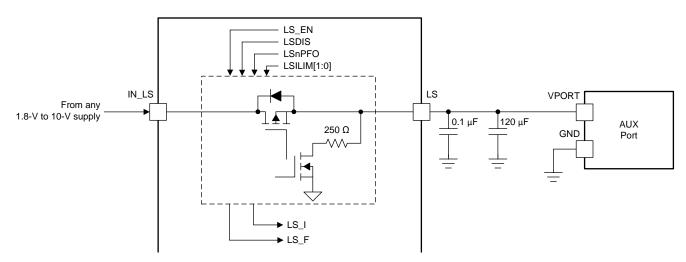


Figure 4-10. Typical Application of Load Switch

4.3.1.7 LDO1

LDO1 is a general-purpose LDO intended to provide power to analog circuitry on the SOC. LDO1 has an input voltage range from 1.8 V to 5.5 V, and can be connected either directly to the system power or the output of a DCDC converter. The output voltage is programmable in the range of 0.9 V to 3.4 V with a default of 1.8 V. LDO1 supports up to 200 mA at the minimum specified headroom voltage, and up to 400 mA at the typical operating condition of $V_{OUT} = 1.8 \text{ V}$, $V_{IN \text{ LDO1}} > 2.7 \text{ V}$.

4.3.1.8 UVLO

Depending on the slew rate of the input voltage into the IN_BIAS pin, the power rails of TPS65216will be enabled at either V_{ULVO} or $V_{ULVO} + V_{HYS}$.

If the slew rate of the IN_BIAS voltage is greater than 30 V/s, then TPS65216 will power up at V_{ULVO} . Once the input voltage rises above this level, the input voltage may drop to the V_{UVLO} level before the PMIC shuts down. In this scenario, if the input voltage were to fall below V_{UVLO} but above 2.55 V, the input voltage would have to recover above V_{UVLO} in less than 5 ms for the device to remain active.

If the slew rate of the IN_BIAS voltage is less than 30 V/s, then TPS65216 will power up at $V_{ULVO} + V_{HYS}$. Once the input voltage rises above this level, the input voltage may drop to the V_{UVLO} level before the PMIC shuts down. In this scenario, if the input voltage were to fall below V_{UVLO} but above 2.5 V, the input voltage would have to recover above $V_{UVLO} + V_{HYS}$ in less than 5 ms for the device to remain active.

In either slew rate scenario, if the input voltage were to fall below 2.5 V, the digital core is reset and all remaining power rails are shut down instantaneously and are pulled low to ground by their internal discharge circuitry (DCDC1-4, and LDO1).

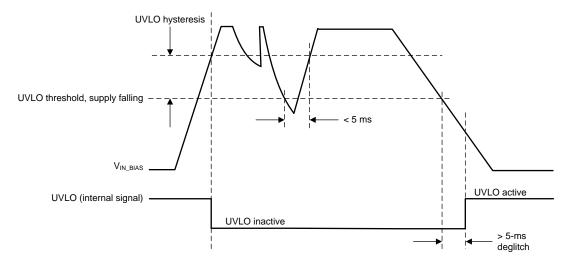


Figure 4-11. Definition of UVLO and Hysteresis

After the UVLO triggers, the internal LDO blocks current flow from its output capacitor back to the IN_BIAS pin, allowing the digital core and the discharge circuits to remain powered for a limited amount of time to properly shut-down and discharge the output rails. The hold-up time is determined by the value of the capacitor connected to INT_LDO. See Section 4.3.1.5 for more details.

4.3.1.9 **Power-Fail Comparator**

The power-fail comparator notifies the system host if the system supply voltage drops and the system is at risk of shutting down. The comparator has an internal 800-mV threshold and the trip-point is adjusted by an external resistor divider.

By default, the power-fail comparator has no impact on any of the power rails or the load switch. The load switch can be configured to be disabled when the PFI comparator trips to shed system load and extend hold-up time. The power-fail comparator also triggers the power-down sequencer, such that all or selective rails power down when the system voltage fails. To tie the power-fail comparator into the power-down sequence, the OFFnPFO bit in the CONTROL register must be set to 1.

The power-fail comparator cannot be monitored by software, such that no interrupt or status bit is associated to this function.

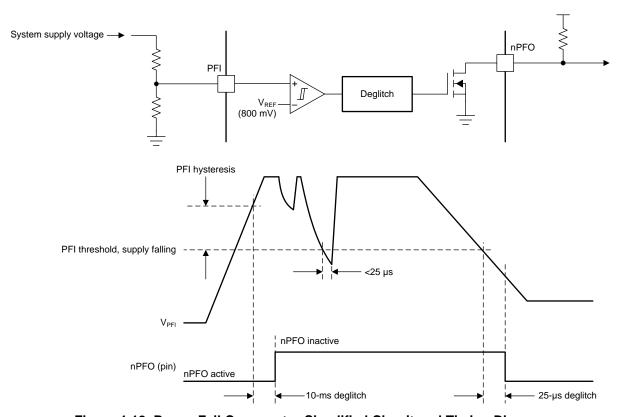


Figure 4-12. Power-Fail Comparator Simplified Circuit and Timing Diagram

Submit Documentation Feedback Product Folder Links: TPS65216

NSTRUMENTS

4.3.1.10 DCDC3 / DCDC4 Power-Up Default Selection

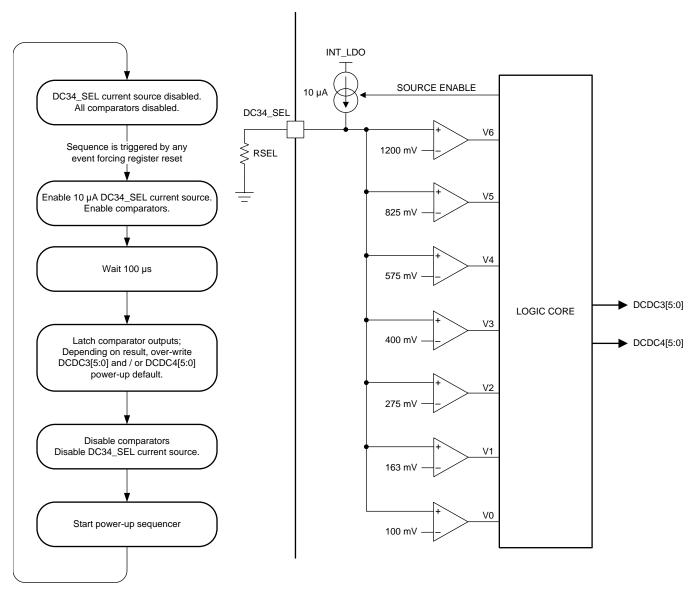


Figure 4-13. Left: Flow Chart for Selecting DCDC Power-Up Default Voltage **Right: Comparator Circuit**

Table 4-2. Power-Up Default Values of DCDC3 and DCDC4

F	RSEL [K Ω]		POWER-UP DEFAULT		
MIN	MIN TYP MAX		DCDC3[5:0]	DCDC4[5:0]	
0	0	7.7	Programmed default (1.2 V)	Programmed default (3.3 V)	
	12.1		0x12 (1.35 V)	Programmed default (3.3 V)	
	20		0x18 (1.5 V)	Programmed default (3.3 V)	
30.9	30.9 31.6 32.3		0x1F (1.8 V)	Programmed default (3.3 V)	
	45.3		0x3D (3.3 V)	0x01 (1.2 V)	
			Programmed default (1.2 V)	0x07 (1.35 V)	
	95.3		Programmed default (1.2 V)	0x0D (1.5 V)	
	150	Tied to INT_LDO	Programmed default (1.2 V)	0x14 (1.8 V)	

- - -

4.3.1.11 I/O Configuration

The device has two GPIO pins which are configured as follows:

- GPIO1:
 - General-purpose, open-drain output controlled by GPO1 user bit or sequencer
- GPIO2:
 - General-purpose, open-drain output controlled by GPO2 user bit or sequencer
 - Reset input-signal for DCDC1 and DCDC2

Table 4-3. GPIO1 Configuration

GPO1 (USER BIT)	GPIO1 (I/O PIN)	COMMENTS
0	0	Open-drain output, driving low
1	HiZ	Open-drain output, HiZ

Table 4-4. GPIO2 Configuration

DC12_RST (EEPROM)	GPO2 (USER BIT)	GPIO2 (I/O PIN)	COMMENTS
0	0	0	Open-drain output, driving low
0	1	HiZ	Open-drain output, HiZ
1	Х	Active low	GPIO2 is DCDC1 and DCDC2 reset input signal to PMIC (active low). See Section 4.3.1.11.1 for details.

4.3.1.11.1 Using GPIO2 as Reset Signal to DCDC1 and DCDC2

With the DC12_RST bit set to 1, GPIO2 is an edge-sensitive reset input to the PMIC. The reset signal affects DCDC1 and DCDC2 only, so that only those two registers are reset to the power-up default whenever GPIO2 input transitions from high to low, while all other registers maintain their current values. DCDC1 and DCDC2 transition back to the default value following the SLEW settings, and are not power cycled. This function recovers the processor from reset events while in low-power mode.

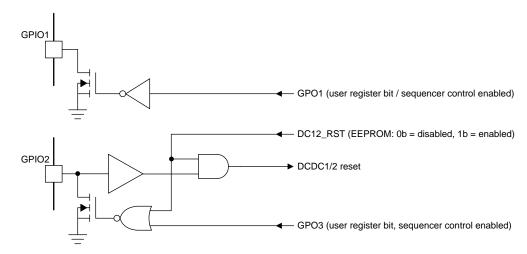


Figure 4-14. I/O Pin Logic

INSTRUMENTS

4.3.1.12 Push Button Input (PB)

The PB pin is a CMOS-type input used to power-up the PMIC. Typically, the PB pin is connected to a momentary switch to ground and an external pullup resistor. The power-up sequence is triggered if the PB input is held low for 600 ms.

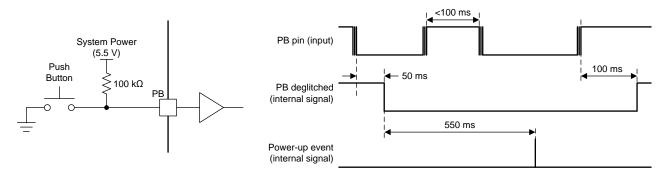


Figure 4-15. Left: Typical PB Input Circuit Right: Push-Button Input (PB) Deglitch and Power-Up Timing

In ACTIVE mode, the TPS65216 monitors the PB input and issues an interrupt when the pin status changes, such as when it drops below or rises above the PB input-low or input-high thresholds. The interrupt is masked by the PBM bit in the INT_MASK1 register.

PB is released before PB is pressed, INT PB is released. PB is pressed, INT INT register is read pin is pulled low, INT pin is pulled pin is pulled low, through I2C. INT pin PB_STATE bit is low, PB_STATE bit PB_STATE bit is remains low, set is reset. set PB_STATE bit is reset PB pin (50-ms deglitched input) nWAKEUP 150 µs PB interrupt bit INT pin (output) PB_STATE bit I²C access to INT register INT register is read INT register is read INT register is read through I²C while PB through I2C. INT pin is through I2C. remains pressed. INT released.

Figure 4-16. PB Input-Low or Input-High Thresholds

Submit Documentation Feedback Product Folder Links: TPS65216

pin is released, PB_STATE bit remains

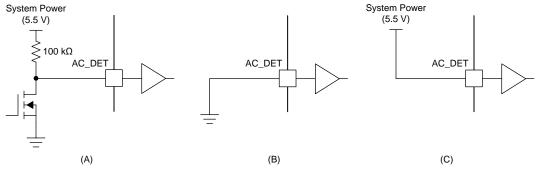
NOTE

Interrupts are issued whenever the PB pin status changes. The PB_STATE bit reflects the current status of the PB input. nWAKEUP is pulled low for 150 μ s on every falling edge of PB.

TEXAS INSTRUMENTS

4.3.1.12.1 Signaling PB-Low Event on the nWAKEUP Pin

In ACTIVE state, the nWAKEUP pin is pulled low for five 32-kHz clock cycles (approximately 150 μ s) whenever a falling edge on the PB input is detected. This allows the host processor to wakeup from DEEP SLEEP mode of operation. It is recommended to pull-up the nWAKEUP pin to a I/O power supply through a pull-up resistor. For nWAKEUP to function properly in the SUSPEND state, this pin must be pulled up to a power supply that is disconnected from the sequencer before entering SUSPEND.


4.3.1.12.2 Push Button Reset

If the PB input is pulled low for 8 s (15 s if TRST = 1b) or longer, all rails are disabled, and the device enters the RECOVERY state. The device powers up automatically after the 500 ms power-down sequence is complete, regardless of the state of the PB input. Holding the PB pin low for 8 s (15 s if TRST = 1b), only turns off the device temporarily and forces a system restart, and is not a power-down function. If the PB is held low continuously, the device power-cycles in 8-s and 15-s intervals.

4.3.1.13 AC_DET Input (AC_DET)

The AC_DET pin is a CMOS-type input used in three different ways to control the power-up of the PMIC:

- In a battery operated system, AC_DET is typically connected to an external battery charger with an open-drain power-good output pulled low when a valid charger supply is connected to the system. A falling edge on the AC_DET pin causes the PMIC to power up.
- In a non-portable system, the AC_DET pin may be shorted to ground and the IC powers up whenever system power is applied to the chip.
- If none of the above behaviors are desired, AC_DET may be tied to system power (IN_BIAS). Power-up is then controlled through the push-button input or PWR_EN input.

- A. Portable Systems
- B. Non-portable Systems
- C. Disabled

Figure 4-17. AC_DET Pin Configurations

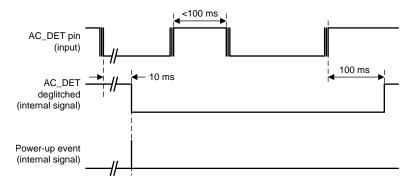


Figure 4-18. AC_DET Input Deglitch and Power-Up Timing (Portable Systems)

SLDS187-OCTOBER 2018

In ACTIVE state, the TPS65216 monitors the AC_DET input and issues an interrupt when the pin status changes, such as when it drops below or rises above the AC_DET input-low or input-high thresholds. The interrupt is masked by the ACM bit in the INT_MASK1 register.

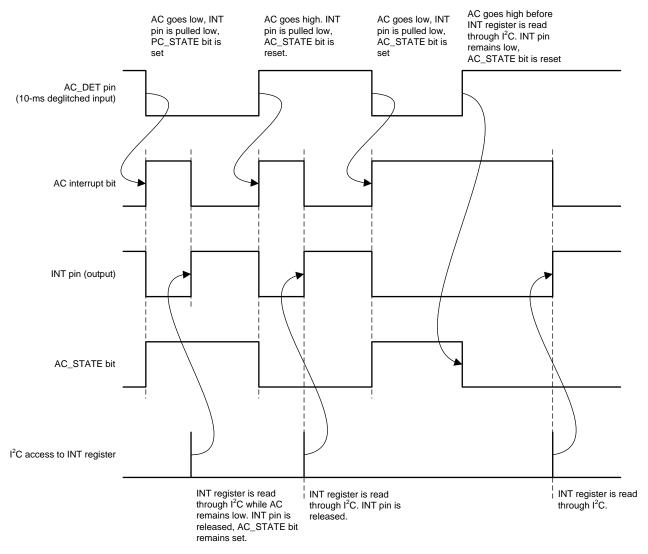


Figure 4-19. AC STATE Pin

NOTE

Interrupts are issued whenever the AC_DET pin status changes. The AC_STATE bit reflects the current status of the AC_DET input.

4.3.1.14 Interrupt Pin (INT)

The interrupt pin signals any event or fault condition to the host processor. Whenever a fault or event occurs in the IC, the corresponding interrupt bit is set in the INT register, and the open-drain output is pulled low. The INT pin is released (returns to Hi-Z state) and fault bits are cleared when the host reads the INT register. If a failure persists, the corresponding INT bit remains set and the INT pin is pulled low again after a maximum of 32 us.

The MASK register masks events from generating interrupts. The MASK settings affect the INT pin only, and have no impact on the protection and monitor circuits.

4.3.1.15 I²C Bus Operation

The TPS65216 hosts a slave I²C interface (address 0x24) that supports data rates up to 400kbps, auto-increment addressing. (1)

Figure 4-20. Subaddress in I²C Transmission

The I²C bus is a communications link between a controller and a series of slave terminals. The link is established using a two-wired bus consisting of a serial clock signal (SCL) and a serial data signal (SDA). The serial clock is sourced from the controller in all cases where the serial data line is bi-directional for data communication between the controller and the slave terminals. Each device has an open drain output to transmit data on the serial data line. An external pullup resistor must be placed on the serial data line to pull the drain output high during data transmission.

Data transmission initiates with a start bit from the controller as shown in Figure 4-22. The start condition is recognized when the SDA line transitions from high to low during the high portion of the SCL signal. Upon reception of a start bit, the device receives serial data on the SDA input and checks for valid address and control information. If the appropriate slave address is set for the device, the device issues an acknowledge pulse and prepares to receive register address and data. Data transmission is completed by either the reception of a stop condition or the reception of the data word sent to the device. A stop condition is recognized as a low to high transition of the SDA input during the high portion of the SCL signal. All other transitions of the SDA line must occur during the low portion of the SCL signal. An acknowledge issues after the reception of valid slave address, register-address, and data words. The I²C interfaces auto-sequence through register addresses, so that multiple data words can be sent for a given I²C transmission. Reference Figure 4-21 and Figure 4-22 for details.

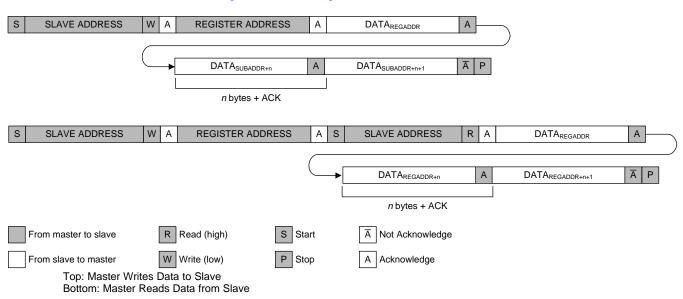


Figure 4-21. I²C Data Protocol

www.ti.com

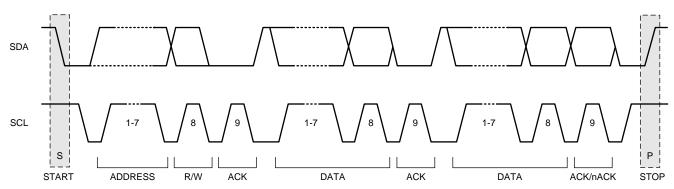


Figure 4-22. I²C Protocol and Transmission Timing; I²C Start/Stop/Acknowledge Protocol

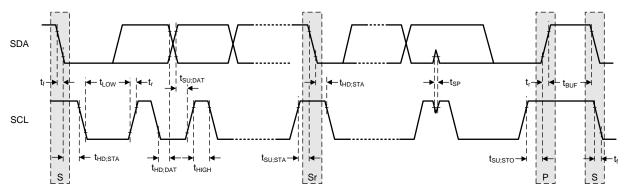


Figure 4-23. I²C Protocol and Transmission Timing; I²C Data Transmission Timing

TEXAS INSTRUMENTS

4.4 Device Functional Modes

4.4.1 Modes of Operation

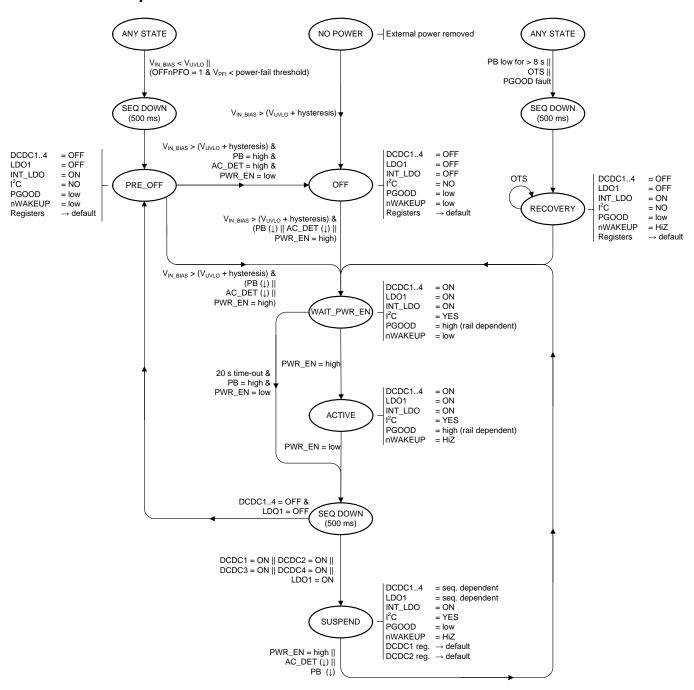


Figure 4-24. Modes of Operation Diagram

4.4.2 OFF

In OFF mode, the PMIC is completely shut down with the exception of a few circuits to monitor the AC_DET, PWR_EN and PB input. All power rails are turned off and the registers are reset to their default values. The I^2 C communication interface is turned off. This is the lowest-power mode of operation. To exit OFF mode V_{IN_BIAS} must exceed the UVLO threshold and one of the following wake-up events must occur:

The PB input is pulled low.

www.ti.com SLDS187 – OCTOBER 2018

- THE AC DET input is pulled low.
- The PWR_EN input is pulled high.

To enter OFF state, ensure all power rails are assigned to e sequencer, then pull the PWR_EN pin low. Additionally, if the OFFnPFO bit is set to 1b and the PFI input falls below the power fail threshold the device transitions to the OFF state.

If a PGOOD or OTS fault occurs while in the ACTIVE state, TPS65216 will transition to the RESET state.

4.4.3 ACTIVE

This is the typical mode of operation when the system is up and running. All DCDC converters, LDOs, and load switch are operational and can be controlled through the I²C interface. After a wake-up event, the PMIC enables all rails controlled by the sequencer and pulls the nWAKEUP pin low to signal the event to the host processor. The device only enters ACTIVE state if the host asserts the PWR_EN pin within 20 s after the wake-up event. Otherwise it will enter OFF state. The nWAKEUP pin returns to HiZ mode after the PWR_EN pin is asserted. ACTIVE state can also be directly entered from SUSPEND state by pulling the PWR_EN pin high. See SUSPEND state description for details. To exit ACTIVE mode, the PWR_EN pin must be pulled low.

4.4.4 SUSPEND

SUSPEND state is a low-power mode of operation intended to support system standby. Typically all power rails are turned off with the exception of any rail with an SEQ register set to 0h. To enter SUSPEND state, pull the PWR_EN pin low. All power rails controlled by the power-down sequencer are shut down, and after 500 ms the device enters SUSPEND state. All rails not controlled by the power-down sequencer will maintain state. Note that all register values are reset as the device enters the SUSPEND state. The device enters ACTIVE state after it detects a wake-up event as described in the previous sections.

4.4.5 RESET

The TPS65216 can be reset by holding the PB pin low for more than 8 or 15 s, depending on the value of the TRST bit. All rails are shut down by the sequencer and all register values reset to their default values. Rails not controlled by the sequencer are shut down additionally. Note that the RESET function power-cycles the device and only temporarily shuts down the output rails. Resetting the device does not lead to OFF state. If the PB_IN pin is kept low for an extended amount of time, the device continues to cycle between ACTIVE and RESET state, entering RESET every 8 or 15 s.

The device is also reset if a PGOOD or OTS fault occurs. The TPS65216 remains in the recovery state until the fault is removed, at which time it transitions back to the ACTIVE state.

TEXAS INSTRUMENTS

4.5 Register Maps

4.5.1 Password Protection

Registers 0x11h through 0x26h are protected against accidental write by a 8-bit password. The password must be written prior to writing to a protected register and automatically resets to 0x00h after the next I²C transaction, regardless of the register accessed or transaction type (read or write). The password is required for write access only and is not required for read access.

To write to a protected register:

- 1. Write the address of the destination register, XORed with the protection password (0x7Dh), to the PASSWORD register (0x10h).
- 2. Write the data to the password protected register.
- 3. If the content of the PASSWORD register XORed with the address send matches 0x7Dh, the data transfers to the protected register. Otherwise, the transaction is ignored. In either case the PASSWORD register resets to 0x00 after the transaction.

The cycle must be repeated for any other register that is Level1 write protected.

4.5.2 FLAG Register

The FLAG register contains a bit for each power rail and GPO to keep track of the enable state of the rails while the system is suspended. The following rules apply to the FLAG register:

- The power-up default value for any flag bit is 0.
- Flag bits are read-only and cannot be written to.
- Upon entering a SUSPEND state, the flag bits are set to same value as their corresponding ENABLE bits. Rails and GPOs enabled in a SUSPEND state have flag bits set to 1, while all other flag bits are set to 0. Flag bits are not updated while in the SUSPEND state or when exiting the SUSPEND state.
- The FLAG register is static in WAIT_PWR_EN and ACTIVE state. The FLAG register reflects the enable state of DCDC1, 2, 3, 4, LDO1, and GPO1, 2, 3 during the last SUSPEND state.

The host processor reads the FLAG register to determine if the system powered up from the OFF or SUSPEND state. In the SUSPEND state, typically the DDR memory is kept in self refresh mode and therefore the DC3_FLG or DC4_FLG bits are set.

4.5.3 TPS65216Registers

Table 4-5 lists the memory-mapped registers for the TPS65216. All register offset addresses not listed in Table 4-5 should be considered as reserved locations and the register contents should not be modified.

Table 4-5. TPS65216 Registers

SUBADDRESS	ACRONYM	REGISTER NAME	R/W	PASSWORD PROTECTED	SECTION
0x0	CHIPID	CHIP ID	R	No	Go
0x1	INT1	INTERRUPT 1	R	No	Go
0x2	INT2	INTERRUPT 2	R	No	Go
0x3	INT_MASK1	INTERRUPT MASK 1	R/W	No	Go
0x4	INT_MASK2	INTERRUPT MASK 2	R/W	No	Go
0x5	STATUS	STATUS	R	No	Go
0x6	CONTROL	CONTROL	R/W	No	Go
0x7	FLAG	FLAG	R	No	Go
0x10	PASSWORD	PASSWORD	R/W	No	Go
0x11	ENABLE1	ENABLE 1	R/W	Yes	Go
0x12	ENABLE2	ENABLE 2	R/W	Yes	Go
0x13	CONFIG1	CONFIGURATION 1	R/W	Yes	Go
0x14	CONFIG2	CONFIGURATION 2	R/W	Yes	Go
0x15	CONFIG3	CONFIGURATION 3	R/W	Yes	Go
0x16	DCDC1	DCDC1 CONTROL	R/W	Yes	Go
0x17	DCDC2	DCDC2 CONTROL	R/W	Yes	Go
0x18	DCDC3	DCDC3 CONTROL	R/W	Yes	Go
0x19	DCDC4	DCDC4 CONTROL	R/W	Yes	Go
0x1A	SLEW	SLEW RATE CONTROL	R/W	Yes	Go
0x1B	LDO1	LDO1 CONTROL	R/W	Yes	Go
0x20	SEQ1	SEQUENCER 1	R/W	Yes	Go
0x21	SEQ2	SEQUENCER 2	R/W	Yes	Go
0x22	SEQ3	SEQUENCER 3	R/W	Yes	Go
0x23	SEQ4	SEQUENCER 4	R/W	Yes	Go
0x24	SEQ5	SEQUENCER 5	R/W	Yes	Go
0x25	SEQ6	SEQUENCER 6	R/W	Yes	Go
0x26	SEQ7	SEQUENCER 7	R/W	Yes	Go

Table 4-6 explains the common abbreviations used in this section.

Table 4-6. Common Abbreviations


Abbreviation	Description
R	Read
W	Write
R/W	Read and write capable
E2	Backed by EEPROM
h	Hexadecimal notation of a group of bits
b	Hexadecimal notation of a bit or group of bits
Х	Don't care reset value

4.5.3.1 CHIPID Register (subaddress = 0x0) [reset = 0x5]

CHIPID is shown in Figure 4-25 and described in Table 4-7. Return to Summary Table.

Figure 4-25. CHIPID Register

Table 4-7. CHIPID Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-3	CHIP	R	0h	Chip ID
				0h = TPS65216
				1h = Future use
				1Fh = Future use
2-0	REV	R	5h	Revision code
				0h = Revision 1.0
				1h = Revision 1.1
				2h = Revision 2.0
				3h = Revision 2.1
				4h = Revision 3.0
				5h = Revision 4.0 (D0)
				6h = Future use
				7h = Future use

4.5.3.2 INT1 Register (subaddress = 0x1) [reset = 0x0]

.....

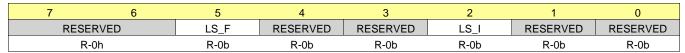
INT1 is shown in Figure 4-26 and described in Table 4-8. Return to Summary Table.

Figure 4-26. INT1 Register

7	6	5	4	3	2	1	0
RESE	RVED	VPRG	AC	PB	HOT	RESERVED	PRGC
R-	0h	R-0b	R-0b	R-0b	R-0b	R-0b	R-0b

Table 4-8. INT1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-6	RESERVED	R	0h	
5	VPRG	R	0b	Programming voltage interrupt
				0b = No significance
				1b = Input voltage is too low for programming power-up default values.
4	AC	R	0b	AC_DET pin status change interrupt. Note: Status information is available in STATUS register
				0b = No change in status
				1b = AC_DET status change (AC_DET pin changed high to low or low to high)
3	РВ	R	0b	Push-button status change interrupt. Note: Status information is available in STATUS register
				0b = No change in status
				1b = Push-button status change (PB changed high to low or low to high)
2	НОТ	R	0b	Thermal shutdown early warning
				0b = Chip temperature is below HOT threshold
				1b = Chip temperature exceeds HOT threshold
1	RESERVED	R	0b	
0	PRGC	R	0b	EEPROM programming complete interrupt
				0b = No significance
				1b = Programming of power-up default settings has completed successfully



4.5.3.3 INT2 Register (subaddress = 0x2) [reset = 0x0]

INT2 is shown in Figure 4-27 and described in Table 4-9.

Return to Summary Table.

Figure 4-27. INT2 Register

Table 4-9. INT2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-6	RESERVED	R	0h	
5	LS_F	R	Ob	Load switch fault interrupt 0b = No fault. Switch is working normally. 1b = Load switch exceeded operating temperature limit and is temporarily disabled.
4	RESERVED	R	0b	
3	RESERVED	R	0b	
2	LS_I	R	Ob	Load switch current-limit interrupt 0b = Load switch is disabled or not in current limit 1b = Load switch is actively limiting the output current (output load is exceeding current limit value)
1	RESERVED	R	0b	
0	RESERVED	R	0b	

WWW.m.doin CEDOTO CO

4.5.3.4 INT_MASK1 Register (subaddress = 0x3) [reset = 0x0]

INT_MASK1 is shown in Figure 4-28 and described in Table 4-10.

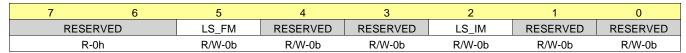
Return to Summary Table.

Figure 4-28. INT_MASK1 Register

7	6	5	4	3	2	1	0
RESE	RVED	VPRGM	ACM	PBM	HOTM	RESERVED	PRGCM
R-(Dh	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b

Table 4-10. INT_MASK1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-6	RESERVED	R	0h	
5	VPRGM	R/W	Ob	Programming voltage interrupt mask bit. Note: mask bit has no effect on monitoring function
				0b = Interrupt is unmasked (interrupt event pulls nINT pin low)
				1b = Interrupt is masked (interrupt has no effect on nINT pin)
4	ACM	R/W	0b	AC_DET interrupt masking bit.
				0b = Interrupt is unmasked (interrupt event pulls nINT pin low)
				1b = Interrupt is masked (interrupt has no effect on nINT pin)
				Note: mask bit has no effect on monitoring function
3	РВМ	R/W	0b	PB interrupt masking bit. Note: mask bit has no effect on monitoring function
				0b = Interrupt is unmasked (interrupt event pulls nINT pin low)
				1b = Interrupt is masked (interrupt has no effect on nINT pin)
2	НОТМ	R/W	0b	HOT interrupt masking bit. Note: mask bit has no effect on monitoring function
				0b = Interrupt is unmasked (interrupt event pulls nINT pin low)
				1b = Interrupt is masked (interrupt has no effect on nINT pin)
1	RESERVED	R/W	0b	
0	PRGCM	R/W	Ob	PRGC interrupt masking bit. Note: mask bit has no effect on monitoring function
				0b = Interrupt is unmasked (interrupt event pulls nINT pin low)
				1b = Interrupt is masked (interrupt has no effect on nINT pin)



4.5.3.5 INT_MASK2 Register (subaddress = 0x4) [reset = 0x0]

INT_MASK2 is shown in Figure 4-29 and described in Table 4-11.

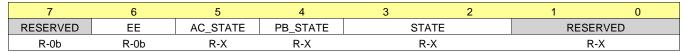
Return to Summary Table.

Figure 4-29. INT_MASK2 Register

Table 4-11. INT_MASK2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-6	RESERVED	R	0h	
5	LS_FM	R/W	Ob	LS fault interrupt mask bit. Note: mask bit has no effect on monitoring function 0b = Interrupt is unmasked (interrupt event pulls nINT pin low) 1b = Interrupt is masked (interrupt has no effect on nINT pin)
4	RESERVED	R/W	0b	
3	RESERVED	R/W	0b	
2	LS_IM	R/W	Ob	LS current-limit interrupt mask bit. Note: mask bit has no effect on monitoring function 0b = Interrupt is unmasked (interrupt event pulls nINT pin low) 1b = Interrupt is masked (interrupt has no effect on nINT pin)
1	RESERVED	R/W	0b	
0	RESERVED	R/W	0b	

www.ti.com SLDS187 – OCTOBER 2018


4.5.3.6 STATUS Register (subaddress = 0x5) [reset = 00XXXXXXb]

Register mask: C0h

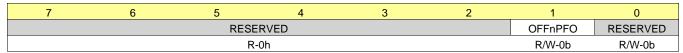
STATUS is shown in Figure 4-30 and described in Table 4-12.

Return to Summary Table.

Figure 4-30. STATUS Register

Table 4-12. STATUS Register Field Descriptions

Bit	Field	Туре	Reset	Description
7	RESERVED	R	0b	
6	EE	R	0b	EEPROM status
				0b = EEPROM values have not been changed from factory default setting
				1b = EEPROM values have been changed from factory default settings
5	AC_STATE	R	X	AC_DET input status bit
				0b = AC_DET input is inactive (AC_DET input pin is high)
				1b = AC_DET input is active (AC_DET input is low)
4	PB_STATE	R	X	PB input status bit
				0b = Push Button input is inactive (PB input pin is high)
				1b = Push Button input is active (PB input pin is low)
3-2	STATE	R	X	State machine STATE indication
				0h = PMIC is in transitional state
				1h = PMIC is in WAIT_PWR_EN state
				2h = PMIC is in ACTIVE state
				3h = PMIC is in SUSPEND state
1-0	RESERVED	R	X	



4.5.3.7 CONTROL Register (subaddress = 0x6) [reset = 0x0]

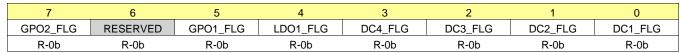
CONTROL is shown in Figure 4-31 and described in Table 4-13.

Return to Summary Table.

Figure 4-31. CONTROL Register

Table 4-13. CONTROL Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-2	RESERVED	R	0h	
1	OFFnPFO	R/W	Oh	Power-fail shutdown bit 0b = nPFO has no effect on PMIC state 1b = All rails are shut down and PMIC enters OFF state when PFI comparator trips (nPFO is low)
0	RESERVED	R/W	0h	


www.ti.com

4.5.3.8 FLAG Register (subaddress = 0x7) [reset = 0x0]

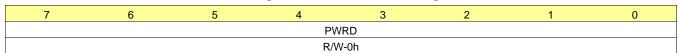
FLAG is shown in Figure 4-32 and described in Table 4-14.

Return to Summary Table.

Figure 4-32. FLAG Register

Table 4-14. FLAG Register Field Descriptions

Bit	Field	Туре	Reset	Description
7	GPO2_FLG	R	0b	GPO2 Flag bit
				0b = Device powered up from OFF or SUSPEND state and GPO2 was disabled while in SUSPEND.
				1b = Device powered up from SUSPEND state and GPO2 was enabled while in SUSPEND.
6	RESERVED	R	0b	
5	GPO1_FLG	R	0b	GPO1 Flag bit
				0b = Device powered up from OFF or SUSPEND state and GPO1 was disabled while in SUSPEND.
				1b = Device powered up from SUSPEND state and GPO1 was enabled while in SUSPEND.
4	LDO1_FLG	R	0b	LDO1 Flag bit
				0b = Device powered up from OFF or SUSPEND state and LDO1 was disabled while in SUSPEND.
				1b = Device powered up from SUSPEND state and LDO1 was enabled while in SUSPEND.
3	DC4_FLG	R	0b	DCDC4 Flag bit
				0b = Device powered up from OFF or SUSPEND state and DCDC4 was disabled while in SUSPEND.
				1b = Device powered up from SUSPEND state and DCDC4 was enabled while in SUSPEND.
2	DC3_FLG	R	0b	DCDC3 Flag bit
				0b = Device powered up from OFF or SUSPEND state and DCDC3 was disabled while in SUSPEND.
				1b = Device powered up from SUSPEND state and DCDC3 was enabled while in SUSPEND.
1	DC2_FLG	R	0b	DCDC2 Flag bit
				0b = Device powered up from OFF or SUSPEND state and DCDC2 was disabled while in SUSPEND.
				1b = Device powered up from SUSPEND state and DCDC2 was enabled while in SUSPEND.
0	DC1_FLG	R	0b	DCDC1 Flag bit
				0b = Device powered up from OFF or SUSPEND state and DCDC1 was disabled while in SUSPEND.
				1b = Device powered up from SUSPEND state and GDCDC1PO3 was enabled while in SUSPEND.



4.5.3.9 PASSWORD Register (subaddress = 0x10) [reset = 0x0]

PASSWORD is shown in Figure 4-33 and described in Table 4-15.

Return to Summary Table.

Figure 4-33. PASSWORD Register

Table 4-15. PASSWORD Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	PWRD	R/W	Oh	Register is used for accessing password protected registers (see Section 4.5.1 for details). Breaking the freshness seal (see for details). Programming power-up default values (see for details). Read-back always yields 0x00.

4.5.3.10 ENABLE1 Register (subaddress = 0x11) [reset = 0x0]

ENABLE1 is shown in Figure 4-34 and described in Table 4-16.

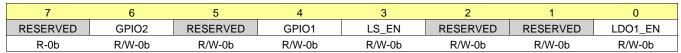
Return to Summary Table.

Password protected.

Figure 4-34. ENABLE1 Register

Table 4-16. ENABLE1 Register Field Descriptions

Bit	Field	Туре	Reset	Description	
7-6	RESERVED	R	0h		
5	RESERVED	R/W	0b		
4	RESERVED	R/W	0b		
3	DC4_EN	R/W	0b	DCDC4 enable bit. Note: At power-up/down this bit is automatically updated by the internal power sequencer.	
				0b = Disabled	
				1b = Enabled	
2	DC3_EN	R/W	0b	DCDC3 enable bit. Note: At power-up/down this bit is automatically updated by the internal power sequencer.	
				0b = Disabled	
				1b = Enabled	
1	DC2_EN	R/W	0b	DCDC2 enable bit. Note: At power-up/down this bit is automatically updated by the internal power sequencer.	
				0b = Disabled	
				1b = Enabled	
0	DC1_EN	R/W	0b	DCDC1 enable bit. Note: At power-up/down this bit is automatic updated by the internal power sequencer.	
				0b = Disabled	
				1b = Enabled	


4.5.3.11 ENABLE2 Register (subaddress = 0x12) [reset = 0x0]

ENABLE2 is shown in Figure 4-35 and described in Table 4-17.

Return to Summary Table.

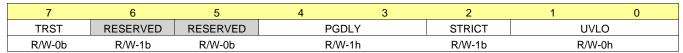
Password protected.

Figure 4-35. ENABLE2 Register

Table 4-17. ENABLE2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7	RESERVED	R	0b	
6	GPIO2	R/W	Ob	General purpose output 3 / reset polarity. Note: If DC12_RST bit (register 0x14) is set to 1 this bit has no function. 0b = GPIO2 output is driven low 1b = GPIO2 output is HiZ
	DEOEDVED.	DAM	OI.	10 = GP102 output is HIZ
5	RESERVED	R/W	0b	
4	GPIO1	R/W	Ob	General purpose output 1. Note: If IO_SEL bit (register 0x13) is set to 1 this bit has no function. 0b = GPO1 output is driven low 1b = GPO1 output is HiZ
3	LS_EN	R/W	0b	Load switch (LS) enable bit 0b = Disabled 1b = Enabled
2	RESERVED	R/W	0b	
1	RESERVED	R/W	0b	
0	LDO1_EN	R/W	0b	LDO1 enable bit. 0b = Disabled
				1b = Enabled
				Note: At power-up/down this bit is automatically updated by the internal power sequencer.

www.ti.com SLDS187 – OCTOBER 2018


4.5.3.12 CONFIG1 Register (subaddress = 0x13) [reset = 0x4C]

CONFIG1 is shown in Figure 4-36 and described in Table 4-18.

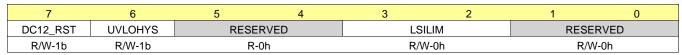
Return to Summary Table.

Password protected.

Figure 4-36. CONFIG1 Register

Table 4-18. CONFIG1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7	TRST	R/W, E2	0b	Push-button reset time constant
				0b = 8s
				1b = 15s
6	RESERVED	R/W	1b	
5	RESERVED	R/W	0b	
4-3	PGDLY	R/W, E2	1h	Power-Good delay. Note: Power-good delay applies to rising-edge only (power-up), not falling edge (power-down or fault)
				0h = 10 ms
				1h = 20 ms
				2h = 50 ms
				3h = 150 ms
2	STRICT	R/W, E2	1b	Supply Voltage Supervisor Sensitivity selection. See Section 3.5 for details.
				0b = Power-good threshold (VOUT falling) has wider limits. Overvoltage is not monitored
				1b = Power-good threshold (VOUT falling) has tight limits. Overvoltage is monitored.
1-0	UVLO	R/W, E2	0h	UVLO setting
				0h = 2.75 V
				1h = 2.95 V
				2h = 3.25 V
				3h = 3.35 V


4.5.3.13 CONFIG2 Register (subaddress = 0x14) [reset = 0xC0]

CONFIG2 is shown in Figure 4-37 and described in Table 4-19.

Return to Summary Table.

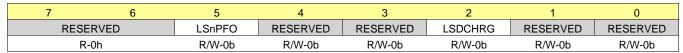
Password protected.

Figure 4-37. CONFIG2 Register

Table 4-19. CONFIG2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7	DC12_RST	R/W	1b, E2	DCDC1 and DCDC2 reset-pin enable
				0b = GPIO2 is configured as general-purpose output
				1b = GPIO2 is configured as warm-reset input to DCDC1 and DCDC2
6	UVLOHYS	R/W	1b, E2	UVLO hysteresis
				0b = 200 mV
				1b = 400 mV
5-4	RESERVED	R	0h	
3-2	LSILIM	R/W	0h	Load switch (LS) current limit selection
				0h = 100 mA, (MIN = 98 mA)
				1h = 200 mA, (MIN = 194 mA)
				2h = 500 mA, (MIN = 475 mA)
				3h = 1000 mA, (MIN = 900 mA)
				See the LS current limit specification in Section 3.5 for more details.
1-0	RESERVED	R/W	0h	

www.ti.com SLDS187 – OCTOBER 2018


4.5.3.14 CONFIG3 Register (subaddress = 0x15) [reset = 0x0]

CONFIG3 is shown in Figure 4-38 and described in Table 4-20.

Return to Summary Table.

Password protected.

Figure 4-38. CONFIG3 Register

Table 4-20. CONFIG3 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-6	RESERVED	R	0b	
5	LSnPFO	R/W	Ob	Load switch power-fail disable bit 0b = Load switch status is not affected by power-fail comparator 1b = Load switch is disabled if power-fail comparator trips (nPFO is low)
4	RESERVED	R/W	0b	
3	RESERVED	R/W	0b	
2	LSDCHRG	R/W	Ob	Load switch discharge enable bit 0b = Active discharge is disabled 1b = Active discharge is enabled (load switch output is actively discharged when switch is OFF)
1	RESERVED	R/W	0b	
0	RESERVED	R/W	0b	

4.5.3.15 DCDC1 Register (offset = 0x16) [reset = 0x99]

DCDC1 is shown in Figure 4-39 and described in Table 4-21.

Return to Summary Table.

Note 1: This register is password protected. For more information, see Section 4.5.1.

Note 2: A 5-ms blanking time of the overvoltage and undervoltage monitoring occurs when a write is performed on the DCDC1 register.

Note 3: To change the output voltage of DCDC1, the GO bit or the GODSBL bit must be set to 1b in register 0x1A.

Figure 4-39. DCDC1 Register

7	6	5	4	3	2	1	0
PFM	RESERVED			DCI	DC1		
R/W-1b	R-0b			R/W	/-19h		

Table 4-21. DCDC1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7	PFM	R/W	1b	Pulse Frequency Modulation (PFM, also known as pulse-skip-mode) enable. PFM mode improves light-load efficiency. Actual PFM mode operation depends on load condition. 0b = Disabled (forced PWM) 1b = Enabled
6	RESERVED	R	0b	

Table 4-21. DCDC1 Register Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
5-0	DCDC1	R/W, E2	19h	DCDC1 output voltage setting
				0h = 0.850
				1h = 0.860
				2h = 0.870
				3h = 0.880
				4h = 0.890
				5h = 0.900
				6h = 0.910
				7h = 0.920
				8h = 0.930
				9h = 0.940
				Ah = 0.950
				Bh = 0.960
				Ch = 0.970
				Dh = 0.980
				Eh = 0.990
				Fh = 1.000
				10h = 1.010
				11h = 1.020
				12h = 1.030
				13h = 1.040
				14h = 1.050
				15h = 1.060
				16h = 1.070
				17h = 1.080
				18h = 1.090
				19h = 1.100
				1Ah = 1.110
				1Bh = 1.120
				1Ch = 1.130
				1Dh = 1.140
				1Eh = 1.150
				1Fh = 1.160
				20h = 1.170
				21h = 1.180
				22h = 1.190
				23h = 1.200

Table 4-21. DCDC1 Register Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
				24h = 1.210
				25h = 1.220
				26h = 1.230
				27h = 1.240
				28h = 1.250
				29h = 1.260
				2Ah = 1.270
				2Bh = 1.280
				2Ch = 1.290
				2Dh = 1.300
				2Eh = 1.310
				2Fh = 1.320
				30h = 1.330
				31h = 1.340
				32h = 1.350
				33h = 1.375
				34h = 1.400
				35h = 1.425
				36h = 1.450
				37h = 1.475
				38h = 1.500
				39h = 1.525
				3Ah = 1.550
				3Bh = 1.575
				3Ch = 1.600
				3Dh = 1.625
				3Eh = 1.650
				3Fh = 1.675

www.ti.com SLDS187 – OCTOBER 2018

4.5.3.16 DCDC2 Register (subaddress = 0x17) [reset = 0x99]

DCDC2 is shown in Figure 4-40 and described in Table 4-22.

Return to Summary Table.

Note 1: This register is password protected. For more information, see Section 4.5.1.

Note 2: A 5-ms blanking time of the overvoltage and undervoltage monitoring occurs when a write is performed on the DCDC2 register.

Note 3: To change the output voltage of DCDC2, the GO bit or the GODSBL bit must be set to 1b in register 0x1A.

Figure 4-40. DCDC2 Register

7	6	5	4	3	2	1	0
PFM	RESERVED			DCI	DC2		
R/W-1b	R-0b			R/W	/-19h		

Table 4-22. DCDC2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7	PFM	R/W	1b	Pulse frequency modulation (PFM, also known as pulse-skip-mode) enable. PFM mode improves light-load efficiency. Actual PFM mode operation depends on load condition. 0b = Disabled (forced PWM) 1b = Enabled
6	RESERVED	R	0b	

Table 4-22. DCDC2 Register Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
5-0	DCDC2	R/W, E2	19h	DCDC2 output voltage setting
				0h = 0.850
				1h = 0.860
				2h = 0.870
				3h = 0.880
				4h = 0.890
				5h = 0.900
				6h = 0.910
				7h = 0.920
				8h = 0.930
				9h = 0.940
				Ah = 0.950
				Bh = 0.960
				Ch = 0.970
				Dh = 0.980
				Eh = 0.990
				Fh = 1.000
				10h = 1.010
				11h = 1.020
				12h = 1.030
				13h = 1.040
				14h = 1.050
				15h = 1.060
				16h = 1.070
				17h = 1.080
				18h = 1.090
				19h = 1.100
				1Ah = 1.110
				1Bh = 1.120
				1Ch = 1.130
				1Dh = 1.140
				1Eh = 1.150
				1Fh = 1.160
				20h = 1.170
				21h = 1.180
				22h = 1.190
				23h = 1.200

www.ti.com

Table 4-22. DCDC2 Register Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
				24h = 1.210
				25h = 1.220
				26h = 1.230
				27h = 1.240
				28h = 1.250
				29h = 1.260
				2Ah = 1.270
				2Bh = 1.280
				2Ch = 1.290
				2Dh = 1.300
				2Eh = 1.310
				2Fh = 1.320
				30h = 1.330
				31h = 1.340
				32h = 1.350
				33h = 1.375
				34h = 1.400
				35h = 1.425
				36h = 1.450
				37h = 1.475
				38h = 1.500
				39h = 1.525
				3Ah = 1.550
				3Bh = 1.575
				3Ch = 1.600
				3Dh = 1.625
				3Eh = 1.650
				3Fh = 1.675

TEXAS INSTRUMENTS

4.5.3.17 DCDC3 Register (subaddress = 0x18) [reset = 0x8C]

DCDC3 is shown in Figure 4-41 and described in Table 4-23.

Return to Summary Table.

Note 1: This register is password protected. For more information, see Section 4.5.1.

Note 2: A 5-ms blanking time of the overvoltage and undervoltage monitoring occurs when a write is performed on the DCDC3 register.

NOTE

Power-up default may differ depending on RSEL value. See Section 4.3.1.10 for details.

Figure 4-41. DCDC3 Register

7	6	5	4	3	2	1	0
PFM	RESERVED			DC	DC3		
R/W-1b	R-0b			R/W	V-Ch		

Table 4-23. DCDC3 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7	PFM	R/W	1b	Pulse Frequency Modulation (PFM, also known as pulse-skip-mode) enable. PFM mode improves light-load efficiency. Actual PFM mode operation depends on load condition. 0b = Disabled (forced PWM) 1b = Enabled
6	RESERVED	R	0b	

www.ti.com

Table 4-23. DCDC3 Register Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
5-0	DCDC3	R/W, E2	Ch	DCDC3 output voltage setting
				0h = 0.900
				1h = 0.925
				2h = 0.950
				3h = 0.975
				4h = 1.000
				5h = 1.025
				6h = 1.050
				7h = 1.075
				8h = 1.100
				9h = 1.125
				Ah = 1.150
				Bh = 1.175
				Ch = 1.200
				Dh = 1.225
				Eh = 1.250
				Fh = 1.275
				10h = 1.300
				11h = 1.325
				12h = 1.350
				13h = 1.375
				14h = 1.400
				15h = 1.425
				16h = 1.450
				17h = 1.475
				18h = 1.500
				19h = 1.525
				1Ah = 1.550
				1Bh = 1.600
				1Ch = 1.650
				1Dh = 1.700
				1Eh = 1.750
				1Fh = 1.800
				20h = 1.850
				21h = 1.900
				22h = 1.950
				23h = 2.000

Table 4-23. DCDC3 Register Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
				24h = 2.050
				25h = 2.100
				26h = 2.150
				27h = 2.200
				28h = 2.250
				29h = 2.300
				2Ah = 2.350
				2Bh = 2.400
				2Ch = 2.450
				2Dh = 2.500
				2Eh = 2.550
				2Fh = 2.600
				30h = 2.650
				31h = 2.700
				32h = 2.750
				33h = 2.800
				34h = 2.850
				35h = 2.900
				36h = 2.950
				37h = 3.000
				38h = 3.050
				39h = 3.100
				3Ah = 3.150
				3Bh = 3.200
				3Ch = 3.250
				3Dh = 3.300
				3Eh = 3.350
				3Fh = 3.400

4.5.3.18 DCDC4 Register (subaddress = 0x19) [reset = 0xB2]

DCDC4 is shown in Figure 4-42 and described in Table 4-24.

Return to Summary Table.

Note 1: This register is password protected. For more information, see Section 4.5.1.

Note 2: A 5-ms blanking time of the overvoltage and undervoltage monitoring occurs when a write is performed on the DCDC4 register.

NOTE

Power-up default may differ depending on RSEL value. See Section 4.3.1.10 for details. The Reserved setting should not be selected and the output voltage settings should not be modified while the converter is operating.

Figure 4-42. DCDC4 Register

7	6	5	4	3	2	1	0
PFM	RESERVED			DCI	DC4		
R/W-1b	R-0b	•		R/W	/-32h		

Table 4-24. DCDC4 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7	PFM	R/W	1b	Pulse Frequency Modulation (PFM, also known as pulse-skip-mode) enable. PFM mode improves light-load efficiency. Actual PFM mode operation depends on load condition. 0b = Disabled (forced PWM) 1b = Enabled
6	RESERVED	R	0b	

Table 4-24. DCDC4 Register Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
5-0	DCDC4	R/W, E2	32h	DCDC4 output voltage setting
				0h = 1.175
				1h = 1.200
				2h = 1.225
				3h = 1.250
				4h = 1.275
				5h = 1.300
				6h = 1.325
				7h = 1.350
				8h = 1.375
				9h = 1.400
				Ah = 1.425
				Bh = 1.450
				Ch = 1.475
				Dh = 1.500
				Eh = 1.525
				Fh = 1.550
				10h = 1.600
				11h = 1.650
				12h = 1.700
				13h = 1.750
				14h = 1.800
				15h = 1.850
				16h = 1.900
				17h = 1.950
				18h = 2.000
				19h = 2.050
				1Ah = 2.100
				1Bh = 2.150
				1Ch = 2.200
				1Dh = 2.250
				1Eh = 2.300
				1Fh = 2.3500
				20h = 2.400
				21h = 2.450
				22h = 2.500
				23h = 2.550

Table 4-24. DCDC4 Register Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
				24h = 2.600
				25h = 2.650
				26h = 2.700
				27h = 2.750
				28h = 2.800
				29h = 2.850
				2Ah = 2.900
				2Bh = 2.950
				2Ch = 3.000
				2Dh = 3.050
				2Eh = 3.100
				2Fh = 3.150
				30h = 3.200
				31h = 3.250
				32h = 3.300
				33h = 3.350
				34h = 3.400
				35h = reserved
				36h = reserved
				37h = reserved
				38h = reserved
				39h = reserved
				3Ah = reserved
				3Bh = reserved
				3Ch = reserved
				3Dh = reserved
				3Eh = reserved
				3Fh = reserved

TEXAS INSTRUMENTS

4.5.3.19 SLEW Register (subaddress = 0x1A) [reset = 0x6]

SLEW is shown in Figure 4-43 and described in Table 4-25.

Return to Summary Table.

NOTE

Slew-rate control applies to DCDC1 and DCDC2 only. If changing from a higher voltage to lower voltage while STRICT = 1 and converters are in a no load state, PFM bit for DCDC1 and DCDC2 must be set to 0.

Figure 4-43. SLEW Register

7	6	5	4	3	2	1	0
GO	GODSBL		RESERVED			SLEW	
R/W-0b	R/W-0b	·	R-0h			R/W-6h	

Table 4-25. SLEW Register Field Descriptions

Bit	Field	Туре	Reset	Description
7	GO	R/W	0b	Go bit. Note: Bit is automatically reset at the end of the voltage transition
				0b = No change
				1b = Initiates the transition from present state to the output voltage setting currently stored in DCDC1 / DCDC2 register. SLEW setting does apply.
6	GODSBL	R/W	0b	Go disable bit
				0b = Enabled
				1b = Disabled; DCDC1 and DCDC2 output voltage changes whenever set-point is updated in DCDC1 / DCDC2 register without having to write to the GO bit. SLEW setting does apply.
5-3	RESERVED	R	0h	
2-0	SLEW	R/W	6h	Output slew rate setting
				0h = 160 μs/step (0.0625 mV/μs at 10 mV per step)
				1h = 80 μs/step (0.125 mV/μs at 10 mV per step)
				2h = 40 μs/step (0.250 mV/μs at 10 mV per step)
				3h = 20 μs/step (0.500 mV/μs at 10 mV per step)
				$4h = 10 \mu s/step$ (1.0 mV/μs at 10 mV per step)
				$5h = 5 \mu s/step$ (2.0 mV/μs at 10 mV per step)
				6h = 2.5 μs/step (4.0 mV/μs at 10 mV per step)
				7h = Immediate; Slew rate is only limited by control loop response time. Note: The actual slew rate depends on the voltage step per code. Refer to DCDCx registers for details.

SLDS187-OCTOBER 2018

4.5.3.20 LDO1 Register (subaddress = 0x1B) [reset = 0x1F]

LDO1 is shown in Figure 4-44 and described in Table 4-26.

Return to Summary Table.

Note 1: This register is password protected. For more information, see Section 4.5.1.

Note 2: A 5-ms blanking time of the overvoltage and undervoltage monitoring occurs when a write is performed on the LDO1 register.

Figure 4-44. LDO1 Register

Table 4-26. LDO1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-6	RESERVED	R	0h	
5-0	LDO1	R/W, E2	1Fh	LDO1 output voltage setting
				0h = 0.900
				1h = 0.925
				2h = 0.950
				3h = 0.975
				4h = 1.000
				5h = 1.025
				6h = 1.050
				7h = 1.075
				8h = 1.100
				9h = 1.125
				Ah = 1.150
				Bh = 1.175
				Ch = 1.200
				Dh = 1.225
				Eh = 1.250
				Fh = 1.275
				10h = 1.300
				11h = 1.325
				12h = 1.350
				13h = 1.375
				14h = 1.400
				15h = 1.425
				16h = 1.450
				17h = 1.475
				18h = 1.500
				19h = 1.525

Table 4-26. LDO1 Register Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
				1Ah = 1.550
				1Bh = 1.600
				1Ch = 1.650
				1Dh = 1.700
				1Eh = 1.750
				1Fh = 1.800
				20h = 1.850
				21h = 1.900
				22h = 1.950
				23h = 2.000
				24h = 2.050
				25h = 2.100
				26h = 2.150
				27h = 2.200
				28h = 2.250
				29h = 2.300
				2Ah = 2.350
				2Bh = 2.400
				2Ch = 2.450
				2Dh = 2.500
				2Eh = 2.550
				2Fh = 2.600
				30h = 2.650
				31h = 2.700
				32h = 2.750
				33h = 2.800
				34h = 2.850
				35h = 2.900
				36h = 2.950
				37h = 3.000
				38h = 3.050
				39h = 3.100
				3Ah = 3.150
				3Bh = 3.200
				3Ch = 3.250
				3Dh = 3.300
				3Eh = 3.350
				3Fh = 3.400

www.ti.com SLDS187 – OCTOBER 2018

4.5.3.21 SEQ1 Register (subaddress = 0x20) [reset = 0x0]

SEQ1 is shown in Figure 4-45 and described in Table 4-27.

Return to Summary Table.

Password protected.

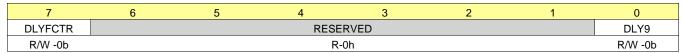
Figure 4-45. SEQ1 Register

7	6	5	4	3	2	1	0
DLY8	DLY7	DLY6	DLY5	DLY4	DLY3	DLY2	DLY1
R/W-0b							

Table 4-27. SEQ1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7	DLY8	R/W, E2	0b	Delay8 (occurs after Strobe8 and before Strobe9)
				0b = 2 ms
				1b = 5 ms
6	DLY7	R/W, E2	0b	Delay7 (occurs after Strobe7 and before Strobe8)
				0b = 2 ms
5	DLY6	R/W, E2	0b	1b = 5 ms
5	DLTO	K/VV, EZ	OD	Delay6 (occurs after Strobe6 and before Strobe7)
				0b = 2 ms
				1b = 5 ms
4	DLY5	R/W, E2	0b	Delay5 (occurs after Strobe5 and before Strobe6)
				0b = 2 ms
				1b = 5 ms
3	DLY4	R/W, E2	0b	Delay4 (occurs after Strobe4 and before Strobe5)
				0b = 2 ms
				1b = 5 ms
2	DLY3	R/W, E2	0b	Delay3 (occurs after Strobe3 and before Strobe4)
				0b = 2 ms
				1b = 5 ms
1	DLY2	R/W, E2	0b	Delay2 (occurs after Strobe2 and before Strobe3)
				0b = 2 ms
				1b = 5 ms
0	DLY1	R/W, E2	0b	Delay1 (occurs after Strobe1 and before Strobe2)
				0b = 2 ms
				1b = 5 ms

NSTRUMENTS


4.5.3.22 SEQ2 Register (subaddress = 0x21) [reset = 0x0]

SEQ2 is shown in Figure 4-46 and described in Table 4-28.

Return to Summary Table.

Password protected.

Figure 4-46. SEQ2 Register

Table 4-28. SEQ2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7	DLYFCTR	R/W, E2	0b	Power-down delay factor
				0b = 1x
				1b = 10x (delay times are multiplied by 10x during power-down)
				Note: DLYFCTR has no effect on power-up timing.
6-1	RESERVED	R	0h	
0	DLY9	R/W, E2	0b	Delay9 (occurs after Strobe9 and before Strobe10)
				0b = 2 ms
				1b = 5 ms

www.ti.com SLDS187 – OCTOBER 2018

4.5.3.23 SEQ3 Register (subaddress = 0x22) [reset = 0x98]

SEQ3 is shown in Figure 4-47 and described in Table 4-29.

Return to Summary Table.

Password protected.

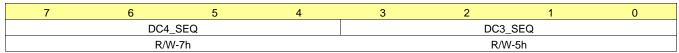
Figure 4-47. SEQ3 Register

Table 4-29. SEQ3 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-4	DC2_SEQ	R/W, E2	9h	DCDC2 enable STROBE
				0h = Rail is not controlled by sequencer
				1h = Rail is not controlled by sequencer
				2h = Rail is not controlled by sequencer
				3h = Enable at STROBE3
				4h = Enable at STROBE4
				5h = Enable at STROBE5
				6h = Enable at STROBE6
				7h = Enable at STROBE7
				8h = Enable at STROBE8
				9h = Enable at STROBE9
				Ah = Enable at STROBE10
				Bh = Rail is not controlled by sequencer
				Ch = Rail is not controlled by sequencer
				Dh = Rail is not controlled by sequencer
				Eh = Rail is not controlled by sequencer
				Fh = Rail is not controlled by sequencer

Table 4-29. SEQ3 Register Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
3-0	DC1_SEQ	R/W, E2	8h	DCDC1 enable STROBE
				0h = Rail is not controlled by sequencer
				1h = Rail is not controlled by sequencer
				2h = Rail is not controlled by sequencer
				3h = Enable at STROBE3
				4h = Enable at STROBE4
				5h = Enable at STROBE5
				6h = Enable at STROBE6
				7h = Enable at STROBE7
				8h = Enable at STROBE8
				9h = Enable at STROBE9
				Ah = Enable at STROBE10
				Bh = Rail is not controlled by sequencer
				Ch = Rail is not controlled by sequencer
				Dh = Rail is not controlled by sequencer
				Eh = Rail is not controlled by sequencer
				Fh = Rail is not controlled by sequencer


4.5.3.24 SEQ4 Register (subaddress = 0x23) [reset = 0x75]

SEQ4 is shown in Figure 4-48 and described in Table 4-30.

Return to Summary Table.

Password protected.

Figure 4-48. SEQ4 Register

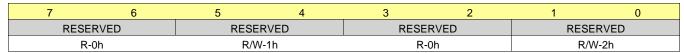
Table 4-30. SEQ4 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-4	DC4_SEQ	R/W, E2	7h	DCDC4 enable STROBE
				0h = Rail is not controlled by sequencer
				1h = Rail is not controlled by sequencer
				2h = Rail is not controlled by sequencer
				3h = Enable at STROBE3
				4h = Enable at STROBE4
				5h = Enable at STROBE5
				6h = Enable at STROBE6
				7h = Enable at STROBE7
				8h = Enable at STROBE8
				9h = Enable at STROBE9
				Ah = Enable at STROBE10
				Bh = Rail is not controlled by sequencer
				Ch = Rail is not controlled by sequencer
				Dh = Rail is not controlled by sequencer
				Eh = Rail is not controlled by sequencer
				Fh = Rail is not controlled by sequencer

Table 4-30. SEQ4 Register Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
3-0	DC3_SEQ	R/W, E2	5h	DCDC3 enable STROBE
				0h = Rail is not controlled by sequencer
				1h = Rail is not controlled by sequencer
				2h = Rail is not controlled by sequencer
				3h = Enable at STROBE3
				4h = Enable at STROBE4
				5h = Enable at STROBE5
				6h = Enable at STROBE6
				7h = Enable at STROBE7
				8h = Enable at STROBE8
				9h = Enable at STROBE9
				Ah = Enable at STROBE10
				Bh = Rail is not controlled by sequencer
				Ch = Rail is not controlled by sequencer
				Dh = Rail is not controlled by sequencer
				Eh = Rail is not controlled by sequencer
				Fh = Rail is not controlled by sequencer

76


4.5.3.25 SEQ5 Register (subaddress = 0x24) [reset = 0x12]

SEQ5 is shown in Figure 4-49 and described in Table 4-31.

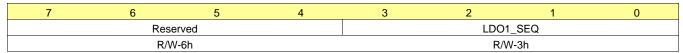
Return to Summary Table.

Password protected.

Figure 4-49. SEQ5 Register

Table 4-31. SEQ5 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-6	RESERVED	R	0h	
5-4	RESERVED	R/W, E2	1h	
3-2	RESERVED	R	0h	
1-0	RESERVED	R/W, E2	2h	


4.5.3.26 SEQ6 Register (subaddress = 0x25) [reset = 0x63]

SEQ6 is shown in Figure 4-50 and described in Table 4-32.

Return to Summary Table.

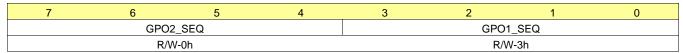
Password protected.

Figure 4-50. SEQ6 Register

Table 4-32. SEQ6 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-4	Reserved	R/W	6h	Reserved
3-0	LDO1_SEQ	R/W, E2	3h	LDO1 enable STROBE
				0h = Rail is not controlled by sequencer
				1h = Rail is not controlled by sequencer
				2h = Rail is not controlled by sequencer
				3h = Enable at STROBE3
				4h = Enable at STROBE4
				5h = Enable at STROBE5
				6h = Enable at STROBE6
				7h = Enable at STROBE7
				8h = Enable at STROBE8
				9h = Enable at STROBE9
				Ah = Enable at STROBE10
				Bh = Rail is not controlled by sequencer
				Ch = Rail is not controlled by sequencer
				Dh = Rail is not controlled by sequencer
				Eh = Rail is not controlled by sequencer
				Fh = Rail is not controlled by sequencer

www.ti.com SLDS187 – OCTOBER 2018


4.5.3.27 SEQ7 Register (subaddress = 0x26) [reset = 0x3]

SEQ7 is shown in Figure 4-51 and described in Table 4-33.

Return to Summary Table.

Password protected.

Figure 4-51. SEQ7 Register

Table 4-33. SEQ7 Register Field Descriptions

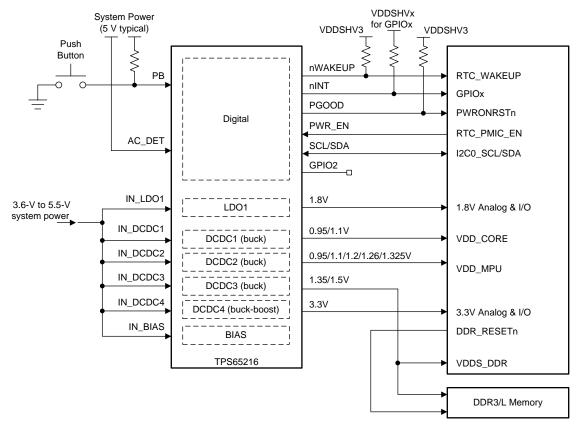
Bit	Field	Туре	Reset	Description
7-4	GPO2_SEQ	R/W, E2	0h	GPO2 enable STROBE
				0h = Rail is not controlled by sequencer
				1h = Rail is not controlled by sequencer
				2h = Rail is not controlled by sequencer
				3h = Enable at STROBE3
				4h = Enable at STROBE4
				5h = Enable at STROBE5
				6h = Enable at STROBE6
				7h = Enable at STROBE7
				8h = Enable at STROBE8
				9h = Enable at STROBE9
				Ah = Enable at STROBE10
				Bh = Rail is not controlled by sequencer
				Ch = Rail is not controlled by sequencer
				Dh = Rail is not controlled by sequencer
				Eh = Rail is not controlled by sequencer
				Fh = Rail is not controlled by sequencer

Table 4-33. SEQ7 Register Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
3-0	GPO1_SEQ	R/W, E2	3h	GPO1 enable STROBE
				0h = Rail is not controlled by sequencer
				1h = Rail is not controlled by sequencer
				2h = Rail is not controlled by sequencer
				3h = Enable at STROBE3
				4h = Enable at STROBE4
				5h = Enable at STROBE5
				6h = Enable at STROBE6
				7h = Enable at STROBE7
				8h = Enable at STROBE8
				9h = Enable at STROBE9
				Ah = Enable at STROBE10
				Bh = Rail is not controlled by sequencer
				Ch = Rail is not controlled by sequencer
				Dh = Rail is not controlled by sequencer
				Eh = Rail is not controlled by sequencer
				Fh = Rail is not controlled by sequencer

Application and Implementation

NOTE


Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. Ti's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

5.1 **Application Information**

The TPS65216 is designed to pair with various application processors. The typical application in Section 5.2 is based on and uses terminology consistent with the Sitara™ family of processors.

TEXAS INSTRUMENTS

5.2 Typical Application

Copyright © 2018, Texas Instruments Incorporated

Figure 5-1. Typical Application Schematic

5.2.1 Design Requirements

Table 5-1 lists the design requirements.

Table 5-1. Design Parameters

	VOLTAGE	SEQUENCE
DCDC1	1.1 V	8
DCDC2	1.1 V	9
DCDC3	1.2 V	5
DCDC4	3.3 V	7
LDO1	1.8 V	3

5.2.2 Detailed Design Procedure

5.2.2.1 Output Filter Design

The step down converters (DCDC1, DCDC2, and DCDC3) on TPS65216 are designed to operate with effective inductance values in the range of 1 to 2.2 μ H and with effective output capacitance in the range of 10 to 100 μ F. The internal compensation is optimized to operate with an output filter of L = 1.5 μ H and C_{OUT} = 10 μ F.

The buck boost converter (DCDC4) on TPS65216 is designed to operate with effective inductance values in the range of 1.2 to 2.2 μ H. The internal compensation is optimized to operate with an output filter of L = 1.5 μ H and C_{OUT} = 47 μ F.

Larger or smaller inductor/capacitance values can be used to optimize performance of the device for specific operation conditions.

5.2.2.2 Inductor Selection for Buck Converters

The inductor value affects its peak to peak ripple current, the PWM to PFM transition point, the output voltage ripple, and the efficiency. The selected inductor must be rated for its DC resistance and saturation current. The inductor ripple current (ΔL) decreases with higher inductance and increases with higher V_{IN} or V_{OUT} . Equation 1 calculates the maximum inductor current ripple under static load conditions. The saturation current of the inductor should be rated higher than the maximum inductor current as calculated with Equation 2. This is recommended as during heavy load transient the inductor current will rise above the calculated value.

$$\Delta I_{L} = V_{OUT} \times \frac{1 - \frac{V_{OUT}}{V_{IN}}}{L \times f}$$

$$I_{Lmax} = I_{OUTmax} + \frac{\Delta I_{L}}{2}$$
(1)

where

- F = Switching frequency
- L = Inductor value
- ΔI_L = Peak-to-peak inductor ripple current

The following inductors have been used with the (see Table 5-2).

Table 5-2. List of Recommended Inductors

PART NUMBER	VALUE	SIZE (mm) [L × W × H]	MANUFACTURER
INDUCTORS FOR DCDC1, DCDC2, D	CDC3, DCDC4		

Table 5-2. List of Recommended Inductors (continued)

PART NUMBER	VALUE	SIZE (mm) [L × W × H]	MANUFACTURER
SPM3012T-1R5M	1.5 μ H, 2.8 A, 77 m Ω	3.2 × 3.0 × 1.2	TDK
IHLP1212BZER1R5M11	1.5 μH, 4.0 A, 28.5 m Ω	$3.6 \times 3.0 \times 2.0$	Vishay

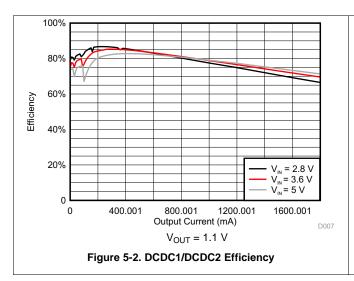
5.2.2.3 Output Capacitor Selection

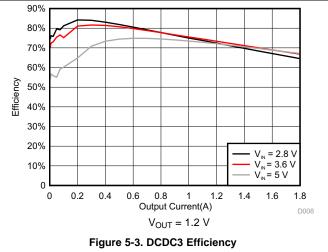
The hysteretic PWM control scheme of the TPS65216 switching converters allows the use of tiny ceramic capacitors. Ceramic capacitors with low ESR values have the lowest output voltage ripple and are recommended. The output capacitor requires either an X7R or X5R dielectric.

At light load currents the converter operates in power save mode, and the output voltage ripple is dependent on the output capacitor value and the PFM peak inductor current. Higher output capacitor values minimize the voltage ripple in PFM Mode and tighten DC output accuracy in PFM mode.

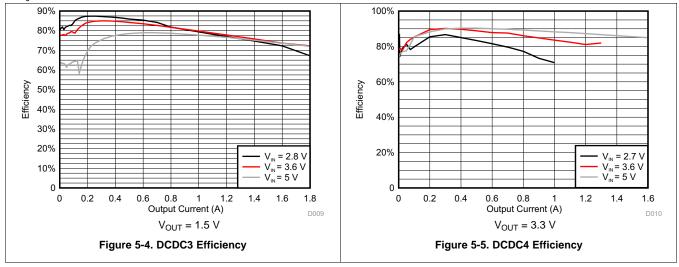
The buck-boost converter requires additional output capacitance to help maintain converter stability during high load conditions. At least 40 µF of output capacitance is recommended and an additional 100-nF capacitor can be added to further filter output ripple at higher frequencies.

Table 5-2 lists the recommended capacitors.


Table 5-3. List of Recommended Capacitors


PART NUMBER	VALUE	SIZE (mm) [L × W × H]	MANUFACTURER
CAPACITORS FOR VOLTAGES UP TO	O 5.5 V ⁽¹⁾		
GRM188R60J105K	1μF	1608 / 0603 (1.6 × 0.8 × 0.8)	Murata
GRM21BR60J475K	4.7µF	2012 / 0805 (2.0 × 1.25 × 1.25)	Murata
GRM31MR60J106K	10μF	3216 / 1206 (3.2 × 1.6 × 1.6)	Murata
GRM31CR60J226K	22µF	3216 / 1206 (3.2 × 1.6 × 1.6)	Murata

⁽¹⁾ The DC bias effect of ceramic capacitors must be considered when selecting a capacitor.


5.2.3 Application Curves

at T_J = 25°C unless otherwise noted

at T_J = 25°C unless otherwise noted

Power Supply Recommendations

The device is designed to operate with an input voltage supply range between 3.6 and 5.5 V. This input supply can be from an externally regulated supply. If the input supply is located more than a few inches from the TPS65216 additional bulk capacitance may be required in addition to the ceramic bypass capacitors. An electrolytic capacitor with a value of 47 µF is a typical choice.

Layout 7

7.1 **Layout Guidelines**

Follow these layout guidelines:

- The IN_X pins should be bypassed to ground with a low ESR ceramic bypass capacitor. The typical recommended bypass capacitance is 4.7-µF with a X5R or X7R dielectric.
- The optimum placement is closest to the IN X pins of the device. Take care to minimize the loop area formed by the bypass capacitor connection, the IN_X pin, and the thermal pad of the device.
- The thermal pad should be tied to the PCB ground plane with a minimum of 25 vias. See Figure 7-2 for an example.
- The LX trace should be kept on the PCB top layer and free of any vias.
- The FBX traces should be routed away from any potential noise source to avoid coupling.
- DCDC4 Output capacitance should be placed immediately at the DCDC4 pin. Excessive distance between the capacitance and DCDC4 pin may cause poor converter performance.

7.2 **Layout Example**

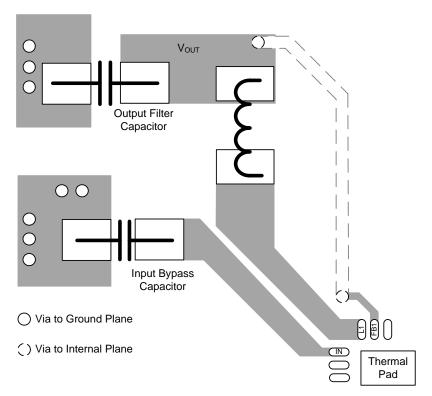
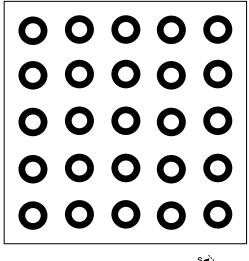



Figure 7-1. Layout Recommendation

Recommended Thermal Pad via size Hole size (s) = 8 mil Diameter (d) = 16 mil

Figure 7-2. Layout Recommendation

86

Device and Documentation Support

8.1 **Device Support**

8.1.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

8.2 **Documentation Support**

8.2.1 Related Documentation

For related documentation see the following:

- Texas Instruments, Basic Calculation of a Buck Converter's Power Stage application report
- Texas Instruments, Design Calculations for Buck-Boost Converters application report
- Texas Instruments, Empowering Designs With Power Management IC (PMIC) for Processor Applications application report
- Texas Instruments, TPS65218EVM user's guide
- Texas Instruments, TPS65218 Power Management Integrated Circuit (PMIC) for Industrial Applications application report

8.3 **Receiving Notification of Documentation Updates**

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

8.4 **Community Resources**

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community The TI engineer-to-engineer (E2E) community was created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

8.5 **Trademarks**

Sitara, E2E are trademarks of Texas Instruments.

8.6 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.7 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

9 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com SLDS187 – OCTOBER 2018

9.1 Package Option Addendum

9.1.1 Packaging Information

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish ⁽³⁾	MSL Peak Temp (4)	Op Temp (°C)	Device Marking ⁽⁵⁾ (6)
TPS65216D0RSLR	ACTIVE	VQFN	RSL	48	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 105	TPS65216D0
TPS65216D0RSLT	ACTIVE	VQFN	RSL	48	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 105	TPS65216D0

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PRE_PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

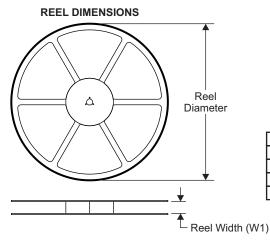
OBSOLETE: TI has discontinued the production of the device.

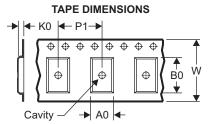
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

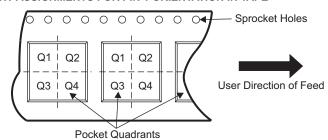
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.


Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

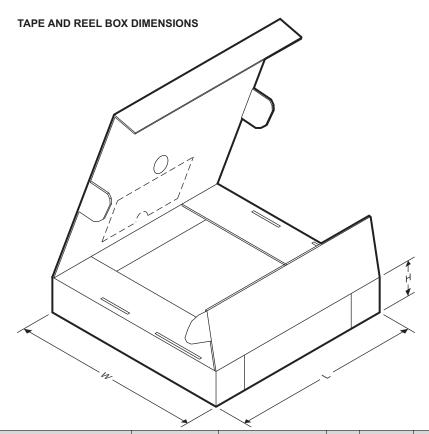

- (3) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.
- (4) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (5) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device
- (6) Multiple Device markings will be inside parentheses. Only on Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TEXAS INSTRUMENTS


9.1.2 Tape and Reel Information

A0	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers
	-


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS65216D0RSLR	VQFN	RSL	48	2500	330.0	16.4	6.3	6.3	1.1	12.0	16.0	Q2
TPS65216D0RSLT	VQFN	RSL	48	250	180.0	16.4	6.3	6.3	1.1	12.0	16.0	Q2

www.ti.com

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS65216D0RSLR	VQFN	RSL	48	2500	367.0	367.0	38.0
TPS65216D0RSLT	VQFN	RSL	48	250	210.0	185.0	35.0

17-Oct-2018

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TPS65216D0RSLR	PREVIEW	VQFN	RSL	48	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 105	T65216D0	
TPS65216D0RSLT	PREVIEW	VQFN	RSL	48	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 105	T65216D0	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

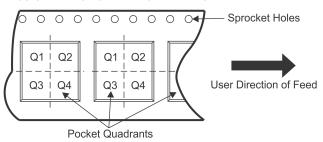
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

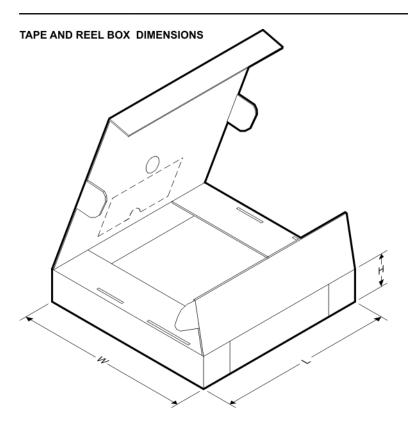
17-Oct-2018

PACKAGE MATERIALS INFORMATION

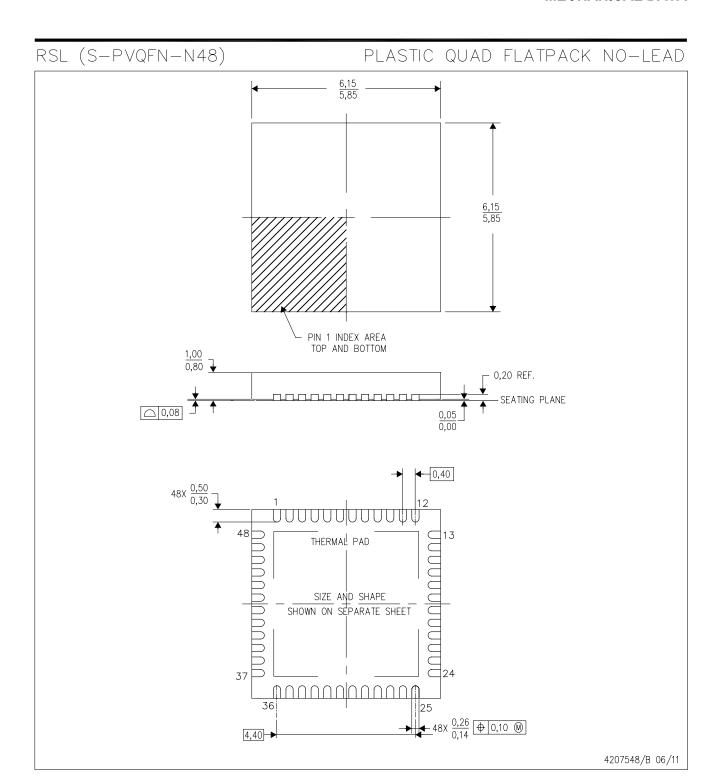
www.ti.com 17-Oct-2018


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS65216D0RSLR	VQFN	RSL	48	2500	330.0	16.4	6.3	6.3	1.1	12.0	16.0	Q2
TPS65216D0RSLT	VQFN	RSL	48	250	180.0	16.4	6.3	6.3	1.1	12.0	16.0	Q2

www.ti.com 17-Oct-2018

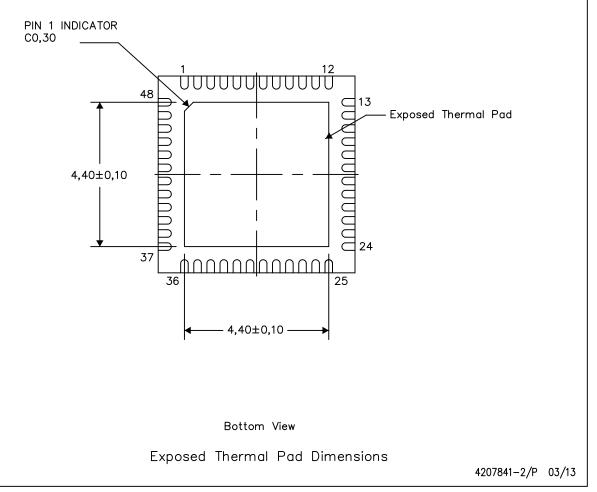
*All dimensions are nominal

De	vice	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS652	6D0RSLR	VQFN	RSL	48	2500	367.0	367.0	38.0
TPS652	16D0RSLT	VQFN	RSL	48	250	210.0	185.0	35.0

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.

- B. This drawing is subject to change without notice.
- C. Quad Flatpack, No-leads (QFN) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.

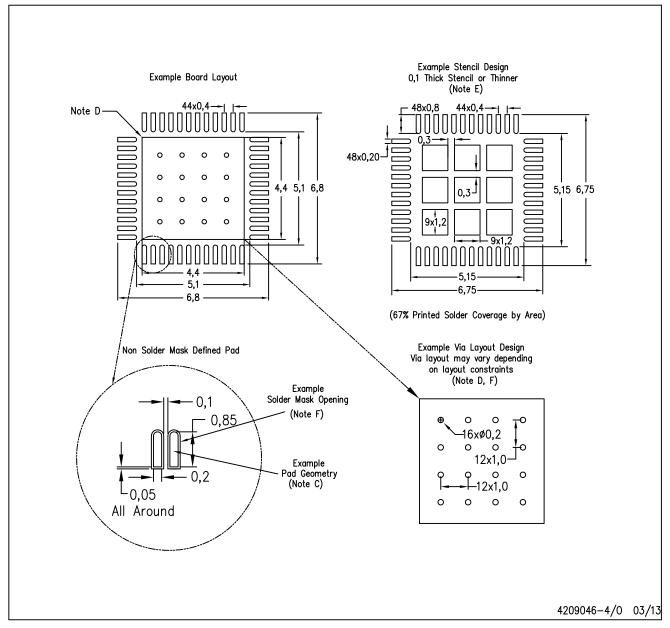
RSL (S-PVQFN-N48)


PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.


The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: All linear dimensions are in millimeters

RSL (S-PVQFN-N48)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated