![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
MITSUBISHI ICs (Monitor) M52732SP 3-CHANNEL VIDEO AMPLIFICATION DESCRIPTION The M52732SP is a semiconductor integrated circuit that has 3channels of built-in amplifiers in the broad-band video amplifier having a 75MHz band. Every channel is provided with a broad-band amplifier, contrast control (main and sub), and brightness control. It accordingly has an optimal configuration for use with high resolution color display monitors. VCC (B) INPUT (B) SUB CONTRAST CONTROL (B) GND (B) VCC (G) 1 2 3 4 5 6 7 8 9 28 OUTPUT (B) 27 HOLD (B) 26 NC 25 GND (B) 24 OUTPUT (G) 23 HOLD (G) 22 NC 21 GND (G) 20 OUTPUT (R) 19 HOLD (R) 18 NC 17 GND (R) 16 VCC 15 BRIGHTNESS CONTROL PIN CONFIGURATION (TOP VIEW) FEATURES INPUT (G) SUB CONTRAST CONTROL (G) GND (G) VCC (R) M52732SP * * * It realize low power dissipation so that 3-channels are built in. (VCC=12V, ICC=63mA) Input..........................................................................0.7V P-P (typ.) Output.....................................................................4.5V P-P (max.) Frequency band.................................................75MHz (at 3V P-P) To adjust contrast, two types of controls are provided, main and sub. The main controls adjusts 3-channels of contrast concurrently. The sub contrast controls adjusts either channel independentry. INPUT (R) 10 SUB CONTRAST 11 CONTROL (R) GND (R) 12 MAIN CONTRAST CONTROL 13 CP IN 14 APPLICATION Display monitor Outline 28P4B RECOMMENDED OPERATING CONDITION Supply voltage range....................................................11.5 to 12.5V Rated supply voltage................................................................12.0V NC : NO CONNECTION BLOCK DIAGRAM HOLD (B) OUTPUT (B) 28 27 NC 26 GND (B) HOLD(G) NC 23 22 GND (G) HOLD (R) NC 19 18 GND (R) VCC 17 16 BRIGHTNESS CONTROL OUTPUT (G) 25 24 OUTPUT (R) 21 20 15 B-ch Brt G-ch Brt R-ch Brt B-ch Hold G-ch Hold R-ch Hold B-ch Amp G-ch Amp R-ch Amp B-ch CONTRAST G-ch CONTRAST R-ch CONTRAST 1 2 INPUT (B) 3 4 GND (B) 5 6 INPUT (G) 7 8 GND (G) 9 10 INPUT (R) 11 12 GND (R) 13 14 CP IN VCC (B) SUB CONTRAST CONTROL (B) VCC (G) SUB CONTRAST CONTROL (G) VCC (R) SUB CONTRAST MAIN CONTRAST CONTROL (R) CONTROL 1 MITSUBISHI ICs (Monitor) M52732SP 3-CHANNEL VIDEO AMPLIFICATION ABSOLUTE MAXIMUM RATINGS (Ta=25C) Symbol VCC Pd Topr Tstg Vopr Vopr' Surge Parameter Supply voltage Power dissipation Ambient temperature Storage temperature Recommended supply voltage Recommended supply voltage range Electrostatic discharge Ratings 13.0 1580 -20 to +85 -40 to +150 12.0 11.5 to 12.5 200 Unit V mW C C V V V ELECTRICAL CHARACTERISTICS (VCC=12V, Ta=25C, unless otherwise noted) Test conditions Symbol Parameter Test point (s) SW10 R-ch A T.P.20 T.P.24 T.P.28 T.P.20 T.P.24 T.P.28 T.P.20 T.P.24 T.P.28 T.P.20 T.P.24 T.P.28 a - b SG1 b SG1 b SG1 Input SW6 G-ch a - b SG1 b SG1 b SG1 SW2 B-ch a - b SG1 b SG1 b SG1 External power supply (V) Pulse input SW14 b SG6 a - a - a - Min. 45 5.8 Limits Unit Typ. 72 6.8 Max. 110 9.0 mA VP-P V3 12 12 V13 12 12 V15 5 Variable ICC Vomax Circuit current Output dynamic range Vimax Maximum input 12 6 Variable 1.9 2.4 2.9 VP-P Gv Gv VCR1 VCR1 VCR2 VCR2 VSCR1 VSCR1 Maximum gain Relative maximum gain Contrast control characteristics (typical) Contrast control relative characteristics (typical) Contrast control characteristics (minimum) Contrast control relative characteristics (minimum) 12 12 VT 13 0.8 17 1 7.4 1 30 1 14 20 1.2 10.1 1.2 70 1.3 18.1 dB - dB - mVP-P - dB - Relative to measured values above b SG1 b SG1 b SG1 12 6 VT a - 4.0 0.8 Relative to measured values above T.P.20 T.P.24 T.P.28 b SG1 b SG1 b SG1 12 3.5 VT a - 5 0.8 Relative to measured values above T.P.20 T.P.24 T.P.28 b SG1 b SG1 b SG1 6 12 VT a - Sub contrast control characteristics (typical) Sub contrast control relative characteristics (typical) Sub contrast control characteristics (minimum) Sub contrast control relative characteristics (minimum) Contrast/sub contrast control characteristics (typical) Contrast/sub contrast control relative characteristics (typical) 9.9 Relative to measured values above T.P.20 T.P.24 T.P.28 b SG1 b SG1 b SG1 a - 0.8 1 1.2 VSCR2 VSCR2 VCR2 VCR2 3 12 VT 50 0.8 300 1 1.3 600 1.2 1.7 mVP-P - VP-P - Relative to measured values above T.P.20 T.P.24 T.P.28 b SG1 b SG1 b SG1 6 6 VT a - 0.9 Relative to measured values above T.P.20 T.P.24 T.P.28 a - a - a - b SG6 0.8 1 1.2 VB1 VB1 Brightness control characteristics (maximum) Brightness control relative characteristics (maximum) 12 12 5.5 3.6 -100 4.3 0 5.0 100 V mV Relative to measured values above 2 MITSUBISHI ICs (Monitor) M52732SP 3-CHANNEL VIDEO AMPLIFICATION ELECTRICAL CHARACTERISTICS (cont.) Test conditions Symbol Parameter Test point (s) SW10 R-ch T.P.20 T.P.24 T.P.28 a - Input SW6 G-ch a - SW2 B-ch a - External power supply (V) Pulse input SW14 b SG6 Min. 3.0 -100 b SG6 2.5 -100 a - -2 Limits Unit Typ. 3.7 0 3.2 0 0 Max. 4.4 100 4.0 100 3 V mV VDC mV dB V3 12 V13 12 V15 5 VB2 VB2 VB3 VB3 FC1 FC1 Brightness control characteristics (typical) Brightness control relative characteristics (typical) Relative to measured values above T.P.20 T.P.24 T.P.28 a - a - a - 12 12 4.5 Brightness control characteristics (minimum) Brightness control relative characteristics (minimum) Relative to measured values above T.P.20 T.P.24 T.P.28 b SG3 b SG3 b SG3 12 7.5 VT Frequency characteristics 1 (f=50MHz;maximum) Frequency relative characteristics 1 (f=50MHz;maximum) Relative to measured values above T.P.20 T.P.24 T.P.28 b SG4 b SG4 b SG4 a - -1 0 1 dB FC1' FC1' Frequency characteristics 1 (f=75MHz;maximum) Frequency relative characteristics 1 (f=75MHz;maximum) 12 7.5 VT -3 0 3 dB Relative to measured values above T.P.20 T.P.24 T.P.28 T.P.20 T.P.24 T.P.28 T.P.20 T.P.24 T.P.28 T.P.20 T.P.24 T.P.28 T.P.20 T.P.24 T.P.28 T.P.20 T.P.24 T.P.28 T.P.20 T.P.24 T.P.28 T.P.20 T.P.24 T.P.28 T.P.20 T.P.24 T.P.28 T.P.20 T.P.24 T.P.28 T.P.20 T.P.24 T.P.28 T.P.20 T.P.24 T.P.28 T.P.20 T.P.24 T.P.28 b SG3 b SG4 b SG3 b SG4 a - a - a - a - b SG5 b SG5 a - a - a - b SG3 b SG4 a - a - b SG3 b SG4 a - a - b SG5 b SG5 a - a - a - b SG3 b SG4 a - a - a - a - b SG3 b SG4 b SG5 b SG5 a - a - a - a - a - a - a - a - a - a - a - b SG6 b SG6 b SG6 b SG6 b SG6 -1 0 1 dB FC2 FC2' Frequency characteristics 2 (f=50MHz; maximum) Frequency relative characteristics 2 (f=75MHz; maximum) Crosstalk 1 (f=50MHz) 12 5 VT -0.5 0 3 dB 12 5 VT -0.5 0 3 dB C.T.1 12 12 VT - - - - - - - - -36 -24 dB C.T.1' Crosstalk 1 (f=75MHz) 12 12 VT -28 -18 dB C.T.2 Crosstalk 2 (f=50MHz) 12 12 VT -36 -24 dB C.T.2' Crosstalk 2 (f=75MHz) 12 12 VT -28 -18 dB C.T.3 Crosstalk 3 (f=50MHz) 12 12 VT -36 -24 dB C.T.3' Crosstalk 3 (f=75MHz) 12 12 VT -28 -18 dB Tr Pulse characteristics 1 12 7 3 3 7 nsec Tf Pulse characteristics 2 Clamp pulse threshold voltage Clamp pulse minimum width Hold voltage 12 7 3 6 9 nsec V14th 12 12 3 0.7 1.5 2.5 VDC W14 12 12 3 - 0.3 1.5 sec V27 12 12 3 4 5.2 6.4 VDC 3 MITSUBISHI ICs (Monitor) M52732SP 3-CHANNEL VIDEO AMPLIFICATION ELECTRICAL CHARACTERISTICS TEST METHOD 1. About switch numbers (SW Nos.) since those for the signal and pulse input pins are listed in Attached Table 1, the following notes omit them. Only SW Nos. for the external power supply will be indicated in the Notes. 2. since sub contrast voltges V3, V7, and V11, they are also set to the same value, so that V3 in attached Table 1 represents all. GV=20LOG ICC Circuit current Conditions shall be as indicated in Attached Table 1. Measure these conditions using ampere meter A with SW1 set to a. Vomax Output dynamic range 1. Follow the procedure below to set V15. Input SG1 to pin 10 (pin 6, 2) and raise V15 slowly. Read the voltage of V15 when the higher peak of output waveform of T.P20 (T.P24, 28) begins distortion. This voltage is VTR1 (VTG1, VTB1) Next, reduce V15 slowly. Read the voltage of V15 when the lower peak of output waveform of T.P20 (T.P24, 28) begins distortion. This voltage is VTR2 (VTG2, VTB2). (V) Gv Maximum gain Gv Relative maximum gain 1. Under conditions in attached Table. 2. Input SG1 to pin 10 (pin 6, 2). Read amplitude of the output at T.P20 (T.P24, 28), which is VOR1 (VOG1, VOB1). 3. The maximum gain G is: VOR1 (VOG1, VOB1) [VP-P] [VP-P] 0.7 4. The maximum relative gain G is calculated by the equation below: GV=VOR1/VOG1, VOG1/VOB1, VOB1/VOR1 VCR1 Contrast control characteristics (typical) VCR1 Contrast control relative characteristics (typical) 1. Conditions are identical with those in Attached Table except setting V13 to 6.0V. 2. Then read amplitude of the output at T.P20 (T.P24, 28), which is VOR2 (VOG2, VOB2) 3. The contrast control characteristics VCR1 and relative contrast control characteristics VCR1 are calculated by the equations below: VCR1=20LOG VOR2 (VOG2, VOB2) [VP-P] [VP-P] 0.7 VCR1=VOR2/VOG2, VOG2/VOB2, VOB2/VOR2 5.0 VCR2 Contrast control characteristics (minimum) VCR2 Contrast control relative characteristics (minimum) 1. Conditions are identical with those in Attached Table except setting V13 to 3.0V. 0.0 Waveform output at T.P20 (Identical to output at T.P24 and T.P28.) 2. Then read amplitude of the output at T.P20 (T.P24, 28), which is VOR3 (VOG3, VOB3) and also VCR2. 3. The relative contrast control characteristics VCR2 is: VCR2=VOR3/VOG3, VOG3/VOB3, VOB3/VOR3 VSCR1 Sub contrast control characteristics (typical) VSCR1 Sub contrast control relative characteristics (typical) 1. Conditions are identical with those in Attached Table except setting V3, V7, and V11 to 6.0V. 2. Then read amplitude of the output at T.P20 (T.P24, 28), which is VOR4 (VOG4, VOB4). 3. The sub contrast control characteristics VSCR1 and relative sub contrast control characteristics VSCR1 are: VSCR1=20LOG VOR4 (VOG4, VOB4) [VP-P] [VP-P] 0.7 From the above result, VT (VTR, VTG, VTB) is determined as follows: VTR (VTG, VTB)= VTR1 (VTG1, VTB1) + VTR2 (VTG2, VTB2) 2 Change the procedure according to output pins. Use VTR1 when measuring T.P20. Similarly, VTG1 for T.P24, VTB1 for T.P28. 2. Set V15 to VTR (VTG, VTB), then slowly raise SG1 amplitude starting from 700mV. Measure the output amplitude when the higher and lower peaks of T.P20 (T.P24, T.P28) output waveform simultaneously begin distortion. Vimax Maximum input Under the conditions in Note 2, vary V13 to 6.7V as indicated in Attached Table 1, then slowly raise amplitude of the input signal starting from 700mVP-P. Read the amplitude of the input signal when the output signal begins distortion. VSCR1=VOR4/VOG4, VOG4/VOB4, VOB4/VOR4 4 MITSUBISHI ICs (Monitor) M52732SP 3-CHANNEL VIDEO AMPLIFICATION VSCR2 Sub contrast control characteristics (minimum) VSCR2 Sub contrast control relative characteristics (minimum) 1. Conditions are identical with those in Attached Table expect setting V3, V7, and V11 to 3.0V. 2. Then read amplitude of the output at T.P20 (T.P24, 28), which is VOR5 (VOG5, VOB5) and also VSCR2. 3. The relative sub contrast control characteristics VSCR2 is: VSCR2=VOR5/VOG5, VOG5/VOB5, VOB5/VOR5 VCR2 Contrast/sub contrast control characteristics (typical) VCR2 Contrast/sub contrast control relative characteristics (typical) 1. Conditions are identical with those in Attached Table expect setting V13, to 6.0V and V3, V7, and V11 to 6.0V. 2. Then read amplitude of the output at T.P20 (T.P24, 28), which is VOR6 (VOG6, VOB6). 3. The gain and relative gain when the contrast and sub contrast are typical, are: VCR3=20LOG VOR6 (VOG6, VOB6) [VP-P] [VP-P] 0.7 VB3 Brightness control characteristics (minimum) VB3 Brightness control relative characteristics (minimum) 1. Under conditions in Attached Table. 2. Then use a voltmeter to measure the output at T.P20 (T.P24, 28), which is VOR7'' (VOG7'', VOB7''). This value is VB3. 3. In addition, the relative brightness control characteristic VB3 is determined from VOR7'', VOG7'', and VOB7'' by calculating differences between each channel. VB3 =VOR7''-VOG7'' =VOG7''-VOB7'' =VOB7''-VOR7'' FC1 Frequency characteristics1 (f=50MHz; maximum) FC1 Frequency relative characteristics1 (f=50MHz; maximum) FC1' Frequency characteristics1 (f=75MHz; maximum) FC1' Frequency relative characteristics1 (f=75MHz; maximum) 1. Under conditions in Attached Table. 2. Use SG3 and SG4. Measure amplitude of the output waveform at T.P20 (T.P24, T.P28) following the procedure in GV, GV. 3. The frequency characteristics FC1, FC1' are calculated by the equations below: [mV] VCR3=VOR6/VOG6, VOG6/VOB6, VOB6/VOR6 VB1 Brightness control characteristics (maximum) VB1 Brightness control relative characteristics (maximum) 1. Under conditions in Attached Table. 2. Then use a voltmeter to measure the output at T.P20 (T.P24, 28), which is VOR7 (VOG7, VOB7). This value is VB1. 3. In addition, the relative brightness control characteristic is determined from VOR7, VOG7, and VOB7 by calculating differences between each channel. VB1 =VOR7-VOG7 =VOG7-VOB7 =VOB7-VOR7 VB2 Brightness control characteristics (typical) VB2 Brightness control relative characteristics (typical) 1. Under conditions in Attached Table. 2. Then use a voltmeter to measure the output at T.P20 (T.P24, 28), which is VOR7' (VOG7', VOB7'). This value is VB2. 3. In addition, the relative brightness control characteristic is determined from VOR7', VOG7', and VOB7' by calculating differences between each channel. VB2 =VOR7'-VOG7' =VOG7'-VOB7' =VOB7'-VOR7' [mV] [mV] FC1=20LOG VOR8 (VOG8, VOB8) VOR1 (VOG1, VOB1) VOR9 (VOG9, VOB9) VOR1 (VOG1, VOB1) [VP-P] [VP-P] [VP-P] [VP-P] FC1'=20LOG Whre, VOR8 (VOG8, VOB8) is the output amplitude when inputting SG3, and VOR9 (VOG9, VOB9), SG4, which are measured in 2 above. (VOR1 (VOG1, VOB1) is the value measured in GV, GV.) 4. The relative frequency characteristics FC1, FC1' are determined by calculating differences between each channel's FC1 and FC1'. FC2 Frequency characteristics2 (f=50MHz; maximum) FC2' Frequency relative characteristics2 (f=75MHz; maximum) The procedure is identical with that in FC1, FC1, FC1', FC1' except that the contrast (V13) is reduced to 5.0V. C.T.1 Crosstalk1 (f=50MHz) C.T.1' Crosstalk1 (f=75MHz) 1. Under conditions in attached Table. 2. Input SG2 (or SG4) to pin 10 (R-ch) only. Then measure amplitude of the output waveform at T.P20 (T.P24, T.P28), which are VOR, VOG, and VOB, respectively. 3. Crosstalk C.T. is: C.T. =20LOG (C.T. ') VOG or VOB VOR [VP-P] [dB] [VP-P] 5 MITSUBISHI ICs (Monitor) M52732SP 3-CHANNEL VIDEO AMPLIFICATION V14th Clamp pulse threshold voltage 1. Under conditions in attached Table. 2. Then slowly reduce the level of SG6 monitoring the output (approx.2.0VDC) and measure the level of SG6 when the output becomes 0V. VOR or VOB VOG [VP-P] [dB] [VP-P] W14 Clamp pulse minimum width Under the conditions in V14th, slowly reduce the pulse width of SG6 monitoring the output. C.T.3 Crosstalk3 (f=50MHz) C.T.3' Crosstalk3 (f=75MHz) 1. After the input pin from 10 (R-ch) to 2 (B-ch) and read the output following the procedure in C.T.1, C.T.1'. 2. Crosstalk C.T. is: VOR or VOB C.T. =20LOG VOG (C.T. ') [VP-P] [dB] [VP-P] Then measure the pulse width of SG6 when the output becomes 0V. V27 Hold voltage 1. Under conditions in attached Table. 2. Read T.P19, 23 and 27 with a voltmeter. C.T.2 Crosstalk2 (f=50MHz) C.T.2' Crosstalk2 (f=75MHz) 1. Afterthe input pin from 10 (R-ch) to 6 (G-ch) and read the output following the procedure in C.T.1, C.T.1'. 2. Crosstalk C.T. is: C.T. =20LOG (C.T. ') Tr Pulse characteristics1 Tf Pulse characteristics2 1. Under conditions in attached Table. 2. Measure 10% to 90% rise Tr1 and fall Tf1 of the input pulse using an active probe. 3. Next, measure 10% to 90% rise Tr2 and fall Tf2 of the output pulse using an active probe. 4. Pulse characteristics Tr and Tf are calculated by the equations below : Tr (nsec)= (Tr2)2-(Tr1)2 Tf (nsec)= (Tf2)2-(Tf1)2 100% 90% 10% 0% Tr Tf 6 MITSUBISHI ICs (Monitor) M52732SP 3-CHANNEL VIDEO AMPLIFICATION INPUT SIGNAL SG No. Signals Sine wave of amplitude 0.7VP-P (75kHz, amplitude partlym variable) SG1 0.7VP-P SG2 SG3 SG4 Sine wave with amplitude of 0.7VP-P (f=10MHz) Sine wave with amplitude of 0.7VP-P (f=50MHz) Sine wave with amplitude of 0.7VP-P (f=75MHz) Pulse with amplitude of 0.7VP-P (f=1MHz, duty=50%) SG5 0.7VP-P Pulses of amplitude 2.0VP-P and width 3.0 synchronizing to the pedestal of the standard video staircase SG6 0V 3.0s 2.0VP-P 3.0s SG7 Standard video staircase See Notes 7 MITSUBISHI ICs (Monitor) M52732SP 3-CHANNEL VIDEO AMPLIFICATION TEST CIRCUIT TP28 TP27 TP24 TP23 TP20 TP19 2.2 1k 1k 2.2 1k 2.2 100 100 V15 28 27 26 NC 25 GND 24 23 22 NC 21 GND 20 19 18 NC 17 GND 16 VCC 15 M52732SP VCC 1 100 2 0.01 V3 a SW2 A SG1 SG2 SG3 SG4 SG5 0.01 a SW1 12V b 47 b 3 GND 4 VCC 5 100 6 0.01 V7 a SW6 b 7 GND 8 VCC 9 100 10 11 0.01 V11 a SW10 b GND 12 13 14 V13 SW14 a b SG6 50 Units Resistance : Capacitance : F TYPICAL CHARACTERISTICS THERMAL DERATING (MAXIMUM RATING) 1800 POWER DISSIPATION Pd (mW) 1600 1400 1200 1000 800 600 400 200 -20 0 25 50 75 85 100 125 150 AMBIENT TEMPERATURE Ta (C) 8 MITSUBISHI ICs (Monitor) M52732SP 3-CHANNEL VIDEO AMPLIFICATION APPLICATION EXAMPLE CRT 110V DC CLAMP 1k 1k 1k 0 to 12V 28 27 NC 26 25 24 23 NC 22 21 20 19 NC 18 17 16 15 M52732SP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 to 12V 0 to 12V 0 to 12V 0 to 12V 12V INPUT (B) INPUT (G) INPUT (R) CLAMP Units Resistance : Capacitance : F 9 MITSUBISHI ICs (Monitor) M52732SP 3-CHANNEL VIDEO AMPLIFICATION DESCRIPTION OF PIN Pin No. 1 5 9 Name VCC (B-ch) VCC (G-ch) VCC (R-ch) DC voltage (V ) 12 Peripheral circuit of pins - Description of function The voltage to be applied to 3 channels shall be equal. VCC 24.7k 1k 2 6 10 B-IN G-IN R-IN 2.9 3.6k GND Vcc 3 7 11 B SUB CONTRAST G SUB CONTRAST R SUB CONTRAST 4k 4.0 72k GND 0.12mA 4, 25 8, 21 12, 17 GND (B-ch) GND (G-ch) GND (R-ch) GND - Vcc 4k 13 CONTRAST 6.9 72k GND 0.4mA VCC 50k 14 CLAMP PULSE 14 GND 10 MITSUBISHI ICs (Monitor) M52732SP 3-CHANNEL VIDEO AMPLIFICATION DESCRIPTION OF PIN (cont.) Pin No. Name DC voltage (V ) Peripheral circuit of pins VCC 30k Description of function 15 BRIGHT 15 GND 16 18 22 26 VCC NC 12 - Vcc 19 23 27 R HOLD G HOLD B HOLD Variable 1k GND VCC 20 24 28 B OUT G OUT R OUT Variable A resistor is needed at the GND side. Choose any resistance value under 15mA according to the driving capability required. 50 11 |
Price & Availability of M52732SP
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |