![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
SKW20N60 Fast S-IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode * 75% lower Eoff compared to previous generation combined with low conduction losses * Short circuit withstand time - 10 s * Designed for: - Motor controls - Inverter * NPT-Technology for 600V applications offers: - very tight parameter distribution - high ruggedness, temperature stable behaviour - parallel switching capability * Very soft, fast recovery anti-parallel EmCon diode C G E Type SKW20N60 Maximum Ratings Parameter VCE 600V IC 20A VCE(sat) 2.4V Tj 150C Package TO-247AC Ordering Code Q67040-S4242 Symbol VCE IC Value 600 40 20 Unit V A Collector-emitter voltage DC collector current TC = 25C TC = 100C Pulsed collector current, tp limited by Tjmax Turn off safe operating area VCE 600V, Tj 150C Diode forward current TC = 25C TC = 100C Diode pulsed current, tp limited by Tjmax Gate-emitter voltage Short circuit withstand time Power dissipation TC = 25C Operating junction and storage temperature 1) ICpul s IF 80 80 40 20 IFpul s VGE tSC Ptot Tj , Tstg 80 20 10 179 -55...+150 V s W C VGE = 15V, VCC 600V, Tj 150C 1) Allowed number of short circuits: <1000; time between short circuits: >1s. 1 Mar-00 SKW20N60 Thermal Resistance Parameter Characteristic IGBT thermal resistance, junction - case Diode thermal resistance, junction - case Thermal resistance, junction - ambient Electrical Characteristic, at Tj = 25 C, unless otherwise specified Parameter Static Characteristic Collector-emitter breakdown voltage Collector-emitter saturation voltage V ( B R ) C E S V G E = 0V , I C = 5 00 A VCE(sat) V G E = 15 V , I C = 20 A T j =2 5 C T j =1 5 0 C Diode forward voltage VF V G E = 0V , I F = 2 0 A T j =2 5 C T j =1 5 0 C Gate-emitter threshold voltage Zero gate voltage collector current VGE(th) ICES I C = 70 0 A , V C E = V G E V C E = 60 0 V, V G E = 0 V T j =2 5 C T j =1 5 0 C Gate-emitter leakage current Transconductance Dynamic Characteristic Input capacitance Output capacitance Reverse transfer capacitance Gate charge Internal emitter inductance measured 5mm (0.197 in.) from case Short circuit collector current 1) Symbol Conditions Max. Value Unit RthJC RthJCD RthJA TO-247AC 0.7 1.3 40 K/W Symbol Conditions Value min. 600 1.7 1.2 3 Typ. 2 2.4 1.4 1.25 4 14 1100 107 63 100 13 200 max. 2.4 2.9 1.8 1.65 5 Unit V A 40 2500 100 1320 128 76 130 nC nH A nA S pF IGES gfs Ciss Coss Crss QGate LE IC(SC) V C E = 0V , V G E =2 0 V V C E = 20 V , I C = 20 A V C E = 25 V , V G E = 0V , f= 1 MH z V C C = 48 0 V, I C =2 0 A V G E = 15 V T O - 24 7A C V G E = 15 V ,t S C 10 s V C C 6 0 0 V, T j 15 0 C 1) Allowed number of short circuits: <1000; time between short circuits: >1s. 2 Mar-00 SKW20N60 Switching Characteristic, Inductive Load, at Tj=25 C Parameter IGBT Characteristic Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy Anti-Parallel Diode Characteristic Diode reverse recovery time trr tS tF Diode reverse recovery charge Diode peak reverse recovery current Diode peak rate of fall of reverse recovery current during t b Qrr Irrm d i r r /d t T j =2 5 C , V R = 2 00 V , I F = 2 0 A, d i F / d t =2 0 0 A/ s 300 30 270 490 5.5 180 nC A A/s ns td(on) tr td(off) tf Eon Eoff Ets T j =2 5 C , V C C = 40 0 V, I C = 2 0 A, V G E = 0/ 15 V , R G = 16 , Energy losses include "tail" and diode reverse recovery. 36 30 225 54 0.44 0.33 0.77 46 36 270 65 0.53 0.43 0.96 mJ ns Symbol Conditions Value min. typ. max. Unit Switching Characteristic, Inductive Load, at Tj=150 C Parameter IGBT Characteristic Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy Anti-Parallel Diode Characteristic Diode reverse recovery time trr tS tF Diode reverse recovery charge Diode peak reverse recovery current Diode peak rate of fall of reverse recovery current during t b Qrr Irrm d i r r /d t T j =1 5 0 C V R = 2 00 V , I F = 2 0 A, d i F / d t =2 0 0 A/ s 410 45 365 1270 8.5 200 nC A A/s ns td(on) tr td(off) tf Eon Eoff Ets T j =1 5 0 C V C C = 40 0 V, I C = 20 A , V G E = 0/ 15 V , R G = 16 Energy losses include "tail" and diode reverse recovery. 36 30 250 63 0.67 0.49 1.12 46 36 300 76 0.81 0.64 1.45 mJ ns Symbol Conditions Value min. typ. max. Unit 3 Mar-00 SKW20N60 110A 100A 90A 100A Ic tp=4s 15s IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 80A 70A 60A 50A 40A 30A 20A 10A 0A 10Hz TC=110C TC=80C 10A 50s 200s 1A 1ms Ic 0.1A 1V 10V 100V DC 100Hz 1kHz 10kHz 100kHz 1000V f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj 150C, D = 0.5, VCE = 400V, VGE = 0/+15V, RG = 16) VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25C, Tj 150C) 200W 180W 160W 50A 40A 120W 100W 80W 60W 40W 20W 0W 25C IC, COLLECTOR CURRENT 50C 75C 100C 125C Ptot, POWER DISSIPATION 140W 30A 20A 10A 0A 25C 50C 75C 100C 125C TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj 150C) TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE 15V, Tj 150C) 4 Mar-00 SKW20N60 60A 60A 50A 50A VGE=20V 15V 13V 11V 9V 7V 5V IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 40A 40A VGE=20V 15V 13V 11V 9V 7V 5V 30A 30A 20A 20A 10A 10A 0A 0V 1V 2V 3V 4V 5V 0A 0V 1V 2V 3V 4V 5V VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics (Tj = 25C) VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics (Tj = 150C) 60A 50A 40A 30A 20A 10A 0A 0V Tj=+25C -55C +150C VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE 70A 4.0V 3.5V IC = 40A 3.0V IC, COLLECTOR CURRENT 2.5V IC = 20A 2.0V 1.5V 2V 4V 6V 8V 10V 1.0V -50C 0C 50C 100C 150C VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics (VCE = 10V) Tj, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V) 5 Mar-00 SKW20N60 td(off) td(off) t, SWITCHING TIMES 100ns tf t, SWITCHING TIMES 100ns tf td(on) tr td(on) tr 10ns 10A 20A 30A 40A 10ns 0 10 20 30 40 50 60 IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, Tj = 150C, VCE = 400V, VGE = 0/+15V, RG = 16) RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, Tj = 150C, VCE = 400V, VGE = 0/+15V, IC = 20A) 5.5V VGE(th), GATE-EMITTER THRESHOLD VOLTAGE 5.0V 4.5V 4.0V 3.5V 3.0V 2.5V 2.0V typ. max. td(off) t, SWITCHING TIMES 100ns tf tr td(on) min. 10ns 0C 50C 100C 150C -50C 0C 50C 100C 150C Tj, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 20A, RG = 1 6) Tj, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.7mA) 6 Mar-00 SKW20N60 3.0mJ *) Eon and Ets include losses due to diode recovery. 3.0mJ Ets* *) Eon and Ets include losses due to diode recovery. 2.5mJ 2.5mJ E, SWITCHING ENERGY LOSSES 2.0mJ Eon* 1.5mJ Eoff E, SWITCHING ENERGY LOSSES 2.0mJ Ets* 1.5mJ 1.0mJ 1.0mJ Eon* Eoff 0.5mJ 0.5mJ 0.0mJ 0A 10A 20A 30A 40A 50A 0.0mJ 0 10 20 30 40 50 60 IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, Tj = 150C, VCE = 400V, VGE = 0/+15V, RG = 16) RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, Tj = 150C, VCE = 400V, VGE = 0/+15V, IC = 20A) 1.6mJ ZthJC, TRANSIENT THERMAL IMPEDANCE 1.4mJ *) Eon and Ets include losses due to diode recovery. 10 K/W D=0.5 0.2 10 K/W 0.1 0.05 0.02 10 K/W 0.01 -2 -1 0 E, SWITCHING ENERGY LOSSES 1.2mJ 1.0mJ 0.8mJ Ets* Eon* 0.6mJ Eoff 0.4mJ 0.2mJ 0.0mJ 0C R,(1/W) 0.1882 0.3214 0.1512 0.0392 R1 , (s)= 0.1137 2.24*10-2 7.86*10-4 9.41*10-5 R2 10 K/W single pulse -3 C 1= 1/R 1 C 2= 2/R 2 50C 100C 150C 10 K/W 1s -4 10s 100s 1ms 10ms 100ms 1s Tj, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 20A, RG = 1 6) tp, PULSE WIDTH Figure 16. IGBT transient thermal impedance as a function of pulse width (D = tp / T) 7 Mar-00 SKW20N60 25V Ciss 20V 1nF VGE, GATE-EMITTER VOLTAGE 15V 120V 480V C, CAPACITANCE 10V 100pF Coss 5V Crss 0V 0nC 25nC 50nC 75nC 100nC 125nC 10pF 0V 10V 20V 30V QGE, GATE CHARGE Figure 17. Typical gate charge (IC = 20A) VCE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (VGE = 0V, f = 1MHz) 25 s 350A IC(sc), SHORT CIRCUIT COLLECTOR CURRENT 300A 250A 200A 150A 100A 50A 0A 10V tsc, SHORT CIRCUIT WITHSTAND TIME 20 s 15 s 10 s 5 s 0 s 10V 11V 12V 13V 14V 15V 12V 14V 16V 18V 20V VGE, GATE-EMITTER VOLTAGE Figure 19. Short circuit withstand time as a function of gate-emitter voltage (VCE = 600V, start at Tj = 25C) VGE, GATE-EMITTER VOLTAGE Figure 20. Typical short circuit collector current as a function of gate-emitter voltage (VCE 600V, Tj = 150C) 8 Mar-00 SKW20N60 600ns 2500nC 500ns Qrr, REVERSE RECOVERY CHARGE 2000nC trr, REVERSE RECOVERY TIME IF = 40A 1500nC 400ns IF = 40A IF = 20A 300ns IF = 20A IF = 10A 1000nC 200ns IF = 10A 500nC 100ns 0ns 100A/s 300A/s 500A/s 700A/s 900A/s 0nC 100A/s 300A/s 500A/s 700A/s 900A/s d i F / d t, DIODE CURRENT SLOPE Figure 21. Typical reverse recovery time as a function of diode current slope (VR = 200V, Tj = 125C) d i F / d t, DIODE CURRENT SLOPE Figure 22. Typical reverse recovery charge as a function of diode current slope (VR = 200V, Tj = 125C) 24A 1000A/s 20A d i r r /d t, DIODE PEAK RATE OF FALL 16A IF = 40A OF REVERSE RECOVERY CURRENT Irr, REVERSE RECOVERY CURRENT 800A/s 600A/s 12A IF = 20A IF = 10A 400A/s 8A 4A 200A/s 0A 100A/s 300A/s 500A/s 700A/s 900A/s 0A/s 100A/s 300A/s 500A/s 700A/s 900A/s d i F / d t, DIODE CURRENT SLOPE Figure 23. Typical reverse recovery current as a function of diode current slope (VR = 200V, Tj = 125C) diF/dt, DIODE CURRENT SLOPE Figure 24. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope (VR = 200V, Tj = 125C) 9 Mar-00 SKW20N60 40A 35A 2.0V I F = 40A 30A 25A 150C 20A 100C 15A 10A 5A 0A 0.0V -55C 25C VF, FORWARD VOLTAGE IF, FORWARD CURRENT 1.5V I F = 20A 0.5V 1.0V 1.5V 2.0V 1.0V -40C 0C 40C 80C 120C VF, FORWARD VOLTAGE Figure 25. Typical diode forward current as a function of forward voltage Tj, JUNCTION TEMPERATURE Figure 26. Typical diode forward voltage as a function of junction temperature ZthJCD, TRANSIENT THERMAL IMPEDANCE 10 K/W D=0.5 0.2 0.1 10 K/W 0.05 0.02 -1 0 10 K/W -2 0.01 R,(1/W) 0.358 0.367 0.329 0.216 0.024 R1 , (s)= 9.02*10-2 9.42*10-3 9.93*10-4 1.19*10-4 1.92*10-5 R2 single pulse C1= 1/R1 C 2 = 2 /R 2 10 K/W 1s -3 10s 100s 1ms 10ms 100ms 1s tp, PULSE WIDTH Figure 27. Diode transient thermal impedance as a function of pulse width (D = tp / T) 10 Mar-00 SKW20N60 TO-247AC symbol dimensions [mm] min max 5.28 2.51 2.29 1.32 2.06 3.18 min [inch] max 0.2079 0.0988 0.0902 0.0520 0.0811 0.1252 A B C D E F G H K L M N P 4.78 2.29 1.78 1.09 1.73 2.67 0.1882 0.0902 0.0701 0.0429 0.0681 0.1051 0.76 max 20.80 15.65 5.21 19.81 3.560 21.16 16.15 5.72 20.68 4.930 0.0299 max 0.8189 0.6161 0.2051 0.7799 0.1402 0.8331 0.6358 0.2252 0.8142 0.1941 3.61 6.12 6.22 0.1421 0.2409 0.2449 Q 11 Mar-00 SKW20N60 i,v diF /dt tr r =tS +tF Qr r =QS +QF tr r IF tS QS tF 10% Ir r m t VR Ir r m QF dir r /dt 90% Ir r m Figure C. Definition of diodes switching characteristics 1 Tj (t) p(t) 2 r2 r1 n rn r1 r2 rn Figure A. Definition of switching times TC Figure D. Thermal equivalent circuit Figure B. Definition of switching losses 12 Mar-00 SKW20N60 Published by Infineon Technologies AG, Bereich Kommunikation St.-Martin-Strasse 53, D-81541 Munchen (c) Infineon Technologies AG 2000 All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 13 Mar-00 This datasheet has been download from: www..com Datasheets for electronics components. |
Price & Availability of SKW20N60
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |