![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
SEMICONDUCTOR RFP30N06LE, RF1S30N06LE, RF1S30N06LESM 30A, 60V, ESD Rated, Avalanche Rated, Logic Level N-Channel Enhancement-Mode Power MOSFETs Packages JEDEC TO-220AB SOURCE DRAIN GATE July 1995 Features * 30A, 60V * rDS(ON) = 0.047 * 2kV ESD Protected * Temperature Compensating PSPICE Model * Peak Current vs Pulse Width Curve * UIS Rating Curve DRAIN (FLANGE) JEDEC TO-262AA Description The RFP30N06LE, RF1S30N06LE and RF1S30N06LESM are N-Channel power MOSFETs manufactured using the MegaFET process. This process, which uses feature sizes approaching those of LSI integrated circuits gives optimum utilization of silicon, resulting in outstanding performance. They were designed for use in applications such as switching regulators, switching converters, motor drivers and relay drivers. These transistors can be operated directly from integrated circuits. These transistors incorporate ESD protection and are designed to withstand 2kV (Human Body Model) of ESD. PACKAGE AVAILABILITY PART NUMBER RFP30N06LE RF1S30N06LE RF1S30N06LESM PACKAGE TO-220AB TO-262AA TO-263AB BRAND F30N06LE 1S30N06L 1S30N06L G DRAIN (FLANGE) A SOURCE DRAIN GATE JEDEC TO-263AB M A A DRAIN (FLANGE) GATE SOURCE Symbol D NOTE: When ordering use the entire part number. Add suffix, 9A, to obtain the TO-263 variant in tape and reel i.e. RF1S30N06LESM9A. Formerly developmental type TA49027. S Absolute Maximum Ratings TC = +25oC RFP30N06LE, RF1S30N06LE, RF1S30N06LESM UNITS V V V A Drain Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain Gate Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VDGR Gate Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VGS Drain Current RMS Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Power Dissipation TC = +25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate above +25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrostatic Discharge Rating, MIL-STD-883, Category B(2) . . . . . . . . . . . . . . . ESD Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TSTG, TJ Soldering Temperature of Leads for 10s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL Copyright 60 60 +10, -8 30 Refer to Peak Current Curve Refer to UIS Curve 96 0.645 2 -55 to +175 260 W W/oC kV oC oC (c) Harris Corporation 1995 5-45 File Number 3629.1 Specifications RFP30N06LE, RF1S30N06LE, RF1S30N06LESM Electrical Specifications PARAMETER Drain-Source Breakdown Voltage Gate Threshold Voltage Zero Gate Voltage Drain Current TC = +25oC, Unless Otherwise Specified SYMBOL BVDSS VGS(TH) IDSS TEST CONDITIONS ID = 250A, VGS = 0V VGS = VDS, ID = 250A VDS = 60V, VGS = 0V VGS = +10, -8V ID = 30A, VGS = 5V VDD = 30V, ID = 30A, RL = 1, VGS = 5V, RGS = 2.5 TC = +25oC TC = +150oC MIN 60 1 VGS = 0V to 10V VGS = 0V to 5V VGS = 0V to 1V VDS = 25V, VGS = 0V, f = 1MHz VDD = 48V, ID = 30A, RL = 1.6 TYP 11 88 30 40 51 28 1.8 1350 290 85 MAX 2 1 50 10 0.047 140 100 62 34 2.6 1.55 80 UNITS V V A A A ns ns ns ns ns ns nC nC nC pF pF pF oC/W oC/W Gate-Source Leakage Current On Resistance Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time Total Gate Charge Gate Charge at 5V Threshold Gate Charge Input Capacitance Output Capacitance Reverse Transfer Capacitance Thermal Resistance Junction to Case Thermal Resistance Junction to Ambient IGSS rDS(ON) tON tD(ON) tR tD(OFF) tF tOFF QG(TOT) QG(5) QG(TH) CISS COSS CRSS RJC RJA Source-Drain Diode Specifications PARAMETER Forward Voltage Reverse Recovery Time SYMBOL VSD tRR TEST CONDITIONS ISD = 30A ISD = 30A, dISD/dt = 100A/s MIN TYP MAX 1.5 125 UNITS V ns 5-46 RFP30N06LE, RF1S30N06LE, RF1S30N06LESM Typical Performance Curves TC = +25oC 10 DUTY CYCLE 0.5 0.2 0.1 0.05 0.02 0.01 200 100 ID , DRAIN CURRENT (A) ZJC , NORMALIZED THERMAL RESPONSE 1 100s 10 OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 1ms 10ms 100ms DC PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZJC + TC 10-2 10-1 100 101 1 VDSS MAX = 60V 1 10 VDS , DRAIN-TO-SOURCE VOLTAGE (V) 100 SINGLE PULSE 0.01 10-5 10-4 10-3 t, RECTANGULAR PULSE DURATION (s) FIGURE 1. SAFE OPERATING AREA CURVE FIGURE 2. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE 40 IDM , PEAK CURRENT CAPABILITY (A) 500 TC = +25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: 175 - T c I = I ---------------------- 25 150 ID , DRAIN CURRENT (A) 30 VGS = 10V 100 20 10 VGS = 5V TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 20 10-6 10-5 10-4 10-3 10-2 10-1 t, PULSE WIDTH (s) 100 101 0 25 50 75 100 125 (oC) 150 175 TC , CASE TEMPERATURE FIGURE 3. MAXIMUM CONTINUOUS DRAIN CURRENT vs TEMPERATURE FIGURE 4. PEAK CURRENT CAPABILITY 100 ID(ON) , ON STATE DRAIN CURRENT (A) PULSE DURATION = 250s, TC = +25oC VGS = 10V VDD = 15V 100 PULSE TEST PULSE DURATION = 250s DUTY CYCLE = 0.5% MAX -55oC +25oC +175oC ID , DRAIN CURRENT (A) 80 VGS = 5V VGS = 4.5V 80 60 VGS = 4V 40 VGS = 3V 20 60 40 20 0 0 1.5 4.5 3.0 6.0 VDS , DRAIN-TO-SOURCE VOLTAGE (V) 7.5 0 0.0 1.5 6.0 3.0 4.5 VGS , GATE-TO-SOURCE VOLTAGE (V) 7.5 FIGURE 5. TYPICAL SATURATION CHARACTERISTICS FIGURE 6. TYPICAL TRANSFER CHARACTERISTICS 5-47 RFP30N06LE, RF1S30N06LE, RF1S30N06LESM Typical Performance Curves 3.0 2.5 rDS(ON) , NORMALIZED 2.0 1.5 1.0 0.5 0.0 -80 VGS(TH) , NORMALIZED GATE THRESHOLD VOLTAGE (Continued) VGS = VDS, ID = 250A 2.0 PULSE DURATION = 250s, VGS = 5V, ID = 30A 1.5 1.0 0.5 -40 0 40 80 120 160 200 0.0 -80 -40 TJ , JUNCTION TEMPERATURE (oC) 160 120 0 40 80 TJ , JUNCTION TEMPERATURE (oC) 200 FIGURE 7. NORMALIZED rDS(ON) vs JUNCTION TEMPERATURE FIGURE 8. NORMALIZED GATE THRESHOLD VOLTAGE vs TEMPERATURE 1.2 POWER DISSIPATION MULTIPLIER 1.0 0.8 0.6 0.4 0.2 0.0 0 25 BVDSS , NORMALIZED DRAIN-TO-SOURCE BREAKDOWN VOLTAGE ID = 250A 2.0 1.5 1.0 0.5 0.0 -80 -40 0 40 80 120 160 200 TJ , JUNCTION TEMPERATURE (oC) 125 50 75 100 TC , CASE TEMPERATURE (oC) 150 175 FIGURE 9. NORMALIZED DRAIN SOURCE BREAKDOWN VOLTAGE vs TEMPERATURE FIGURE 10. NORMALIZED POWER DISSIPATION vs TEMPERATURE DERATING CURVE VDS , DRAIN SOURCE VOLTAGE (V) VDD = BVDSS 45 VDD = BVDSS 3.75 C, CAPACITANCE (pF) 1500 CISS 30 0.75 BVDSS 0.50 BVDSS 0.25 BVDSS 0.75 BVDSS 0.50 BVDSS 0.25 BVDSS 2.50 1000 500 COSS CRSS 15 RL = 2.0 IG(REF) = 0.62mA VGS = 5V IG(REF) IG(ACT) t, TIME (s) IG(REF) IG(ACT) 1.25 0 0 0 10 15 20 5 VDS , DRAIN-TO-SOURCE VOLTAGE (V) 25 20 80 0.00 FIGURE 11. TYPICAL CAPACITANCE vs DRAIN-TO-SOURCE VOLTAGE FIGURE 12. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT. REFER TO HARRIS APPLICATION NOTES AN7254 AND AN7260 5-48 VGS , GATE SOURCE VOLTAGE (V) 2000 VGS = 0V, f = 1MHz 60 5.00 RFP30N06LE, RF1S30N06LE, RF1S30N06LESM Typical Performance Curves 100 IAS , AVALANCHE CURRENT (A) STARTING TJ = +25oC STARTING TJ = +150oC (Continued) 10 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] 1 0.01 0.1 1 10 tAV , TIME IN AVALANCHE (ms) FIGURE 13. UNCLAMPED INDUCTIVE SWITCHING Test Circuits and Waveforms VDS tP L IAS VARY tP TO OBTAIN REQUIRED PEAK IAS VGS RG + BVDSS VDS VDD VDD 0V tP DUT IL 0.01 tAV FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 15. UNCLAMPED ENERGY WAVEFORMS VDD RL VDS VDS VGS tON tD(ON) tR 90% tOFF tD(OFF) tF 90% 10% 10% 90% 0V RGS VGS 50% PULSE WIDTH 50% DUT 10% FIGURE 16. RESISTIVE SWITCHING TEST CIRCUIT FIGURE 17. RESISTIVE SWITCHING WAVEFORMS 5-49 RFP30N06LE, RF1S30N06LE, RF1S30N06LESM Temperature Compensated PSPICE Model for the RFP30N06LE, RF1S30N06LE, RF1S30N06LESM SUBCKT RFP30N06LE 2 1 3; CA 12 8 1 3.34e-9 CB 15 14 3.44e-9 CIN 6 8 0 1.343e-9 DBODY 7 5 DBDMOD DBREAK 5 11 DBKMOD DESD1 91 9 DESD1MOD DESD2 91 7 DESD2MOD DPLCAP 10 5 DPLCAPMOD EBREAK 11 7 17 18 75.39 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTO 20 6 18 8 1 GATE ESG + rev 6/2/93 DPLCAP 10 RSCL2 5 DRAIN 2 LDRAIN RSCL1 + 51 DBREAK 11 EBREAK + 17 18 DBODY 6 8 VTO + 16 5 51 ESCL 50 RDRAIN - 1 EVTO 20 + 18 9 8 LGATE RGATE DESD1 91 DESD2 6 21 MOS1 MOS2 IT 8 17 1 LDRAIN 2 5 1e-9 LGATE 1 9 7.22e-9 LSOURCE 3 7 6.31e-9 MOS1 16 6 8 8 MOSMOD M = 0.99 MOS2 16 21 8 8 MOSMOD M = 0.01 RBREAK 17 18 RBKMOD 1 RDRAIN 50 16 RDSMOD 11.86e-3 RGATE 9 20 2.52 RIN 6 8 1e9 RSCL1 5 51 RSLVCMOD 1e-6 RSCL2 5 50 1e3 RSOURCE 8 7 RDSMOD 26.6e-3 RVTO 18 19 RVTOMOD 1 S1A 6 12 13 8 S1AMOD S1B 13 12 13 8 S1BMOD S2A 6 15 14 13 S2AMOD S2B 13 15 14 13 S2BMOD VBAT 8 19 DC 1 VTO 21 6 0.5 RIN CIN 8 RSOURCE 7 LSOURCE 3 SOURCE S1A 12 S1B CA EGS 13 8 14 13 S2A 15 S2B 13 + 6 8 EDS CB + 5 8 14 IT RBREAK 17 18 RVTO 19 VBAT + - - ESCL 51 50 VALUE = {(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)*1e6/89,7)) .MODEL DBDMOD D (IS = 3.80e-13 RS = 1.12e-2 TRS1 = 1.61e-3 TRS2 = 6.08e-6 CJO = 1.05e-9 TT = 3.84e-8) .MODEL DBKMOD D (RS = 1.82e-1 TRS1 = 7.50e-3 TRS2 = -4.0e-5) .MODEL DESD1MOD D (BV = 13.54 TBV1 = 0 TBV2 = 0 RS = 45.5 TRS1 = 0 TRS2 = 0) .MODEL DESD2MOD D (BV = 11.46 TBV1 = -7.576e-4 TBV2 = -3.0e-6 RS = 0 TRS1 = 0 TRS2 = 0) .MODEL DPLCAPMOD D (CJO = 0.591e-9 IS = 1e-30 N = 10) .MODEL MOSMOD NMOS (VTO = 1.94 KP = 139.2 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL RBKMOD RES (TC1 = 1.07e-3 TC2 = -3.03e-7) .MODEL RDSMOD RES (TC1 = 5.38e-3 TC2 = 1.64e-5) .MODEL RSLVCMOD RES (TC1 = 1.75e-3 TC2 = 3.90e-6) .MODEL RVTOMOD RES (TC1 = -2.15e-3 TC2 = -5.43e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4.05 VOFF = -1.5) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.5 VOFF = -4.05) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.2 VOFF = 2.8) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 2.8 VOFF = -2.2) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records 1991. 5-50 |
Price & Availability of RFP30N06LE
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |