Part Number Hot Search : 
APE8903B D1025 HUR1520S MS27339 D102K SV1516FM F4811 16001
Product Description
Full Text Search
 

To Download G1420 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Global Mixed-mode Technology Inc.
G1420
2W Stereo Audio Amplifier
Features
Depop Circuitry Integrated Output Power at 1% THD+N, VDD=5V --1.8W/CH (typical) into a 4 Load --1.2W/CH (typical) into a 8 Load Bridge-Tied Load (BTL), Single-Ended (SE) Stereo Input MUX Mute and Shutdown Control Available Surface-Mount Power Package 24-Pin TSSOP-P
General Description
G1420 is a stereo audio power amplifier in 24pin TSSOP thermal pad package. It can drive 1.8W continuous RMS power into 4 load per channel in Bridge-Tied Load (BTL) mode at 5V supply voltage. Its THD is smaller than 1% under the above operation condition. To simplify the audio system design in the notebook application, G1420 supports the Bridge-Tied Load (BTL) mode for driving the speakers, Single-End (SE) mode for driving the headphone. G1420 can mute the output when Mute-In is activated. For the low current consumption applications, the SHDN mode is supported to disable G1420 when it is idle. The current consumption can be further reduced to below 5A. G1420 also supports two input paths, that means two different gain loops can be set in the same PCB and choosing either one by setting HP/ LINE pin. It enhances the hardware designing flexibility.
Applications
Stereo Power Amplifiers for Notebooks or Desktop Computers Multimedia Monitors Stereo Power Amplifiers for Portable Audio Systems
Ordering Information
ORDER NUMBER TEMP. RANGE PACKAGE
TSSOP-24L TSSOP-24L
PACKING
Tape & Reel Tube
G1420F31U -40C to +85C G1420F31T -40C to +85C
Pin Configuration
G1420
GND/HS TJ LOUT+ LLINEIN LHPIN LBYPASS LVDD SHUTDOWN MUTE OUT 1 2 3 4 5 6 7 8 9 24 23 22 21 20 19 18 17 16 15 14 13 GND/HS NC ROUT+ RLINEIN RHPIN RBYPASS RVDD NC HP/LINE ROUTSE/BTL GND/HS 14
Thermal Pad
LOUT- 10 MUTE IN 11 GND/HS 12
Top View 24Pin TSSOP
Bottom View
Ver: 1.1 May 23, 2003
TEL: 886-3-5788833 http://www.gmt.com.tw
1
Global Mixed-mode Technology Inc.
Absolute Maximum Ratings
Supply Voltage, VCC.............................................6V Operating Ambient Temperature Range TA...................................................-40C to +85C Maximum Junction Temperature, TJ...................150C Storage Temperature Range, TSTG........-65C to+150C Soldering Temperature, 10seconds, TS................260C
G1420
Power Dissipation (1) TA 25C..................................................2.7W TA 70C..................................................1.7W TA 85C..................................................1.4W Electrostatic Discharge, VESD Human body mode.............................-3000 to 3000(2)
Note: (1) : Recommended PCB Layout (2) : Human body model : C = 100pF, R = 1500, 3 positive pulses plus 3 negative pulses
Electrical Characteristics
DC Electrical Characteristics, TA=+25C PARAMETER
Supply Current
SYMBOL
IDD
CONDITIONS
STEREO SE Stereo BTL VDD = 5V STEREO SE VDD = 5V,Gain = 2 VDD = 5V VDD = 5V Stereo BTL STEREO SE VDD =3.3V Stereo BTL
MIN
TYP
7 3.5 8 4 5 8 4 2
MAX
9 5.6 11 6.5 30 11 6.5 5
UNIT
DC Differential Output Voltage Supply Current in Mute Mode IDD in Shutdown
VO(DIFF) IDD(MUTE) ISD
mV mA A
(AC Operation Characteristics, VDD = 5.0V, TA=+25C, RL = 4, unless otherwise noted) PARAMETER SYMBOL CONDITIONS
THD = 1%, BTL, RL = 4 THD = 1%, BTL, RL = 8 THD = 10%, BTL, RL = 4 THD = 10%, BTL, RL = 8 THD = 1%, SE, RL = 4 THD = 1%, SE, RL = 8 THD = 10%, SE, RL = 4 THD = 10%, SE, RL L = 8 THD = 0.5%, SE, RL = 32 PO = 1.6W, BTL, RL = 4 PO = 1W, BTL, RL = 8 PO = 75mW, SE, RL = 32 VI = 1V, RL = 10K, G = 1 G = 1, THD = 1% RL = 4, Open Load f = 120Hz f = 1kHz
MIN
TYP
1.8 1.12 2 1.4 500 320 650 400 90 500 150 20 10 20 60 75 85 82 80 85 2 90 55
MAX
UNIT
W
Output power (each channel) see Note
P(OUT)
mW
Total harmonic distortion plus noise
THD+N
m%
Maximum output power bandwidth Phase margin Power supply ripple rejection Mute attenuation Channel-to-channel output separation Line/HP input separation BTL attenuation in SE mode Input impedance Signal-to-noise ratio Output noise voltage
BOM RSRR
ZI Vn PO = 500mW, BTL Output noise voltage
kHz dB dB dB dB dB M dB V (rms)
Note :Output power is measured at the output terminals of the IC at 1kHz.
Ver: 1.1 May 23, 2003
TEL: 886-3-5788833 http://www.gmt.com.tw
2
Global Mixed-mode Technology Inc.
(AC Operation Characteristics, VDD = 3.3V, TA=+25C, RL = 4, unless otherwise noted) PARAMETER SYMBOL CONDITIONS
THD = 1%, BTL, RL = 4 THD = 1%, BTL, RL = 8 THD = 10%, BTL, RL = 4 THD = 10%, BTL, RL = 8 THD = 1%, SE, RL = 4 THD = 1%, SE, RL = 8 THD = 10%, SE, RL = 4 THD = 10%, SE, RL L = 8 THD = 0.5%, SE, RL = 32 PO = 1.6W, BTL, RL = 4 PO = 1W, BTL, RL = 8 PO = 75mW, SE, RL = 32 VI = 1V, RL = 10K, G = 1 G = 1, THD 1% RL = 4, Open Load f = 120Hz f = 1kHz
G1420
MIN TYP
0.8 0.5 1 0.6 230 140 290 180 43 270 100 20 10 20 60 75 85 80 80 85 2 90 55
MAX
UNIT
W
Output power (each channel) see Note
P(OUT)
mW
Total harmonic distortion plus noise Maximum output power bandwidth Phase margin Power supply ripple rejection Mute attenuation Channel-to-channel output separation Line/HP input separation BTL attenuation in SE mode Input impedance Signal-to-noise ratio Output noise voltage
THD+N BOM PSRR
m% kHz dB dB dB dB dB M dB V (rms)
ZI Vn PO = 500mW, BTL Output noise voltage
Note :Output power is measured at the output terminals of the IC at 1kHz.
Ver: 1.1 May 23, 2003
TEL: 886-3-5788833 http://www.gmt.com.tw
3
Global Mixed-mode Technology Inc.
Pin Description
PIN
1,12,13,24 2
G1420
NAME
GND/HS TJ
I/O
O
FUNCTION
Ground connection for circuitry, directly connected to thermal pad. Source a current inversely to the junction temperature. This pin should be left unconnected during normal operation. For more information, see the junction temperature measurement section of this document. Left channel + output in BTL mode, + output in SE mode. Left channel line input, selected when HP/ pin is held low. Left channel headphone input, selected when HP/pin is held high. Connect to voltage divider for left channel internal mid-supply bias. Supply voltage input for left channel and for primary bias circuits. Shutdown mode control signal input, places entire IC in shutdown mode when held high, IDD = 5A. Follows MUTE IN pin, provides buffered output. Left channel - output in BTL mode, high impedance state in SE mode. Mute control signal input, hold low for normal operation, hold high to mute. Mode control signal input, hold low for BTL mode, hold high for SE mode. Right channel - output in BTL mode, high impedance state in SE mode. MUX control input, hold high to select headphone inputs (5,20), hold low to select line inputs (4,21). Supply voltage input for right channel. Connect to voltage divider for right channel internal mid-supply bias. Right channel headphone input, selected when HP/pin is held high. Right channel line input, selected when HP/pin is held low. Right channel + output in BTL mode, + output in SE mode.
3 4 5 6 7 8 9 10 11 14 15 16 17,23 18 19 20 21 22
LOUT+ LLINE IN LHP IN LBYPASS LVDD SHUTDOWN MUTE OUT LOUTMUTE IN SE/ BTL ROUTHP/ LINE NC RVDD RBYPASS RHP IN RLINE IN ROUT+
O I I I I O O I I O I
I I I O
Ver: 1.1 May 23, 2003
TEL: 886-3-5788833 http://www.gmt.com.tw
4
Global Mixed-mode Technology Inc.
Typical Characteristics
Table of Graphs FIGURE
THD +N Total harmonic distortion plus noise Vn Output noise voltage Supply ripple rejection ratio Crosstalk Closed loop response IDD Supply ripple rejection ratio PO Output power PD Power dissipation vs Frequency vs Output power vs Frequency vs Frequency vs Frequency vs Frequency vs supply voltage vs supply voltage vs Load resistance vs Output power
G1420
2,4,5,7,8,11,12,14,15,17,18,20,21,23,24,26,27,29,30,32,33 1,3,6,9,10,13,16,19,22,25,28,31 34,35 36,37 38,39,40,41 42,43,44,45 46 47,48 49,50 51,52,53,54
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY
10 5
10 5
2 1 0.5 % 0.2 0.1 0.05
20kHz
2 1
Po=1.8W
1kHz
%
0.5
0.2 0.1
20 Hz
Po=1.5W
0.02 0.01 3m
VDD=5V RL=3 BTL
20m 50m 100m W 200m 500m 1 2 3
0.05
VDD=5V RL=3 BTL Av=-2V/V
200 500 Hz 1k 2k 5k 10k 20k
0.02 0.01 20
5m
10m
50
100
Figure 1
Figure 2
Ver: 1.1 May 23, 2003
5
TEL: 886-3-5788833 http://www.gmt.com.tw
Global Mixed-mode Technology Inc.
G1420
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY
10 5
10 5
2 1 0.5 % 0.2 0.1 0.05
20kHz
Av=-4V/V
2 1
Av=-2V/V
1kHz
%
0.5
0.2 0.1
20 Hz
0.02 0.01 3m
VDD=5V RL=4 BTL
50m 100m W 200m 500m 1 2 3
Av=-1V/V
0.05
0.02 0.01 20
VDD=5V RL=4 BTL Po=1.5W
500 Hz 1k 2k 5k 10k 20k
5m
10m
20m
50
100
200
Figure 3
Figure 4
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER
10 5
10
2 1 0.5 % 0.2 0.1 0.05
VDD=5V RL=4 BTL Av=-2V/V
5
Po=1.5W Po=0.25W
%
2 1 0.5
20kHz
VDD=5V RL=8 BTL Av=-2V/V
0.2
1kHz
Po=0.75W
0.1 0.05
0.02 0.01 20
0.02 0.01 3m
20Hz
5m 10m 20m 50m 100m W 200m 500m 1 2 3
50
100
200
500 Hz
1k
2k
5k
10k
20k
Figure 5
Figure 6
Ver: 1.1 May 23, 2003
6
TEL: 886-3-5788833 http://www.gmt.com.tw
Global Mixed-mode Technology Inc.
G1420
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY
10 5
10
2 1 0.5 % 0.2 0.1 0.05
VDD=5V RL=8 BTL Av=-2V/V Po=0.25W
5
Po=1W
2 1 0.5 % 0.2 0.1
VDD=5V RL=8 BTL Po=1W Av=-2V/V
Av=-4V/V
Po=0.5W
0.05
0.02 0.01 20
0.02 0.01 20
Av=-1V/V
50 100 200 500 Hz 1k 2k 5k 10k 20k
50
100
200
500 Hz
1k
2k
5k
10k
20k
Figure 7
Figure 8
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER
10 5
10 5
20kHz
2 1 0.5 % 0.2 0.1 0.05 2 1
20kHz
1kHz
%
0.5
1kHz
0.2 0.1
0.02 0.01 1m
VDD=3.3V RL=3 BTL
2m 5m 10m
20Hz
0.05
0.02 0.01 1m
VDD=3.3V RL=4 BTL
2m 5m 10m
20Hz
20m W
50m
100m
200m
500m
1
20m W
50m
100m
200m
500m
1
Figure 9
Figure 10
Ver: 1.1 May 23, 2003
7
TEL: 886-3-5788833 http://www.gmt.com.tw
Global Mixed-mode Technology Inc.
G1420
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY
10 5
10
2 1 0.5 % 0.2 0.1 0.05
VDD=3.3V RL=4 BTL Po=0.65W
Av=-4V/V Av=-2V/V
5
2 1 0.5 % 0.2 0.1 0.05
VDD=3.3V RL=4 BTL Av=-2V/V
Po=0.7W
Po=0.1W Po=0.35W
Av=-1V/V
0.02 0.01 20
0.02 0.01 20
50
100
200
500 Hz
1k
2k
5k
10k
20k
50
100
200
500 Hz
1k
2k
5k
10k
20k
Figure 11
Figure 12
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY
10 5
10
2 1 0.5 % 0.2 0.1 0.05
20kHz
VDD=3.3V RL=8 BTL
5
2 1 0.5
VDD=3.3V RL=8 BTL Po=0.4W Av=-2V/V
Av=-4V/V
1kHz
% 0.2 0.1 0.05
20Hz
0.02 0.01 1m 0.02 0.01 20
Av=-1V/V
2m
5m
10m
20m W
50m
100m
200m
500m
1
50
100
200
500 Hz
1k
2k
5k
10k
20k
Figure 13
Figure 14
Ver: 1.1 May 23, 2003
8
TEL: 886-3-5788833 http://www.gmt.com.tw
Global Mixed-mode Technology Inc.
G1420
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER
10 5
10
2 1 0.5 % 0.2 0.1 0.05
VDD=3.3V RL=8 BTL Av=-2V/V
5
2
Po=0.4W
VDD=5V RL=4 SE 20kHz
1 0.5
Po=0.1W
% 0.2 0.1 0.05
1kHz
Po=0.25W
0.02 0.01 20
100Hz
0.02 0.01 1m 2m 5m 10m 20m W 50m 100m 200m 500m 1
50
100
200
500 Hz
1k
2k
5k
10k
20k
Figure 15
Figure 16
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY
10 5
10
2 1 0.5 % 0.2 0.1 0.05
VDD=5V RL=4 SE Po=0.5W Av=-2V/V
5
Av=-4V/V
2 1 0.5 % 0.2 0.1 0.05
VDD=5V RL=4 SE Av=-2V/V
Po=0.4W
Po=0.1W
Av=-1V/V
Po=0.25W
0.02 0.01 20 20k
0.02 0.01 20
50
100
200
500 Hz
1k
2k
5k
10k
50
100
200
500 Hz
1k
2k
5k
10k
20k
Figure 17
Figure 18
Ver: 1.1 May 23, 2003
9
TEL: 886-3-5788833 http://www.gmt.com.tw
Global Mixed-mode Technology Inc.
G1420
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY
10 5
10
2 1 0.5 % 0.2 0.1 0.05
VDD=5V RL=8 SE 20kHz
%
5
2 1 0.5
VDD=5V RL=8 SE Po=0.25W Av=-2V/V
0.2 0.1
1kHz 100Hz
2m 5m 10m 20m W 50m 100m 200m 500m 1
Av=-4V/V Av=-1V/V
50 100 200 500 Hz 1k 2k 5k 10k 20k
0.05
0.02 0.01 1m
0.02 0.01 20
Figure 19
Figure 20
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER
10 5
10
2 1 0.5 % 0.2 0.1 0.05
VDD=5V RL=8 SE Av=-2 Po=0.05W
%
5 2 1 0.5 0.2 0.1 0.05 0.02
VDD=5V RL=32 SE 20kHz
20Hz
Po=0.1W Po=0.25W
50 100 200 500 Hz 1k 2k 5k 10k 20k
0.01 0.005 0.002 0.001 1m 2m 5m 10m W
0.02 0.01 20
1kHz
20m 50m 100m 200m
Figure 21
Figure 22
Ver: 1.1 May 23, 2003
10
TEL: 886-3-5788833 http://www.gmt.com.tw
Global Mixed-mode Technology Inc.
G1420
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY
10 5 2 1 0.5 0.2 % 0.1 0.05 0.02 0.01 0.005 0.002 0.001 20 50 100 200 500 Hz 1k 2k 5k 10k 20k %
10
VDD=5V RL=32 SE Po=75mW
5 2 1
VDD=5V RL=32 SE Po=25mW
Av=-4V/V
0.5 0.2 0.1 0.05 0.02 0.01
Av=-2V/V
Po=50mW
Av=-1V/V
0.005 0.002 0.001 20 50 100 200 500 Hz 1k
Po=75mW
2k 5k 10k 20k
Figure 23
Figure 24
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY
10 5
10
2 1 0.5 % 0.2 0.1 0.05
VDD=3.3V RL=4,SE Av=-2
5
20kHz
2 1 0.5 %
VDD=3.3V RL=4 SE Po=0.2W
Av=-4V/V
1kHz
0.2 0.1 0.05
Av=-2V/V
0.02 0.01 1m
100Hz
2m 5m 10m 20m W 50m 100m 200m 500m 1
0.02 0.01 20
Av=-1V/V
50 100 200 500 Hz 1k 2k 5k 10k 20k
Figure 25
Figure 26
Ver: 1.1 May 23, 2003
11
TEL: 886-3-5788833 http://www.gmt.com.tw
Global Mixed-mode Technology Inc.
G1420
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER
10


10
5
2 1 0.5 % 0.2 0.1 0.05
VDD=3.3V RL=4 SE Av=-2
5
Po=50mW
2 1 0.5 %
VDD=3.3V RL=8,SE Av=-2 20kHz
Po=100mW
0.2 0.1 0.05
1kHz
0.02 0.01 20
Po=150mW
50 100 200 500 Hz 1k 2k 5k 10k 20k
0.02 0.01 1m
100Hz
2m 5m 10m W 20m 50m 100m 200m
Figure 27
Figure 28
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY
10 5
10
2 1 0.5 % 0.2 0.1 0.05
VDD=3.3V RL=8 SE Po=100mW
5
2 1 0.5 % 0.2
VDD=3.3V RL=8 SE Po=25mW Po=50mW
Av=-4V/V
Av=-2V/V
0.1 0.05
0.02 0.01 20
Av=-1V/V
50 100 200 500 Hz 1k 2k 5k 10k 20k
0.02 0.01 20
Po=100mW
50 100 200 500 Hz 1k 2k 5k 10k 20k
Figure 29
Figure 30
Ver: 1.1 May 23, 2003
12
TEL: 886-3-5788833 http://www.gmt.com.tw
Global Mixed-mode Technology Inc.
G1420
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY
10 5
10
2 1 0.5 % 0.2 0.1 0.05
VDD=3.3V RL=32 SE 20kHz
5 2
1kHz
1 0.5 0.2 % 0.1 0.05 0.02
VDD=3.3V RL=32 SE Po=30mW Av=-2V/V
Av=-4V/V
20Hz
0.01 0.005
Av=-1V/V
0.02 0.01 1m
0.002 2m 5m 10m W 20m 50m 100m 0.001 20 50 100 200 500 Hz 1k 2k 5k 10k 20k
Figure 31
Figure 32
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY
OUTPUT NOISE VOLTAGE vs FREQUENCY
10 5 2 1 0.5 0.2 % 0.1 0.05 0.02 0.01 0.005 0.002 0.001 20 50 100 200 500 Hz 1k V
VDD=3.3V RL=32 SE Po=10m
100u 90u 80u 70u 60u 50u 40u
VDD=5V RL=4
BW=22Hz to 20kHz
Vo BTL
30u
Po=20mW
20u
Vo SE
Po=30mW
2k 5k 10k 20k 10u 20 50 100 200 500 Hz 1k 2k 5k 10k 20k
Figure 33
Figure 34
Ver: 1.1 May 23, 2003
13
TEL: 886-3-5788833 http://www.gmt.com.tw
Global Mixed-mode Technology Inc.
G1420
OUTPUT NOISE VOLTAGE vs FREQUENCY
SUPPLY RIPPLE REJECTION RATIO vs FREQUENCY
100u 90u 80u 70u 60u 50u 40u V
+0

VDD=3.3V RL=4
BW=22Hz to 20kHz
-10 -20 -30 -40 d B -50 -60
Vo BTL
VDD=5V RL=4 CB=4.7uF
30u
BTL
20u
Vo SE
-70 -80 -90
SE
10u 20
50
100
200
500 Hz
1k
2k
5k
10k
20k
-100 20
50
100
200
500 Hz
1k
2k
5k
10k
20k
Figure 35
Figure 36
SUPPLY RIPPLE REJECTION RATIO vs FREQUENCY
CROSSTALK vs FREQUENCY
+0 -10 -20 -30 -40 d B -50 -60 -70 -80 -90

-20 -25
VDD=3.3V RL=4 CB=4.7uF
-30 -35 -40 -45 -50 -55 d B
VDD=5V Po=1.5W RL=4 BTL
BTL
-60 -65 -70 -75 -80 -85
L to R
SE
50 100 200 500 Hz 1k 2k 5k 10k 20k
-90 -95
R to L
50 100 200 500 Hz 1k 2k 5k 10k 20k
-100 20
-100 20
Figure 37
Figure 38
Ver: 1.1 May 23, 2003
14
TEL: 886-3-5788833 http://www.gmt.com.tw
Global Mixed-mode Technology Inc.
G1420
CROSSTALK vs FREQUENCY
CROSSTALK vs FREQUENCY
-20 -25 -30 -35 -40 -45 -50 -55 d B -60 -65 -70 -75 -80 -85 -90 -95 -100 20 50 100 200 500 Hz 1k 2k 5k 10k 20k
d B
-30
VDD=3.3V Po=0.75W RL=4 BTL
-35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85
VDD=5V Po=75mW RL=32 SE
L to R
R to L
R to L
-90 -95 -100 20 50 100 200 500 Hz 1k 2k
L to R
5k 10k 20k
Figure 39
Figure 40
CROSSTALK vs FREQUENCY
-30 -35 -40 -45 -50 -55 -60 d B -65 -70 -75 -80 -85 -90 -95 -100 20 50 100 200 500 Hz 1k 2k 5k
VDD=3.3V Po=35mW RL=32 SE
R to L
L to R
10k 20k
Figure 41
Ver: 1.1 May 23, 2003
15
TEL: 886-3-5788833 http://www.gmt.com.tw
Global Mixed-mode Technology Inc.
G1420
CLOSED LOOP RESPONSE
Figure 42
CLOSED LOOP RESPONSE
Figure 43
Ver: 1.1 May 23, 2003
16
TEL: 886-3-5788833 http://www.gmt.com.tw
Global Mixed-mode Technology Inc.
G1420
CLOSED LOOP RESPONSE
Figure 44
CLOSED LOOP RESPONSE
Figure 45
Ver: 1.1 May 23,
17
TEL: 886-3-5788833 http://www.gmt.com.tw
Global Mixed-mode Technology Inc.
G1420
SUPPLY CURRENT vs SUPPLY VOLTAGE 10 9 Po-Output Power (W) 8 Supply Current(mA) 7 6 5 4 3 2 1 0 3 4 5 6 SUPPLY VOLTAGE(V) 0 2.5 Stereo SE Stereo BTL 2 1.5 1 0.5 2.5
OUTPUT POWER vs SUPPLY VOLTAGE THD+N=1% BTL Each Channel RL=4 RL=3
RL=8
3.5
4.5
5.5
6.5
SUPPLY VOLTAGE(V)
Figure 46
Figure 47
OUTPUT POWER vs SUPPLY VOLTAGE 0.7 0.6 Po-Output Power(W) 0.5 0.4 0.3 0.2 0.1 0 2.5 3.5 4.5 Supply Voltage(V) 5.5 6.5 RL=32 THD+N=1% SE Each Channel RL=4 2 1.8 1.6 Po-Output Power(W) RL=8 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0
OUTPUT POWER vs LOAD RESISTANCE
THD+N=1% BTL Each Channel VDD=5V
VDD=3.3V 4 8 12 16 20 24 28 32
Load Resistance()
Figure 48
Figure 49
Ver: 1.1 May 23, 2003
18
TEL: 886-3-5788833 http://www.gmt.com.tw
Global Mixed-mode Technology Inc.
G1420
OUTPUT POWER vs LOAD RESISTANCE 0.7 0.6 Po-Output Power(W) 0.5 0.4 0.3 0.2 0.1 0 0 4 8 12 16 20 24 28 32 Load Resistance() VDD=3.3V VDD=5V THD+N=1% SE Each Channel 1.8 1.6 Power Dissipation(W) 1.4 1.2 1 0.8 0.6 0.4 0.2 0
POWER DISSIPATION vs OUTPUT POWER
RL=3
RL=4
RL=8
VDD=5V BTL Each Channel 1.5 2 2.5
0
0.5
1
Po-Output Power(W)
Figure 50
Figure 51
POWER DISSIPATION vs OUTPUT POWER 0.8 0.7 Power Dissipation(W) 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.25 0.5 Output Power(W) 0.75 1 RL=8 VDD=3.3V BTL Each Channel RL=4 RL=3 Power Dissipation(W) 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0
POWER DISSIPATION vs OUTPUT POWER
RL=4
RL=8
RL=32
VDD=5V SE Each Channel
0
0.2
0.4 Output Power(W)
0.6
0.8
Figure 52
Figure 53
Ver: 1.1 May 23, 2003
19
TEL: 886-3-5788833 http://www.gmt.com.tw
Global Mixed-mode Technology Inc.
G1420
POWER DISSIPATION vs OUTPUT POWER 0.16 POWER DISSIPATION (W) 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0 0 0.05 0.1 0.15 0.2 0.25 0.3 OUTPUT POWER(W) RL=32 RL=8 RL=4 VDD=3.3V SE Each Channel
Recommended PCB Layout
Figure 54
Ver: 1.1 May 23, 2003
20
TEL: 886-3-5788833 http://www.gmt.com.tw
Global Mixed-mode Technology Inc.
Block Diagram
20k
G1420
21 20
RLINEIN RHPIN RIGHT MUX
_
ROUT+ ROUT-
22 15
19
RBYPASS
+ RVDD 18
11 9 8
MUTEIN MUTEOUT SHUTDOWN
BIAS CIRCUITS MODES CONTROL CIRCUITS
HP/LINE SE/BTL TJ
16 14 2
LVDD 6
7
LBYPASS + LOUTLOUT+ 10 3
5 4
LHPIN LLINEIN LEFT MUX _
20k
Parameter Measurement Information
11 8
MUTEIN SHUTDOWN HP/LINE SE/BTL 16 14
LVDD 6 CB 4.7F CI AC source RI 5 4 LHPIN LLINEIN LEFT MUX LBYPASS
7 RL 4/8/32ohm
+ _
LOUTLOUT+
10 3
RF
BTL Mode Test Circuit
Ver: 1.1 May 23, 2003
TEL: 886-3-5788833 http://www.gmt.com.tw
21
Global Mixed-mode Technology Inc.
Parameter Measurement Information (Continued)
G1420
11 8
MUTEIN SHUTDOWN HP/LINE SE/BTL 16 14 VDD
LVDD 6 CB 4.7F CI AC source RI 5 4 LHPIN LLINEIN LEFT MUX LBYPASS
7
+ _
LOUTLOUT+
10 3
RL 32ohm
RF
SE Mode Test Circuit
Ver: 1.1 May 23, 2003
TEL: 886-3-5788833 http://www.gmt.com.tw
22
Global Mixed-mode Technology Inc.
Application Circuits
G1420
GND/HS TJ LOUT+
CIR RFL CFR AUDIO SOURCE RIR
1 2 3 4 5 6 19 8 9 10 11 12
24 23 22 21 20 7
GND/HS NC ROUT+ RLINEIN RHPIN LVDD RVDD NC HP/LINE ROUTR CSR RIL CIL RFL AUDIO SOURCE CFL
LLINEIN LHPIN
LBYPASS RBYPASS SHUTDWON MUTE OUT LOUTMUTE IN GND/HS
G1420
18 17 16 15 14 13
R 100K COUTR
SE/BTL
100K
1K
1 3 4 2
GND/HS
PHONOJACK
COUTR 1K
Logical Truth Table INPUTS Mute In HP/ LINE
X X X Low High Low High ---High High Low Low Low Low
SE/ BTL
X Low High Low Low High High
Shutdown
High ------Low Low Low Low
OUTPUT Mute Out
---High High Low Low Low Low
Input
X X X L/R Line L/R HP L/R Line L/R HP
AMPLIFIER STATES L/R Out+ L/R Out---VDD/2 VDD/2 BTL Output BTL Output SE Output SE Output ---VDD/2 ---BTL Output BTL Output -------
Mode
Mute Mute Mute BTL BTL SE SE
Ver: 1.1 May 23, 2003
TEL: 886-3-5788833 http://www.gmt.com.tw
23
Global Mixed-mode Technology Inc.
Application Information
Input MUX Operation There are two input signal paths - HP & Line. With the prompt setting, G1420 allows the setting of different gains for BTL and SE modes. Generally, speakers typically require approximately a factor of 10 more gain for similar volume listening levels as compared with headphones. SE Gain(HP) = -(RF(HP)/RI(HP)) -2(RF(LINE)/RI(LINE))
-3 dB
G1420
fc
BTL Gain(LINE) =
To achieve headphones and speakers listening parity, (RF(LINE/RI(LINE)) is suggested to be 5 times of (RF(HP)/ RI(HP)). The ratio of (RF(HP)/RI(HP)) can be determined by the applications. When the optimum distortion performance into the headphones (clear sound) is important, gain of -1 ((RF(HP) / RI(HP)) = 1) is suggested. Single Ended Mode Operation G1420 can drive clean, low distortion SE output power into headphone loads (generally 16 or 32) as in Figure 1. Please refer to Electrical Characteristics to see the performances. A coupling capacitor is needed to block the dc offset voltage, allowing pure ac signals into headphone loads. Choosing the coupling capacitor will also determine the 3 dB point of the high-pass filter network, as Figure 2. fC=1/(2RLCC) For example, a 68uF capacitor with 32 headphone load would attenuate low frequency performance below 73Hz. So the coupling capacitor should be well chosen to achieve the excellent bass performance when in SE mode operation.
Figure 2
Bridged-Tied Load Mode Operation G1420 has two linear amplifiers to drive both ends of the speaker load in Bridged-Tied Load (BTL) mode operation. Figure 3 shows the BTL configuration. The differential driving to the speaker load means that when one side is slewing up, the other side is slewing down, and vice versa. This configuration in effect will double the voltage swing on the load as compared to a ground reference load. In BTL mode, the peak-to-peak voltage VO(PP) on the load will be two times than a ground reference configuration. The voltage on the load is doubled, this will also yield 4 times output power on the load at the same power supply rail and loading. Another benefit of using differential driving configuration is that BTL operation cancels the dc offsets, which eliminates the dc coupling capacitor that is needed to cancelled dc offsets in the ground reference configuration. Low-frequency performance is then limited only by the input network and speaker responses. Cost and PCB space can be minimized by eliminating the dc coupling capacitors.
VDD
VDD
Vo(PP)
VDD RL
Vo(PP) 2xVo(PP) -Vo(PP)
CC RL Vo(PP)
Figure 1
Figure 3
Ver: 1.1 May 23, 2003
TEL: 886-3-5788833 http://www.gmt.com.tw
24
Global Mixed-mode Technology Inc.
MUTE and SHUTDOWN Mode Operations G1420 implements the mute and shutdown mode operations to reduce supply current, IDD, to the absolute minimum level during nonuse periods for battery-power conservation. When the shutdown pin (pin 8) is pulled high, all linear amplifiers will be deactivated to mute the amplifier outputs. And G1420 enters an extra low current consumption state, IDD is smaller than 5A. If pulling mute-in pin (pin 11) high, it will force the activated linear amplifier to supply the VDD/2 dc voltage on the output to mute the AC performance. In mute mode operation, the current consumption will be a little different between BTL, SE. (SE < BTL) Typically, the supply current is about 2.5mA in BTL mute operation. Shutdown and Mute-In pins should never be left unconnected, this floating condition will cause the amplifier operations unpredictable.
Optimizing DEPOP Operation
VDD
G1420
100 k 50 k
Bypass 100 k
Figure 4
Junction Temperature Measurement
Circuitry has been implemented in G1420 to minimize the amount of popping heard at power-up and when coming out of shutdown mode. Popping occurs whenever a voltage step is applied to the speaker and making the differential voltage generated at the two ends of the speaker. To avoid the popping heard, the bypass capacitor should be chosen promptly, 1/(CBx100k) 1/(CI*(RI+RF)). Where 100k is the output impedance of the mid-rail generator, CB is the mid-rail bypass capacitor, CI is the input coupling capacitor, RI is the input impedance, RF is the gain setting impedance which is on the feedback path. CB is the most important capacitor. Besides it is used to reduce the popping, CB can also determine the rate at which the amplifier starts up during startup or recovery from shutdown mode. De-popping circuitry of G1420 is shown on Figure 4. The PNP transistor limits the voltage drop across the 50k by slewing the internal node slowly when power is applied. At start-up, the voltage at BYPASS capacitor is 0. The PNP is ON to pull the mid-point of the bias circuit down. So the capacitor sees a lower effective voltage, and thus the charging is slower. This appears as a linear ramp (while the PNP transistor is conducting), followed by the expected exponential ramp of an R-C circuit.
Characterizing a PCB layout with respect to thermal impedance is very difficult, as it is usually impossible to know the junction temperature of the IC. G1420 TJ (pin 2) sources a current inversely proportional to the junction temperature. Typically TJ sources-120A for a 5V supply at 25C. And the slope is approximately 0.22A/C. As the resistors have a tolerance of 20%, these values should be calibrated on each device. When the temperature sensing function is not used, TJ pin can be left floating or tied to VDD to reduce the current consumption. Temperature sensing circuit is shown on Figure 5.
VDD
R
R 5R TJ
Figure 5
Ver: 1.1 May 23, 2003
TEL: 886-3-5788833 http://www.gmt.com.tw
25
Global Mixed-mode Technology Inc.
Package Information
D 24
C
G1420
L
1.88
3.85
1.88
2.8
E1 E
0.71
1
Note 5
A2 A1 e b
A
NOTE: 1. Package body sizes exclude mold flash protrusions or gate burrs 2. Tolerance 0.1mm unless otherwise specified 3. Coplanarity : 0.1mm 4. Controlling dimension is millimeter. Converted inch dimensions are not necessarily exact. 5. Die pad exposure size is according to lead frame design. 6. Follow JEDEC MO-153 SYMBOL
A A1 A2 b C D E E1 e L y
MIN.
----0.00 0.80 0.19 0.09 7.70 6.20 4.30 ----0.45 ----0
DIMENSION IN MM NOM.
--------1.00 --------7.80 6.40 4.40 0.65 0.60 ---------
MAX.
1.15 0.10 1.05 0.30 0.20 7.90 6.60 4.50 ----0.75 0.10 8
MIN.
----0.000 0.031 0.007 0.004 0.303 0.244 0.169 ----0.018 ----0
DIMENSION IN INCH NOM.
--------0.039 --------0.307 0.252 0.173 0.026 0.024 ---------
MAX.
0.045 0.004 0.041 0.012 0.008 0.311 2.260 0.177 ----0.030 0.004 8
Taping Specification
Feed Direction Typical TSSOP Package Orientation
GMT Inc. does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and GMT Inc. reserves the right at any time without notice to change said circuitry and specifications.
Ver: 1.1 May 23, 2003
TEL: 886-3-5788833 http://www.gmt.com.tw
26


▲Up To Search▲   

 
Price & Availability of G1420

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X