![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
AN3861SA Sensor-less Motor Drive IC for VTR Movie Cylinder s Overview The AN3861SA is a sensor-less motor drive IC for VTR movie cylinder. It uses both sensor-less and sine wave drive, thus excellent for low-noise applications. 11.00.3 32 17 Unit : mm 6.10.3 8.10.3 * Operating supply voltage range : VCC=3.0 to 5.5V, VB=4.0 to 10.5V * Reduced magnetosound using 3-phase full-wave overlap drive. Built-in power transistor. * Standby mode for minimizing power consumption * Voltage output for controlling SW power supply * Motor neutral point input terminal 1 16 0.650.1 0.2 - 0.05 1.50.2 + 0.1 (0.5) 0.65 (0.625) 0.3 - 0.05 SEATING PLANE + 0.1 SEATING PLANE 32-pin SSOP Package (SSOP032-P-0300) s Pin Descriptions Pin No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Symbol U CS VSC WIN VIN UIN PCV SG SL3 SL2 SL1 FC BR FR HSL STB Description U-phase drive output terminal Drive current output terminal Switching power supply control output terminal W-phase detection terminal V-phase detection terminal U-phase detection terminal Voltage feedback system compensation terminal Signal ground Slope waveform generate terminal (3) Slope waveform generate terminal (2) Slope waveform generate terminal (1) Oscillation terminal Short brake control terminal Forward/Reverse change-over terminal Slope current change-over terminal Stand-by input terminal Pin No. 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Symbol VCC IN2H OUT2 IN1- IN1+ MM OUT1 Vref PCI VS VB CS W PG V PG Description Power supply terminal Operational amplifier 2 input terminal Operational amplifier 2 output terminal Operational amplifier 1 reverse phase input terminal Operational amplifier 1 normal phase input terminal Motor neutral point input terminal Operational amplifier 1 output terminal Servo reference voltage input terminal Current feedback system phase compensation terminal Motor drive power supply terminal Unregulated power supply terminal Drive current output terminal W-phase drive output terminal Power ground V-phase drive output terminal Power ground 0.10.1 s Features s Block Diagram SW Power Block Vbatt VS - 0.25 0.1F SW Power Control Block + SG 8 MM 22 27 17 VB 25 PC1 VS CS 26 28 2 3 VSC (Output for VS Control) VCC Vref OUT 1 IN 1- IN 1+ 7 24 23 PCV VCE Detection - Distributor 21 19 Amplifier OUT 2 IN 2+ 18 STB (Low : Stand-by) Forward/Reverse Control FR (High : Forward) 16 14 Conducting Phase Switch Logic FC 560pF 12 HSL 15 11 0.022F SL 1 SL 2 SL 3 0.022F 0.022F - - 20 Reference Power Supply Sink Side Drive Tr 4 BEMF Detection Comparator Short Brake 10 9 BR (High : Brake) PG PG - + + 0.047F Source Side Drive Tr 0.1F 1 0.1F + + U 31 0.1F V 29 W A3 WIN VIN 5 UIN 6 0.022F x 3 13 30 32 Note) Values of all external C and R are nominal one. s Absolute Maximum Rating (Ta=25C) Parameter Supply voltage Unregulated voltage Motor power supply voltage (under VB) Output terminal voltage Output current Power dissipation Note 1) Operating ambient temperature Storage temperature Note 1) Package power dissipation when Ta=75C n=1, 29, 31 n=1, 29, 31 Symbol VCC VB VS Vn IOn PD Topr Tstg Rating 6.0 11 11 11 1000 400 -25 to + 70 -55 to + 150 Unit V V V V mA mW C C s Recommended Operating Range (Ta=25C) Parameter Operating supply voltage Symbol VCC VB VS Range 3.0V to 5.5V 4.0V to 10.5V 1.5V to VB s Package Power Dissipation PD -Ta 1400 1290 1200 1000 800 668 600 400 200 0 Single unit Rthj- a = 187.1C/W PD= 668mW (25C) Glass epoxy board (50 x 50 x 0.8tmm) Rthj - a = 96.9C/W PD=1290mW (25C) Power Dissipation PD (mW) 0 25 50 75 100 125 150 Ambient Temperature Ta (C) s Electrical Characteristics (VCC=3.3V, VB=6V, VS=6V, Ta=252C) Parameter Drive Block Drive gain Drive amplifier offset Output maximum current Brake current Sink-side output voltage Sink-side saturation voltage Source-side saturation voltage Bemf Detection Block Comparator hysteresis width VHCOM 4 16 29 mV Gio ViOCS IOMAX IBR VCE VSAT (1) VSAT (2) IO=100mA IO=500mA IO=500mA VCS OUT1 Input offset voltage of Vref and OUT1 RCS=0.25 0.11 -100 625 200 0.15 0.14 6 750 500 0.25 0.25 0.90 0.35 0.35 1.3 0.17 100 875 mV mA mA V V V Symbol Condition min typ max Unit s Electrical Characteristics (cont.) (VCC=3.3V, VB=6V, VS=6V, Ta=252C) Parameter Oscillator Triangular wave oscillation frequency Slope Slope terminal charging current (1) Slope terminal discharging current (1) Slope terminal charging current (2) Slope terminal discharging current (2) Slope terminal charging current (3) Slope terminal discharging current (3) Slope terminal charging current (4) Slope terminal discharging current (4) Operational Amp. 1 only Common-mode input voltage range Input offset current Voltage gain Output sink current (1) Operational Amp. 2 only Common-mode input voltage range Operational Amp. 1 and 2 Input offset voltage Output sink current 1- (2) Output sink current 2- (2) Output source current (2) Mode Switch=HSL, STB, FR, BR Input high level Input low level Input bias current Motor Power Supply Control Input/output gain Output impedance Operation point (1) Operation point (2) Power Supply Current Operating power supply current STB power supply current Unregulated power supply current (1) Unregulated power supply current (2) ICC (1) ICC (2) IBB (1) IBB (2) STB : H STB : L VCC=0V VCC=3.3V, In2+=0V 10 6 0.1 0.3 15 10 10 1.5 mA mA A mA GIOS ZOS VS - U (1) VS - U (2) VS-U for VSC=1.6V when OUT1=Vref VS-U for VSC=1.6V when OUT1=Vref + 1 VSC U 1.4 12 0.1 0.35 2.0 18 0.35 0.63 2.6 24 0.6 0.9 Times k V V VSWH VSWL IBSW VSW=2V 25 2.0 0.6 100 V V A VIOA1, 2 IOSI 1 (2) IOSI 2 (2) IOSA 1, 2 -20 1.8 2 -3 4 4 -15 -2 20 mV mA mA mA VICR (2) 0 VB-1.4 V VICR (1) IIOAI GAI IOSI1 (1) OUT1=0.2V 0.2 -50 60 20 VB -1.4 or VCC 5 50 67 140 V nA dB A ISLC (1) ISLD (1) ISLC (2) ISLD (2) ISLC (3) ISLD (3) ISLC (4) ISLD (4) HSL : L CFC=560pF femf < 160Hz HSL : L CFC=560pF femf > 181Hz HSL : H CFC=560pF femf < 160Hz HSL : H CFC=560pF femf > 181Hz -26 14 -52 28 -52 28 -78 42 -20 20 -40 40 -40 40 -60 60 -14 26 -28 52 -28 52 -42 78 A A A A A A A A fFC CFC=560PF 11.0 16.3 22.8 kHz Symbol Condition min typ max Unit s Electrical Characteristics [Reference Values] (Ta=252C) This is design reference value, and not guaranted one. Parameter Thermal protection circuit operation temperature Symbol TSD VCC=3.3V Condition Reference value 175 Unit C s Pin Descriptions Pin No. Pin name Standard waveform Description CS Equivalent circuit VB 1 1 U: U-phase drive output GND Terminal driving the U-phase of motor 8k GND2 GND Vs 2 CS : Drive power supply output Terminal outputting the drive current of motor Vcc 3 VSC : Switching power supply control output Terminal outputting the control voltage of the switching power supply 100A 18k 150A 1k GND VB 8k W 1k 3 4 WIN : W-phase detection GND Terminal detecting the W-phase 150A GND VB 4 8k V 5 VIN : V-phase detection GND Terminal detecting the V-phase 150A GND VB 1k 5 8k U 6 UIN : U-phase detection GND Terminal detecting the U-phase 150A GND VCC 1k 6 7 PCV : Voltage feedback system phase compensation GN Terminal attaching the capacitor for phase compensation of the voltage feedback system GND 50 1k 7 8 SG : Signal ground Grounding terminal for signal system s Pin Descriptions (cont.) Pin No. Pin name Standard waveform Description VCC 2I Equivalent circuit I 9 SL3 : Slope waveform generation (3) Terminal generating the waveform of the motor drive current 9 GND VCC 2I I 10 SL2 : Slope waveform generation (2) Terminal generating the waveform of the motor drive current 10 GND VCC 2I I 11 SL1 : Slope waveform generation (1) Terminal generating the waveform of the motor drive current 11 GND VCC 12 FC : Oscillation Terminal determining the phase switching frequency at motor start GND VCC 12 13 BR : Short brake control VCC or GND Terminal controlling the short brake 50k GND VCC 13 GND2 14 FR : Forward/Reverse switching terminal VCC or GND Terminal switching the normal/reverse rotation of motor 50k 14 50k GND VCC GND2 15 HSL : Slope current control terminal VCC or GND Terminal controls the charging/discharging current of the slope waveform generating terminal GND VCC 50k 15 50k GND2 16 STB : Stand-by input VCC or GND Terminal controls the operation/stand-by condition 50k 16 50k GND GND2 s Pin Descriptions (cont.) Pin No. Pin name Standard waveform Description Equivalent circuit 17 VCC : Power supply Terminal inputting the V CC power supply VB 125A 18 IN2H : Operational amp. 2 input Input terminal for operational amp. 2 3k GND VB 1k 18 GND2 19 OUT2 : Operational amp. 2 output Output terminal for operational amp. 2 30k GND VB 1.5k 5k 19 20 IN1- : Operational amp. 1 reverse phase input Terminal inputting the reverse phase voltage of operational amp. 1 25A GND VB 1.5k 1k 20 GND2 21 IN1+ : Operational amp. 1 normal phase input Terminal inputting the normal phase voltage of operational amp. 1 25A GND 1k 21 GND2 22 MM : Motor neutral point input terminal Terminal inputting the motor neutral point 22 VB VCC 23 OUT1 : Operational amp. 1 output Terminal outputting the output voltage of operational amp. 1 23 VCC Vref 24 Vref : Servo reference voltage input Terminal inputting the servo reference voltage GND 100A GND 1k 12k 100A GND2 24 s Pin Descriptions (cont.) Pin No. Pin name Standard waveform Description VB Equivalent circuit 25 PCI : Current feedback system phase compensation GND Terminal attaching the capacitor for phase compensation of current feedback system GND 50 25 1k 26 VS : Motor drive power supply Terminal inputting the VS motor drive power supply 27 VB : Unregulated power supply Terminal inputting the VB unregulated power supply VB Vs 1.5k 28 CS : Drive current output CS Terminal outputting the motor drive current GND CS 1k 28 VB 29 8k 29 W: W-phase drive output GND Terminal driving the W-phase of motor GND2 GND 30 PG : Power block grounding Terminal connecting the power transistor block to GND CS VB 31 V: V-phase drive output GND Terminal driving the V-phase of motor 8k GND2 31 GND 32 PG : Power block grounding Terminal connecting the power transistor block to GND s Operation Descriptions (1) STB terminal The operating condition of the IC internal circuit is shown in the following table : STB input L Note) H Condition of the IC internal circuit AMP2 and sensor-less block only operating All circuit operating Note) Since the sensor-less block operates, if the motor rotates, it detects the inductive voltage and synthesizes the energization switching signal which is synchronized with the motor rotation phase. (2) FR, BR terminal FR terminal H : Forward rotation L : Reverse rotation BR terminal H : Short brake circuit operation L : Short brake circuit stop (3) Drive amplifier The AN3861SA is an IC of current drive type, and the motor drive current Ia is determined by the voltage of OUT1 terminal, as shown in Fig.1. VS - CS Ia = Rcs mV Ia max = 140 Rcs gm = Gio = 0.14 Rcs Rcs OUT1 Vref Fig.1 Drive Characteristics The collector voltage value is controlled as shown in Fig.2 since the sink-side output transistor is operated with non-saturation voltage. U, V, W 0.5V 0.2V OUT1 Vref Vref + 1.35V Fig.2 OUT1 and VCE of Sink-side Output Transistor (4) VCS terminal For the AN3861SA, since the collector voltage of the sink-side output transistor is controlled to a certain value. Therefore, when the VB is high enough, extra voltage is applied to the VCE of source side output transistor. This loss voltage of VCE can be reduced by the VSC voltage through the circuit as shown in the following figure. 1.6V - + VS VSC CS AN3861 Fig.3 Switching Regulater System with VSC Terminal VSC OUT1=Vref gm=-2 1.6V OUT1 > Vref + 1.0V OUT1 increases 0.35V 0.63V VS - U VS - V VS - W Fig.4 VSC Characteristics (5) FC terminal This is an oscillation terminal which determines the commutation frequency at operation start and the frequency femf of inductive voltage for switching over the charging/discharging current of the SL terminal (Refer to (6) below). Normally, fFC=16.3kHz when CFC=560pF and the frequency at operation start is approx. 4Hz. (6) SL1, SL2, SL3 terminal The SL1, SL2 and SL3 are terminals producing the slope waveform for synthesizing the trapezoidal wave current. Since the slope waveform is synthesized by charging/discharging the external capacitor with the constant current, the amplitude VSL becomes as follows : VSL = Ich 6 femf x CSL VSL GND Fig.5 Waveform of SL1, SL2 and SL3 Where, Ich : Charging/Discharging current CSL : Capacitance value femf : Frequency of motor inductive voltage The value of Ich is changed according to the relationship between the frequency of the motor inductive voltage and the oscillation frequency of the FC terminal, as shown in Fig.6 in the next page. Therefore, the capacitance value of external capacitor CSL should be selected so that the value of VSL could fall in the range from 0.5 to 1.5V during constant rotation. Since the relative dispersion of three external capacitors may cause increase of motor noise, the capacitor with high accuracy should be used. (7) Capacitance value of Uin, Vin, Win The capacitor of Uin, Vin and Win prevents the malfunction of the comparator due to spike-shaped voltage which is generated in the motor coil at operation start. For this reason, it should be used as necessary for large motor of large L such as winding coil. |
Price & Availability of AN3861SA
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |