![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
TSH70,71,72,73,74,75 WIDE BAND, LOW POWER OPERATIONAL AMPLIFIER WITH STANDBY FUNCTION s 3V, 5V, 5V SPECIFICATIONS s 3dB-BANDWIDTH : 90MHz s GAIN-BANDWIDTH PRODUCT : 70MHz s SLEW-RATE : 100V/s s OUTPUT CURRENT : up to 55mA s INPUT SINGLE SUPPLY VOLTAGE s OUTPUT RAIL TO RAIL s SPECIFIED FOR 150 LOAD s LOW DISTORTION, THD : 0.1% s SOT23-5, TSSOP and SO PACKAGES DESCRIPTION TSH7x serie offers Single, Dual, Triple and Quad operational amplifiers featuring high video performances with large bandwidth, low distortion and excellent supply voltage rejection. Running at single supply voltage from 3V to 12V, amplifiers feature large output voltage swing and high output current capability to drive standard 150 loads. Low operating voltage makes TSH7x amplifiers ideal for use on portable equipments. The TSH71, TSH73 and TSH75 also feature some Standby input, each of which allows the op amp to be put into a standby mode with low power consumption and high output impedance.The function allows power saving or signals switching/multiplexing for high speed applications and video applications. For board space and weight saving, TSH7x series is proposed in SOT23-5, TSSOP and SO packages. APPLICATION Output 1 VCC - 2 Non-Inv. In. 3 PIN CONNECTIONS (top view) TSH70 : SOT23-5/SO8 5 VCC + NC 1 Inv. In. 2 4 Inv. In. Non-Inv. In. 3 VCC - 4 _ + 8 NC 7 VCC + 6 Output 5 NC +- TSH71 : SO8/TSSOP8 NC 1 Inverting Input 2 Non Inverting Input 3 VCC - 4 _ + 8 STANDBY 7 VCC + 6 Output 5 NC TSH72 : SO8/TSSOP8 Output1 1 Inverting Input1 2 Non Inverting Input1 3 VCC - 4 _ + _ + 8 VCC + 7 Output2 6 Inverting Input2 5 Non Inverting Input2 TSH73 : SO14/TSSOP14 STANDBY1 1 STANDBY2 2 STANDBY3 3 VCC + 4 Non Inverting Input1 5 Inverting Input1 6 Output1 7 + _ + _ _ + 14 Output3 13 Inverting Input3 12 Non Inverting Input3 11 VCC 10 Non Inverting Input2 9 Inverting Input2 8 Output2 TSH74 : SO14/TSSOP14 Output1 1 Inverting Input1 2 Non Inverting Input1 3 VCC + 4 Non Inverting Input2 5 Inverting Input2 6 Output2 7 + _ + _ _ + _ + 14 Output4 13 Inverting Input4 12 Non Inverting Input4 11 VCC 10 Non Inverting Input3 9 Inverting Input3 8 Output3 TSH75 : SO16/TSSOP16 Output1 1 Inverting Input1 2 Non Inverting Input1 3 VCC + 4 Non Inverting Input2 5 Inverting Input2 6 Output2 7 STANDBY 8 + _ + _ _ + _ + 16 Output4 15 Inverting Input4 14 Non Inverting Input4 13 VCC 12 Non Inverting Input3 11 Inverting Input3 10 Output3 9 STANDBY s Video buffers s A/D Converters driver s HiFi applications August 2002 1/25 TSH70, 71, 72, 73, 74, 75 ABSOLUTE MAXIMUM RATINGS Symbol VCC Vid Supply Voltage 3) 1) 2) Parameter Value 14 Unit V Differential Input Voltage 2 6 0 to +70 -65 to +150 150 4) 80 28 22 35 37 32 35 250 157 125 110 130 110 110 V V C C C Vi Toper Tstg Tj Input Voltage Operating Free Air Temperature Range Storage Temperature Maximum Junction Temperature Thermal resistance junction to case SOT23-5 SO8 SO14 SO16 TSSOPO8 TSSOP14 TSSOP16 Rthjc C/W Thermal resistance junction to ambiant area Rthja SOT23-5 SO8 SO14 SO16 TSSOPO8 TSSOP14 TSSOP16 C/W ESD 1. 2. 3. 4. HumanBodyModel 2 kV All voltages values, except differential voltage are with respect to network ground terminal Differential voltages are non-inverting input terminal with respect to the inverting terminal The magnitude of input and output must never exceed VCC +0.3V Short-circuits can cause excessive heating OPERATING CONDITIONS Symbol VCC VIC Standby Supply Voltage Common Mode Input Voltage Range - Parameter Value 3 to 12 VCC to (VCC -1.1) (VCC-) to (VCC+) + Unit V V V ORDER CODES Type TSH70CLT TSH70CD TSH70CDT TSH71CD TSH71CDT TSH71CPT TSH72CD TSH72CDT TSH72CPT TSH73CD TSH73CDT TSH73CPT TSH74CD TSH74CDT TSH74CPT TSH75CD TSH75CDT TSH75CPT Temperature Package SOT23-5 SO8 SO8 Tape SO8 SO8 Tape TSSOP8 SO8 SO8 Tape TSSOP8 SO14 SO14 Tape TSSOP14 SO14 SO14 Tape TSSOP14 SO16 SO16 Tape TSSOP16 Marking K301 70C 70C 71C 71C 71C 72C 72C 72C 73C 73C 73C 74C 74C 74C 75C 75C 75C C = Temperature range D = Small Outline Package (SO) - also available in Tape & Reel (DT) P = Thin Shrink Small Outline Package (TSSOP) - only available in Tape & Reel (PT) L = Tiny Package (SOT23-5) - only available in Tape & Reel (LT) 0C to 70C 2/25 TSH70, 71, 72, 73, 74, 75 ELECTRICAL CHARACTERISTICS VCC+ = 3V, V CC- = GND, Vic = 1.5V, Tamb = 25C (unless otherwise specified) Symbol |Vio| Vio Iio Iib Cin ICC CMR SVR PSR Input Input Input Input Parameter TestCondition Min. Typ. 1.2 4 0.1 6 0.2 Tamb = 25C Tmin. < Tamb < Tmax. +0.1 90 74 75 Avd 70 65 81 dB Io Output Short Circuit Current Source 30 24 43 33 mA 22 23 2.45 2.60 2.87 2.91 2.93 2.77 2.90 2.92 2.93 2.65 Voh High Level Output Voltage V Tmin. < Tamb < Tmax. RL = 150 to GND RL = 150 to 1.5V 2.4 2.6 3/25 TSH70, 71, 72, 73, 74, 75 Symbol Parameter TestCondition Tamb=25C RL = 150 to GND RL = 600 to GND RL = 2k to GND RL = 10k to GND Min. Typ. 46 52 53 54 140 90 68 57 Max. 150 Unit Vol Low Level Output Voltage RL RL RL RL = 150 to 1.5V = 600 to 1.5V = 2k to 1.5V = 10k to 1.5V 300 mV GBP Bw Gain Bandwidth Product Bandwidth @-3dB SR m en THD Slew Rate Phase Margin Equivalent Input Noise Voltage Total Harmonic Distortion IM2 Second order intermodulation product IM3 Third order inter modulation product G Df Differential gain Differential phase Gf Gain Flatness Vo1/Vo2 Channel Separation Tmin. < Tamb < Tmax. RL = 150 to GND RL = 150 to 1.5V F=10MHz AVCL =+11 AVCL =-10 AVCL =+1 RL=150 to 1.5V AVCL =+2 RL=150 // CL to 1.5V CL = 5pF CL = 30pF RL=150 // 30pF to 1.5V F=100kHz AVCL =+2, F=4MHz RL=150 // 30pF to 1.5V Vout=1Vpp Vout=2Vpp AVCL =+2, Vout=2Vpp RL=150 to 1.5V Fin1=180kHz, Fin2=280KHz spurious measurement @100kHz AVCL =+2, Vout=2Vpp RL=150 to 1.5V Fin1=180kHz, Fin2=280KHz spurious measurement @400kHz AVCL =+2, RL=150 to 1.5V F=4.5MHz, Vout=2Vpp AVCL =+2, RL=150 to 1.5V F=4.5MHz, Vout=2Vpp F=DC to 6MHz, AVCL=+2 F=1MHz to 10MHz 200 350 65 55 87 MHz MHz 45 80 85 40 11 V/s nV/Hz dB -61 -54 -76 dBc -68 dBc 0.5 0.5 0.2 65 % dB dB 4/25 TSH70, 71, 72, 73, 74, 75 ELECTRICAL CHARACTERISTICS VCC+ = 5V, V CC- = GND, Vic = 2.5V, Tamb = 25C (unless otherwise specified) Symbol |Vio| Vio Iio Iib Cin ICC CMR SVR PSR Parameter Input Offset Voltage Input Offset Voltage Drift vs Temperature Input Offset Current Input Bias Current Input Capacitance Supply Current per Operator Common Mode Rejection Ratio (Vic/Vio) Supply Voltage Rejection Ratio (VCC/Vio) Power Supply Rejection Ratio (VCC/Vout) Large Signal Voltage Gain Tamb = 25C Tmin. < Tamb < Tmax. +0.1 Avd 75 70 84 dB Io Output Short Circuit Current Source 35 33 55 55 mA 34 32 4.2 4.36 4.85 4.90 4.93 4.66 4.90 4.92 4.93 4.5 Voh High Level Output Voltage V Tmin. < Tamb < Tmax. RL = 150 to GND RL = 150 to 2.5V 4.1 4.4 5/25 TSH70, 71, 72, 73, 74, 75 Symbol Parameter TestCondition Tamb=25C RL = 150 to GND RL = 600 to GND RL = 2k to GND RL = 10k to GND Min. Typ. 48 54 55 56 220 105 76 61 Max. 150 Unit Vol Low Level Output Voltage RL RL RL RL = 150 to 2.5V = 600 to 2.5V = 2k to 2.5V = 10k to 2.5V 400 mV GBP Bw Gain Bandwidth Product Bandwidth @-3dB SR m en THD Slew Rate Phase Margin Equivalent Input Noise Voltage Total Harmonic Distortion IM2 Second order intermodulation product IM3 Third order inter modulation product G Df Differential gain Differential phase Gf Gain Flatness Vo1/Vo2 Channel Separation Tmin. < Tamb < Tmax. RL = 150 to GND RL = 150 to 2.5V F=10MHz AVCL =+11 AVCL =-10 AVCL =+1 RL=150 to 2.5V AVCL =+2 RL=150 // CL to 2.5V CL = 5pF CL = 30pF RL=150 // 30pF to 2.5V F=100kHz AVCL =+2, F=4MHz RL=150 // 30pF to 2.5V Vout=1Vpp Vout=2Vpp AVCL =+2, Vout=2Vpp RL=150 to 2.5V Fin1=180kHz, Fin2=280kHz spurious measurement @100kHz AVCL =+2, Vout=2Vpp RL=150 to 2.5V Fin1=180kHz, Fin2=280KHz spurious measurement @400kHz AVCL =+2, RL=150 to 2.5V F=4.5MHz, Vout=2Vpp AVCL =+2, RL=150 to 2.5V F=4.5MHz, Vout=2Vpp F=DC to 6MHz, AVCL=+2 F=1MHz to 10MHz 200 450 65 55 87 MHz MHz 60 104 105 40 11 V/s nV/Hz dB -61 -54 -76 dBc -68 dBc 0.5 0.5 0.2 65 % dB dB 6/25 TSH70, 71, 72, 73, 74, 75 ELECTRICAL CHARACTERISTICS VCC+ = 5V, V CC- = -5V, Vic = GND, Tamb = 25C (unless otherwise specified) Symbol |Vio| Vio Iio Iib Cin ICC CMR SVR PSR Parameter Input Offset Voltage Input Offset Voltage Drift vs Temperature Input Offset Current Input Bias Current Input Capacitance Supply Current per Operator Common Mode Rejection Ratio (Vic/Vio) Supply Voltage Rejection Ratio (VCC/Vio) Power Supply Rejection Ratio (VCC/Vout) Large Signal Voltage Gain Tamb = 25C Tmin. < Tamb < Tmax. -4.9 106 77 75 Avd 75 70 86 dB Io Output Short Circuit Current Source 35 30 55 55 mA 34 29 4.2 4.36 4.85 4.9 4.93 Voh High Level Output Voltage V 4.1 -4.63 -4.86 -4.9 -4.93 -4.4 mV Vol Low Level Output Voltage -4.3 65 55 100 MHz MHz GBP Bw Gain Bandwidth Product Bandwidth @-3dB 7/25 TSH70, 71, 72, 73, 74, 75 Symbol Parameter Test Condition AVCL =+2 RL=150 // CL to GND CL = 5pF CL = 30pF RL=150 to gnd F=100kHz AVCL =+2, F=4MHz RL=150 // 30pF to gnd Vout=1Vpp Vout=2Vpp AVCL =+2, Vout=2Vpp RL=150 to gnd Fin1=180kHz, Fin2=280KHz spurious measurement @100kHz AVCL =+2, Vout=2Vpp RL=150 to gnd Fin1=180kHz, Fin2=280KHz spurious measurement @400kHz AVCL =+2, RL=150 to gnd F=4.5MHz, Vout=2Vpp AVCL =+2, RL=150 to gnd F=4.5MHz, Vout=2Vpp F=DC to 6MHz, AVCL=+2 F=1MHz to 10MHz Min. Typ. Max. Unit SR m en THD Slew Rate Phase Margin Equivalent Input Noise Voltage Total Harmonic Distortion 68 117 118 40 11 V/s nV/Hz dB -61 -54 IM2 Second order intermodulation product -76 dBc IM3 Third order intermodulation product -68 dBc G Df Differential gain Differential phase 0.5 0.5 0.2 65 % dB dB Gf Gain Flatness Vo1/Vo2 Channel Separation 8/25 TSH70, 71, 72, 73, 74, 75 STANDBY MODE VCC+, VCC-, Tamb = 25C (unless otherwise specified) Symbol Vlow Vhigh Parameter Standby Low Level Standby High Level pin 8 (TSH71) to VCC ICC SBY Current Consumption per Operator when STANDBY is Active - Test Condition Min. VCC(VCC- +2) Typ. Max. (VCC +0.8) (VCC+) - Unit V V pin 1,2 or 3 (TSH73) to VCCpin 8 (TSH75) to VCC+ pin 9 (TSH75) to VCCRout Cout 20 55 A Zout Ton Toff Output Impedance (Rout//Cout) Time from Standby Mode to Active Mode Time from Active Mode to Standby Mode 10 17 2 M pF s s Down to ICC SBY = 10A 10 OPERATOR STATUS Standby Active OPERATOR STATUS TSH71 STANDBY CONTROL pin 8 (SBY) Vlow Vhigh TSH73 STANDBY CONTROL pin 1 (SBY OP1) Vlow Vhigh x x x x pin 2 (SBY OP2) x x Vlow Vhigh x x Vlow Vhigh pin 3 (SBY OP3) x x x OP1 Standby Active x x x x OP1 x x Standby Active x x OP3 x x x x Standby Active TSH75 STANDBY CONTROL pin 8 (SBY OP2) Vhigh Vhigh Vlow Vlow pin 9 (SBY OP3) Vlow Vhigh Vlow Vhigh OP1 Active Active Active Active OPERATOR STATUS OP2 Standby Standby Active Active OP3 Standby Active Standby Active OP4 Active Active Active Active 9/25 TSH70, 71, 72, 73, 74, 75 Closed Loop Gain and Phase vs. Frequency Gain=+2, Vcc= 1.5V, RL=150, Tamb = 25C 10 200 Overshoot function of output capacitance Gain=+2, Vcc= 1.5V, Tamb = 25C 10 150//33pF 150//22pF 150//10pF 150 5 Gain 0 100 5 Gain (dB) -5 0 -10 Phase Phase () Gain (dB) 0 -5 1E+6 -100 -15 -20 1E+4 1E+5 1E+6 1E+7 1E+8 -200 1E+9 1E+7 1E+8 1E+9 Frequency (Hz) Frequency (Hz) Closed Loop Gain and Phase vs. Frequency Gain=-10, Vcc= 1.5V, RL=150, Tamb = 25C 30 200 Closed Loop Gain and Phase vs. Frequency Gain=+11, Vcc= 1.5V, RL=150, Tamb = 25C 30 0 Phase 20 150 Phase 20 100 Gain (dB) 10 50 Gain (dB) 10 0 0 -50 -100 0 -10 1E+4 1E+5 1E+6 1E+7 1E+8 -100 1E+9 -10 1E+4 1E+5 1E+6 1E+7 1E+8 -150 1E+9 Frequency (Hz) Frequency (Hz) Large Signal Measurement - Positive Slew Rate Gain=2,Vcc=1.5V,ZL=150//5.6pF,Vin=400mVpk 1 Large Signal Measurement - Negative Slew Rate Gain=2,Vcc=1.5V,ZL=150//5.6pF,Vin=400mVpk 1 0.5 0.5 Vout (V) 0 Vout (V) 0 -0.5 -0.5 -1 0 10 20 30 40 50 60 -1 0 10 20 30 40 50 Time (ns) Time (ns) 10/25 Phase () Gain Phase () Gain -50 TSH70, 71, 72, 73, 74, 75 Small Signal Measurement - Rise Time Gain=2,Vcc=1.5V, ZL=150,Vin=400mVpk 0.06 Small Signal Measurement - Fall Time Gain=2,Vcc=1.5V, ZL=150,Vin=400mVpk 0.06 0.04 0.04 Vin, Vout (V) Vin, Vout (V) 0.02 0.02 Vout Vin 0 0 Vout Vin -0.02 -0.02 -0.04 -0.04 -0.06 0 10 20 30 40 50 60 -0.06 0 10 20 30 40 50 60 Time (ns) Time (ns) Channel separation (Xtalk) vs frequency Measurement configuration : Xtalk=20log(V0/V1) VIN 49.9 Channel separation (Xtalk) vs frequency Gain=+11, Vcc=1.5V, ZL=150//27pF -20 + + 150 -30 V1 Xtalk (dB) -40 -50 4/1output 3/1output 100 1k -60 -70 -80 2/1output + 49.9 100 1k 150 -90 VO -100 -110 1E+4 1E+5 1E+6 1E+7 Frequency (Hz) Equivalent Noise Voltage Gain=100, Vcc=1.5V, No load 30 + _ Maximum Output Swing Gain=11, Vcc=5V, RL=150 5 4 3 Vout 25 100 10k 2 Vin, Vout (V) en (nV/Hz) 20 1 0 -1 -2 Vin 15 10 -3 -4 5 0.1 1 10 100 1000 -5 0.0E+0 5.0E-2 1.0E-1 1.5E-1 2.0E-1 Frequency (kHz) Time (ms) 11/25 TSH70, 71, 72, 73, 74, 75 Standby Mode - Ton, Toff Vcc= 1.5V, Open Loop Group Delay Gain=2, Vcc=1.5V, ZL=150//27pF, Tamb = 25C 2 Vin Gain 1 Vin, Vout (V) 0 Vout -1 Group Delay 5.87ns -2 Ton 0 2E-6 4E-6 Standby 6E-6 Toff 8E-6 1E-5 Time (s) Third Order Intermodulation Gain=2, Vcc=1.5V, ZL=150//27pF, Tamb = 25C Intermodulation products The IFR2026 synthesizer generates a two tones signal (F1=180kHz, F2=280kHz); each tone having the same amplitude level. The HP3585 spectrum analyzer measures the intermodulation products function of the output voltage. The generator and the spectrum analyzer are phase locked for precision considerations. 0 -10 -20 -30 IM3 (dBc) -40 -50 -60 -70 -80 -90 80kHz 740kHz 640kHz 380kHz -100 0 1 2 3 4 Vout peak(V) 12/25 TSH70, 71, 72, 73, 74, 75 Closed Loop Gain and Phase vs. Frequency Gain=+2, Vcc= 2.5V, RL=150, Tamb = 25C 10 200 Overshoot function of output capacitance Gain=+2, Vcc= 2.5V, Tamb = 25C 10 5 150//33pF Gain 100 5 150//22pF Gain (dB) 0 -5 Gain (dB) Phase () 0 150//10pF 150 0 Phase -100 -10 -15 1E+4 -200 1E+5 1E+6 1E+7 1E+8 1E+9 -5 1E+6 1E+7 1E+8 1E+9 Frequency (Hz) Frequency (Hz) Closed Loop Gain and Phase vs. Frequency Gain=-10, Vcc= 2.5V, RL=150, Tamb = 25C 30 200 Closed Loop Gain and Phase vs. Frequency Gain=+11, Vcc= 2.5V, RL=150, Tamb = 25C 30 0 Phase 20 150 Phase 20 100 Gain (dB) Phase () Gain 10 50 Gain (dB) 10 0 0 -50 -100 0 -10 1E+4 1E+5 1E+6 1E+7 1E+8 -100 1E+9 -10 1E+4 1E+5 1E+6 1E+7 1E+8 -150 1E+9 Frequency (Hz) Frequency (Hz) Large Signal Measurement - Positive Slew Rate Gain=2,Vcc=2.5V,ZL=150//5.6pF,Vin=400mVpk 3 Large Signal Measurement - Negative Slew Rate Gain=2,Vcc=2.5V,ZL=150//5.6pF,Vin=400mVpk 3 2 2 1 1 Vout (V) 0 Vout (V) 0 -1 -1 -2 -2 -3 0 10 20 30 40 50 60 70 80 -3 0 10 20 30 40 50 60 70 Time (ns) Time (ns) 13/25 Phase () Gain -50 TSH70, 71, 72, 73, 74, 75 Small Signal Measurement - Rise Time Gain=2,Vcc=2.5V,Zl=150,Vin=400mVpk 0.06 Small Signal Measurement - Fall Time Gain=2,Vcc=2.5V,Zl=150,Vin=400mVpk 0.06 0.04 0.04 0.02 0.02 Vin, Vout (V) Vin Vout (V) Vout Vin 0 0 Vout Vin -0.02 -0.02 -0.04 -0.04 -0.06 0 10 20 30 40 50 60 -0.06 0 10 20 30 40 50 60 Time (ns) Time (ns) Channel separation (Xtalk) vs frequency Measurement configuration : Xtalk=20log(V0/V1) VIN 49.9 Channel separation (Xtalk) vs frequency Gain=+11, Vcc=2.5V, ZL=150//27pF -20 + + 150 -30 V1 Xtalk (dB) -40 4/1output -50 100 1k 3/1output -60 -70 -80 2/1output + 49.9 100 1k 150 -90 VO -100 -110 1E+4 1E+5 1E+6 1E+7 Frequency (Hz) Equivalent Noise Voltage Gain=100, Vcc=2.5V, No load 30 + _ 10k 100 Maximum Output Swing Gain=11, Vcc=2.5V, RL=150 3 25 2 Vout Vin, Vout (V) 1 en (nV/Hz) 20 Vin 0 15 -1 10 -2 5 0.1 1 10 100 1000 -3 0.0E+0 5.0E-2 1.0E-1 1.5E-1 2.0E-1 Frequency (kHz) Time (ms) 14/25 TSH70, 71, 72, 73, 74, 75 Standby Mode - Ton, Toff Vcc= 2.5V, Open Loop 3 2 Group Delay Gain=2, Vcc= 2.5V, ZL=150//27pF, Tamb = 25C Vin Vin, Vout (V) 1 0 -1 -2 Gain Vout Group Delay 5.32ns -3 0 Ton 2E-6 Standby 4E-6 6E-6 Toff 8E-6 1E-5 Time (s) Third Order Intermodulation Gain=2, Vcc= 2.5V, ZL=150//27pF, Tamb = 25C Intermodulation products The IFR2026 synthesizer generates a two tones signal (F1=180kHz, F2=280kHz); each tone having the same amplitude level. The HP3585 spectrum analyzer measures the intermodulation products function of the output voltage. The generator and the spectrum analyzer are phase locked for precision considerations. 0 -10 -20 -30 IM3 (dBc) -40 -50 740kHz 80kHz -60 -70 -80 -90 -100 0 1 2 3 4 380kHz 640kHz Vout peak(V) 15/25 TSH70, 71, 72, 73, 74, 75 Closed Loop Gain and Phase vs. Frequency Gain=+2, Vcc= 5V, RL=150, Tamb = 25C 10 200 Overshoot function of output capacitance Gain=+2, Vcc= 5V, Tamb = 25C 10 150//33pF 5 Gain 100 150//22pF 5 Gain (dB) Phase () 0 -5 Gain (dB) 0 150//10pF 150 0 Phase -100 -10 -15 1E+4 1E+5 1E+6 1E+7 1E+8 -200 1E+9 -5 1E+6 1E+7 1E+8 1E+9 Frequency (Hz) Frequency (Hz) Closed Loop Gain and Phase vs. Frequency Gain=-10, Vcc= 5V, RL=150, Tamb = 25C 30 200 Closed Loop Gain and Phase vs. Frequency Gain=+11, Vcc= 5V, RL=150, Tamb = 25C 30 0 Phase 150 20 100 Phase 20 Phase () Gain (dB) Gain 10 Gain (dB) 10 50 -100 0 0 0 -10 1E+4 1E+5 1E+6 1E+7 1E+8 -50 1E+9 -10 1E+4 1E+5 1E+6 1E+7 1E+8 -150 1E+9 Frequency (Hz) Frequency (Hz) Large Signal Measurement - Positive Slew Rate Gain=2,Vcc=5V,ZL=150//5.6pF,Vin=400mVpk 5 4 3 2 Large Signal Measurement - Negative Slew Rate Gain=2,Vcc=5V,ZL=150//5.6pF,Vin=400mVpk 5 4 3 2 Vout (V) Vout (V) 1 0 -1 -2 -3 -4 -5 0 20 40 60 80 100 1 0 -1 -2 -3 -4 -5 0 20 40 60 80 100 Time (ns) Time (ns) 16/25 Phase () Gain -50 TSH70, 71, 72, 73, 74, 75 Small Signal Measurement - Rise Time Gain=2,Vcc=5V,ZL=150,Vin=400mVpk 0.06 Small Signal Measurement - Fall Time Gain=2,Vcc=5V,ZL=150,Vin=400mVpk 0.06 0.04 0.04 Vin, Vout (V) Vin, Vout (V) 0.02 0.02 Vout Vin 0 0 Vout Vin -0.02 -0.02 -0.04 -0.04 -0.06 0 10 20 30 40 50 60 -0.06 0 10 20 30 40 50 60 Time (ns) Time (ns) Channel separation (Xtalk) vs frequency Measurement configuration : Xtalk=20log(V0/V1) VIN 49.9 Channel separation (Xtalk) vs frequency Gain=+11, Vcc=5V, ZL=150//27pF -20 + 150 -30 V1 Xtalk (dB) -40 -50 4/1output 3/1output 100 1k -60 -70 -80 2/1output + 49.9 100 1k 150 -90 VO -100 -110 1E+4 1E+5 1E+6 1E+7 Frequency (Hz) Equivalent Noise Voltage Gain=100, Vcc=5V, No load 30 Maximum Output Swing Gain=11, Vcc=5V, RL=150 5 4 25 + _ 10k 3 2 Vout Vin, Vout (V) 100 en (nV/Hz) 20 1 0 -1 -2 Vin 15 10 -3 -4 5 0.1 1 10 100 1000 -5 0.0E+0 5.0E-2 1.0E-1 1.5E-1 2.0E-1 Frequency (kHz) Time (ms) 17/25 TSH70, 71, 72, 73, 74, 75 Standby Mode - Ton, Toff Vcc=5V, Open Loop Vin 5 Group Delay Gain=2, Vcc=5V, ZL=150//27pF, Tamb = 25C Vin, Vout (V) Vout 0 Gain Group Delay -5 5.1ns Ton 0 2E-6 Standby 4E-6 6E-6 Toff 8E-6 Time (s) Third Order Intermodulation Gain=2, Vcc=5V, ZL=150//27pF, Tamb = 25C Intermodulation products The IFR2026 synthesizer generates a two tones signal (F1=180kHz, F2=280kHz); each tone having the same amplitude level. The HP3585 spectrum analyzer measures the intermodulation products function of the output voltage. The generator and the spectrum analyzer are phase locked for precision considerations. 0 -10 -20 -30 IM3 (dBc) -40 -50 -60 -70 -80 -90 80kHz 740kHz 640kHz -100 0 1 2 3 380kHz 4 Vout peak(V) 18/25 TSH70, 71, 72, 73, 74, 75 TESTING CONDITIONS: Layout precautions: To use the TSH7X circuits in the best manner at high frequencies, some precautions have to be taken for power supplies: - First of all, the implementation of a proper ground plane in both sides of the PCB is mandatory for high speed circuit applications to provide low inductance and low resistance common return. - Power supply bypass capacitors (4.7uF and ceramic 100pF) should be placed as close as possible to the IC pins in order to improve high frequency bypassing and reduce harmonic distortion. The power supply capacitors must be incorporated for both the negative and the positive pins. - Proper termination of all inputs and outputs must be in accordance with output termination resistors; then the amplifier load will be only resistive and the stability of the amplifier will be improved. All leads must be wide and as short as possible especially for op amp inputs and outputs in order to decrease parasitic capacitance and inductance. - For lower gain application, attention should be paid not to use large feedback resistance (>1k) to reduce time constant with parasitic capacitances. - Choose component sizes as small as possible (SMD). - Finally, on output, the load capacitance must be negligible to maintain good stability. You can put a serial resistance the closest to the output pin to minimize its influence. CCIR330 video line Maximum input level: The input level must not exceed the following values: u negative peak: must be greater than -Vcc+400mV. u positive peak value: must be lower than +Vcc-400mV. The electrical characteristics show the influence of the load on this parameter. Video capabilities: To characterize the differential phase and differential gain a CCIR330 video line is used. The video line contains 5 (flat) levels of luma on which is superimposed chroma signal. (the first level contains no luma). The luma gives various amplitudes which define the saturation of the signal. The chrominance gives various phases which define the colour of the signal. Differential phase (respectively differential gain) distortion is present if a signal chrominance phase (gain) is affected by luminance level. They represent the ability to uniformly process the high frequency information at all luminance levels. When differential gain is present, colour saturation is not correctly reproduced. The input generator is the Rohde & Schwarz CCVS. The output measurement is done by the Rohde and Schwarz VSA. Measurement on Rohde and Schwarz VSA. 19/25 TSH70, 71, 72, 73, 74, 75 Video Results: Parameter Lum NL Lum NL Step 1 Lum NL Step 2 Lum NL Step 3 Lum NL Step 4 Lum NL Step 5 Diff Gain pos Diff Gain neg Diff Gain pp Diff Gain Step1 Diff Gain Step2 Diff Gain Step3 Diff Gain Step4 Diff Gain Step5 Diff Phase pos Diff Phase neg Diff Phase pp Diff Phase Step1 Diff Phase Step2 Diff Phase Step3 Diff Phase Step4 Diff Phase Step5 Value Vcc=+-2.5V 0.1 100 100 99.9 99.9 99.9 0 -0.7 0.7 -0.5 -0.7 -0.3 -0.1 -0.4 0 -0.2 0.2 -0.2 -0.1 -0.1 0 -0.2 Value Vcc=+-5V 0.3 100 99.9 99.8 99.9 99.7 0 -0.6 0.6 -0.3 -0.6 -0.5 -0.3 -0.5 0.1 -0.4 0.5 -0.4 -0.4 -0.3 0.1 -0.1 Unit % % % % % % % % % % % % % % deg deg deg deg deg deg deg deg Precautions on asymmetrical supply operation: The TSH7X can be used either with a dual or a single supply. If a single supply is used, the inputs are biased to the mid-supply voltage (+Vcc/2). This bias network must be carefully designed, in order to reject any noise present on the supply rail. As the bias current is 15uA, you must carefully choose the resistance R1 not to introduce an offset mismatch at the amplifier inputs. R2, R3 are such that the current through them must be superior to 100 times the bias current. So, we take R2=R3=4.7K. Cin, as Cout are chosen to filter the DC signal by the lowpass filters (R1,Cin) and (Rout, Cout). By taking R1=10K, RL=150, and Cin=2uF, Cout=220uF we provide a cutoff frequency below 10Hz. Use of the TSH7X in gain=-1 configuration: Cf 1k IN Cin + R1 R2 R3 C1 Vcc+ C3 C2 R4 Cout OUT IN Cin 1k Vcc+ R2 R3 C1 C2 C3 + Cout OUT RL R5 Cf RL R1 R1=10K will be convenient. C1, C2, C3 are bypass capacitors from perturbation on Vcc as well as for the input and output signals. We choose C1=100nF and C2=C3=100uF. 20/25 Some precautions have to be added, specially for low power supply application. A feedback capacitance Cf should be added for better stability. The table summarizes the impact of the capacitance Cf on the phase margin of the circuit. TSH70, 71, 72, 73, 74, 75 Parameter Phase Margin f-3dB Phase Margin f-3dB Phase Margin f-3dB Phase Margin f-3dB Cf (pF) 0 5.6 22 33 Vcc=!1.5V 28 40 30 40 37 37 48 33.7 Vcc=!2.5V 43 39.3 43 39.3 52 34 65 30.7 Vcc=!5V 56 38.3 56 38.3 67 32 78 27.6 Unit deg MHz deg MHz deg MHz deg MHz Example of a video application : Vcc/2 IN Ce Rb1 AOP1 + R2 R1 Vcc/2 Cf V1 R3 C3 V2 PAL A1 LPF1 V3 R4 Vcc/2 C4 Rb1 Re + - AOP2 R6 Vcc/2 NTSC R7 C7 A2 LPF2 R8 R5 Cf Standby Vcc/2 C8 Rb1 V4 Rout Cout OUT RL + AOP3 R10 Vcc/2 R9 Cf Standby This example shows a possible application of the TSH7X circuit. Here, you can multiplex the channels for the different standard PAL, NTSC as you filter for the different bands; the video signal can be filtered with two different cutoff frequencies, corresponding to a PAL encoded signal (LPF1) or a NTSC signal (LPF2). You can multiplex input signals, as the outputs are in high impedance state in standby mode.This enables you, to use a PAL filter as the Standby mode is active and to use the NTSC filter otherwise. The video application requires 1Vpeak at input and output. Calculation of components: A decoupling capacitor is provided to cutoff the frequencies below 10Hz according I bias.Hence Ce=10uF, with Rb1=10K. At the output, Cout=220uF. The AOP1 is in 6dB configuration for the adaptation bridge. R1=R2=1K.V1=2Vpk. V2=1Vpk For the PAL communication, we need a lowpass filtering. The load resistance R4 is function of the output resistance of the filter.V3=V2/A1 where A1 is the attenuation factor of the filter LPF1. To compensate the filter insertion loss, we add an additional factor to the gain of the 2nd amplifier AOP2. For example, for an attenuation of 3dB, we choose R5=300 and R6=1K. We have V4=2Vpk and Vout=1Vpk. The calculation of the parameters R7, C7, R8, C8, R9, R10 will be exactly the same . 21/25 TSH70, 71, 72, 73, 74, 75 PACKAGE MECHANICAL DATA 8 PINS - PLASTIC MICROPACKAGE (SO) PACKAGE MECHANICAL DATA 8 PINS - THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP) k c 0.25mm .010 inch GAGE PLANE L1 L L L1 E1 SEATING PLANE A A2 A1 5 D b 8 8 C E 4 e 5 PIN 1 IDENTIFICATION Millimeters Dim. Min. A a1 a2 a3 b b1 C c1 D E e e3 F L M S 0.1 0.65 0.35 0.19 0.25 4.8 5.8 1.27 3.81 3.8 0.4 4.0 0.150 1.27 0.016 0.6 8 (max.) Typ. Max. Min. Inches Dim. Typ. Max. 0.069 0.010 0.065 0.033 0.019 0.010 0.020 0.197 0.244 0.050 0.150 0.157 0.050 0.024 A A1 A2 b c D E E1 e k l Min. 0.05 0.80 0.19 0.09 2.90 4.30 0 0.50 Millimeters Typ. Max. 1.20 0.15 1.05 0.30 0.20 3.10 4.50 8 0.75 Min. 0.01 0.031 0.007 0.003 0.114 0.169 0 0.09 Inches Typ. Max. 0.05 0.006 0.041 0.15 0.012 0.122 0.177 1.75 0.25 0.004 1.65 0.85 0.026 0.48 0.014 0.25 0.007 0.5 0.010 45 (typ.) 5.0 0.189 6.2 0.228 1.00 0.039 3.00 6.40 4.40 0.65 0.60 0.118 0.252 0.173 0.025 8 0.0236 0.030 22/25 1 4 1 TSH70, 71, 72, 73, 74, 75 PACKAGE MECHANICAL DATA 14 PINS - PLASTIC MICROPACKAGE (SO) PACKAGE MECHANICAL DATA 14 PINS - THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP) c 0,25 mm .010 inch GAGE PLANE L k L C G E1 c1 a2 A SEATING PLANE s E M e3 D a1 b1 b e C A A2 A1 E 14 1 8 F b 8 7 7 D C aaa 14 1 PIN 1 IDENTIFICATION Millimeters Dim. Min. A a1 a2 b b1 C c1 D (1) E e e3 F (1) G L M S 0.1 0.35 0.19 0.5 8.55 5.8 1.27 7.62 3.8 4.6 0.5 4.0 0.150 5.3 0.181 1.27 0.020 0.68 8 (max.) 45 (typ.) 8.75 0.336 6.2 0.228 Typ. Max. 1.75 0.2 1.6 0.46 0.25 Min. 0.004 0.014 0.007 Inches Dim. Typ. Max. 0.069 0.008 0.063 0.018 0.010 0.020 0.344 0.244 0.050 0.300 0.157 0.208 0.050 0.027 A A1 A2 b c D E E1 e k l Min. 0.05 0.80 0.19 0.09 4.90 4.30 0 0.50 Millimeters Typ. Max. 1.20 0.15 1.05 0.30 0.20 5.10 4.50 8 0.75 Min. 0.01 0.031 0.007 0.003 0.192 0.169 0 0.09 Inches Typ. Max. 0.05 0.006 0.041 0.15 0.012 0.20 0.177 1.00 0.039 5.00 6.40 4.40 0.65 0.60 0.196 0.252 0.173 0.025 8 0.0236 0.030 Note : (1) D and F do not include mold flash or protrusions - Mold flash or protrusions shall not exceed 0.15mm (.066 inc) ONLY FOR DATA BOOK. e L1 23/25 TSH70, 71, 72, 73, 74, 75 PACKAGE MECHANICAL DATA 16 PINS - PLASTIC MICROPACKAGE (SO) PACKAGE MECHANICAL DATA 16 PINS - THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP) c 0,25 mm .010 inch GAGE PLANE k L E1 SEATING PLANE C A A2 A1 E b 9 8 D aaa C 16 1 PIN 1 IDENTIFICATION Millimeters Dim. Min. A a1 a2 b b1 C c1 D E e e3 F G L M S 0.1 0.35 0.19 0.5 9.8 5.8 1.27 8.89 3.8 4.6 0.5 4.0 0.150 5.3 0.181 1.27 0.020 0.62 8 (max.) 45 (typ.) 10 0.386 6.2 0.228 Typ. Max. 1.75 0.2 1.6 0.46 0.25 Min. 0.004 0.014 0.007 Inches Dim. Typ. Max. 0.069 0.008 0.063 0.018 0.010 0.020 0.394 0.244 0.050 0.350 0.157 0.209 0.050 0.024 A A1 A2 B C D D1 e E F L Min. 0.90 0 0.90 0.35 0.09 2.80 Millimeters Typ. 1.20 1.05 0.40 0.15 2.90 1.90 0.95 2.80 1.60 0.5 Max. 1.45 0.15 1.30 0.50 0.20 3.00 Min. 0.035 0.035 0.014 0.004 0.110 Inches Typ. 0.047 Max. 0.057 0.006 0.051 0.020 0.008 0.118 2.60 1.50 0.10 3.00 1.75 0.60 0.102 0.059 0.004 0.041 0.016 0.006 0.114 0.075 0.037 0.110 0.0118 0.063 0.069 0.014 0.024 24/25 e L1 TSH70, 71, 72, 73, 74, 75 PACKAGE MECHANICAL DATA 5 PINS - TINY PACKAGE (SOT23) A E A2 E D D1 B A1 L C F Millimeters Dim. Min. A A1 A2 B C D D1 e E F L K 0.90 0 0.90 0.35 0.09 2.80 Typ. 1.20 1.05 0.40 0.15 2.90 1.90 0.95 2.80 1.60 0.5 Max. 1.45 0.15 1.30 0.50 0.20 3.00 Min. 0.035 0.035 0.014 0.004 0.110 Inches Typ. 0.047 0.041 0.016 0.006 0.114 0.075 0.037 0.110 0.063 0.014 Max. 0.057 0.006 0.051 0.020 0.008 0.118 2.60 1.50 0.10 0d 3.00 1.75 0.60 10d 0.102 0.059 0.004 0d 0.0118 0.069 0.024 10d Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. (c) The ST logo is a registered trademark of STMicroelectronics (c) 2002 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States (c) http://www.st.com 25/25 |
Price & Availability of TSH72CD
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |