![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
Data Sheet No. PD60026-K IR2112 HIGH AND LOW SIDE DRIVER Features * Floating channel designed for bootstrap operation * Fully operational to +600V * Tolerant to negative transient voltage * * * * * * * * dV/dt immune Gate drive supply range from 10 to 20V Undervoltage lockout for both channels Separate logic supply range from 5 to 20V Logic and power ground 5V offset CMOS Schmitt-triggered inputs with pull-down Cycle by cycle edge-triggered shutdown logic Matched propagation delay for both channels Outputs in phase with inputs Product Summary VOFFSET IO+/VOUT ton/off (typ.) Delay Matching 600V max. 200 mA / 420 mA 10 - 20V 125 & 105 ns 30 ns Packages Description The IR2112 is a high voltage, high speed power MOSFET and IGBT driver with independent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. Logic inputs are compatible with standard CMOS or LSTTL outputs. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts. 14 lead PDIP 16 lead SOIC (wide body) Typical Connection 14 lead PDIP w/o lead 4 16 lead PDIP w/o leads 4 & 5 up to 600V HO VDD HIN SD LIN VSS VCC VDD HIN SD LIN VSS VCC COM LO VB VS TO LOAD www.irf.com 287 IR2112 Absolute Maximum Ratings Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions. Additional information is shown in Figures 28 through 35. Symbol VB VS VHO VCC VLO VDD VSS VIN dVs/dt PD Definition High Side Floating Supply Voltage High Side Floating Supply Offset Voltage High Side Floating Output Voltage Low Side Fixed Supply Voltage Low Side Output Voltage Logic Supply Voltage Logic Supply Offset Voltage Logic Input Voltage (HIN, LIN & SD) Allowable Offset Supply Voltage Transient (Figure 2) Package Power Dissipation @ TA +25C (14 Lead DIP) (14 Lead DIP w/o Lead 4) (16 Lead DIP w/o Leads 4 & 5) (16 Lead SOIC) Min. -0.3 VB - 25 VS - 0.3 -0.3 -0.3 -0.3 VCC - 25 VSS - 0.3 -- -- -- -- -- -- -- -- -- -- -55 -- Max. 625 VB + 0.3 VB + 0.3 25 VCC + 0.3 VSS + 25 VCC + 0.3 VDD + 0.3 50 1.6 1.5 1.6 1.25 75 85 75 100 150 150 300 Units V V/ns W RTHJA Thermal Resistance, Junction to Ambient (14 Lead DIP) (14 Lead DIP w/o Lead 4) (16 Lead DIP w/o Leads 4 & 5) (16 Lead SOIC) TJ TS TL Junction Temperature Storage Temperature Lead Temperature (Soldering, 10 seconds) C/W C Recommended Operating Conditions The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. The VS and VSS offset ratings are tested with all supplies biased at 15V differential. Typical ratings at other bias conditions are shown in Figures 36 and 37. Symbol VB VS VHO VCC VLO VDD VSS VIN TA Definition High Side Floating Supply Absolute Voltage High Side Floating Supply Offset Voltage High Side Floating Output Voltage Low Side Fixed Supply Voltage Low Side Output Voltage Logic Supply Voltage Logic Supply Offset Voltage Logic Input Voltage (HIN, LIN & SD) Ambient Temperature Min. VS + 10 Note 1 VS 10 0 VSS + 4.5 -5 VSS -40 Max. VS + 20 600 VB 20 VCC VSS + 20 5 VDD 125 Units V C Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. 2 www.irf.com IR2112 Dynamic Electrical Characteristics VBIAS (VCC , V BS , VDD ) = 15V, CL = 1000 pF, TA = 25C and VSS = COM unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Figure 3. Symbol ton toff tsd tr tf MT Definition Turn-On Propagation Delay Turn-Off Propagation Delay Shutdown Propagation Delay Turn-On Rise Time Turn-Off Fall Time Delay Matching, HS & LS Turn-On/Off Figure Min. Typ. Max. Units Test Conditions 7 8 9 10 11 -- -- -- -- -- -- -- 125 105 105 80 40 -- 180 160 160 130 65 30 Figure 5 VS = 0V VS = 600V VS = 600V ns Static Electrical Characteristics VBIAS (VCC, VBS, VDD) = 15V, TA = 25C and VSS = COM unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and are applicable to all three logic input leads: HIN, LIN and SD. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO. Symbol VIH VIL VOH VOL ILK IQBS IQCC IQDD IIN+ IINVBSUV+ VBSUVVCCUV+ VCCUVIO+ IO- Definition Logic "1" Input Voltage Logic "0" Input Voltage High Level Output Voltage, VBIAS - VO Low Level Output Voltage, VO Offset Supply Leakage Current Quiescent VBS Supply Current Quiescent VCC Supply Current Quiescent VDD Supply Current Logic "1" Input Bias Current Logic "0" Input Bias Current VBS Supply Undervoltage Positive Going Threshold VBS Supply Undervoltage Negative Going Threshold VCC Supply Undervoltage Positive Going Threshold VCC Supply Undervoltage Negative Going Threshold Output High Short Circuit Pulsed Current Output Low Short Circuit Pulsed Current Figure Min. Typ. Max. Units Test Conditions 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 9.5 -- -- -- -- -- -- -- -- -- 7.4 7.0 7.6 7.2 200 420 -- -- -- -- -- 25 80 2.0 20 -- 8.5 8.1 8.6 8.2 250 500 -- 6.0 100 100 50 60 180 5.0 40 1.0 9.6 9.2 V 9.6 9.2 -- -- mA VO = 0V, VIN = VDD PW 10 s VO = 15V, VIN = 0V PW 10 s A V mV IO = 0A IO = 0A VB = VS = 600V VIN = 0V or VDD VIN = 0V or VDD VIN = 0V or VDD VIN = VDD VIN = 0V www.irf.com 3 IR2112 Functional Block Diagram VB VDD RQ S HIN HV LEVEL SHIFT UV DETECT PULSE FILTER R R S Q HO VDD /VCC LEVEL SHIFT PULSE GEN VS SD UV DETECT VCC VDD /VCC LEVEL SHIFT LIN S RQ VSS LO DELAY COM Lead Definitions Symbol VDD HIN SD LIN VSS VB HO VS VCC LO COM Description Logic supply Logic input for high side gate driver output (HO), in phase Logic input for shutdown Logic input for low side gate driver output (LO), in phase Logic ground High side floating supply High side gate drive output High side floating supply return Low side supply Low side gate drive output Low side return Lead Assignments 14 Lead DIP 14 Lead DIP w/o Lead 4 16 Lead DIP w/o Leads 4 & 5 16 Lead SOIC (Wide Body) IR2112 4 IR2112-1 Part Number IR2112-2 IR2112S www.irf.com IR2112 Figure 1. Input/Output Timing Diagram Figure 2. Floating Supply Voltage Transient Test Circuit HIN LIN ton 50% 50% tr 90% toff 90% tf HO LO 10% 10% Figure 3. Switching Time Test Circuit Figure 4. Switching Time Waveform Definition SD 50% HIN LIN 50% 50% LO tsd HO 10% HO LO 90% MT MT 90% LO Figure 5. Shutdown Waveform Definitions HO Figure 6. Delay Matching Waveform Definitions www.irf.com 5 IR2112 250 250 200 Turn-On Delay Time (ns) Turn-On Delay Time (ns) 200 150 150 Typ. 100 Typ. 100 50 50 0 -50 0 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (C) VBIAS Supply Voltage (V) Figure 7A. Turn-On Time vs. Temperature Figure 7B. Turn-On Time vs. Voltage 250 250 200 Turn-Off Delay Time (ns) Turn-Off Delay Time (ns) 200 150 150 Typ. 100 Typ. 100 50 50 0 -50 0 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (C) VBIAS Supply Voltage (V) Figure 8A. Turn-Off Time vs. Temperature Figure 8B. Turn-Off Time vs. Voltage 250 250 200 Shutdown Delay Time (ns) Shutdown Delay time (ns) 200 150 150 Typ. 100 Typ. 100 50 50 0 -50 0 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (C) VBIAS Supply Voltage (V) Figure 9A. Shutdown Time vs. Temperature Figure 9B. Shutdown Time vs. Voltage 6 www.irf.com IR2112 250 250 200 Turn-On Rise Time (ns) Turn-On Rise Time (ns) 200 150 150 100 Typ. 100 Typ. 50 50 0 -50 0 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (C) VBIAS Supply Voltage (V) Figure 10A. Turn-On Rise Time vs. Temperature Figure 10B. Turn-On Rise Time vs. Voltage 125 125 100 Turn-Off Fall Time (ns) Turn-Off Fall Time (ns) 100 75 75 50 Typ. 50 Typ. 25 25 0 -50 0 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (C) VBIAS Supply Voltage (V) Figure 11A. Turn-Off Fall Time vs. Temperature Figure 11B. Turn-Off Fall Time vs. Voltage 15.0 15.0 12.0 Logic "1" Input Threshold (V) Min. 12.0 Logic "1" Input Threshold (V) 9.0 9.0 6.0 6.0 Min. 3.0 3.0 0.0 -50 0.0 -25 0 25 50 75 100 125 5 7.5 10 12.5 15 17.5 20 Temperature (C) VDD Logic Supply Voltage (V) Figure 12A. Logic "1" Input Threshold vs. Temperature Figure 12B. Logic "1" Input Threshold vs. Voltage www.irf.com 7 IR2112 15.0 15.0 12.0 Logic "0" Input Threshold (V) Logic "0" Input Threshold (V) 12.0 9.0 9.0 6.0 Max. 6.0 3.0 3.0 Max. 0.0 -50 0.0 -25 0 25 50 75 100 125 5 7.5 10 12.5 15 17.5 20 Temperature (C) VDD Logic Supply Voltage (V) Figure 13A. Logic "0" Input Threshold vs. Temperature Figure 13B. Logic "0" Input Threshold vs. Voltage 1.00 1.00 0.80 High Level Output Voltage (V) High Level Output Voltage (V) 0.80 0.60 0.60 0.40 0.40 0.20 Max. 0.20 Max. 0.00 -50 0.00 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (C) VBIAS Supply Voltage (V) Figure 14A. High Level Output vs. Temperature Figure 14B. High Level Output vs. Voltage 1.00 1.00 0.80 Low Level Output Voltage (V) Low Level Output Voltage (V) 0.80 0.60 0.60 0.40 0.40 0.20 Max. 0.20 Max. 0.00 -50 0.00 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (C) VBIAS Supply Voltage (V) Figure 15A. Low Level Output vs. Temperature Figure 15B. Low Level Output vs. Voltage 8 www.irf.com IR2112 500 500 Offset Supply Leakage Current (A) 300 Offset Supply Leakage Current (A) 400 400 300 200 200 100 Max. 100 Max. 0 -50 -25 0 25 50 75 100 125 Temperature (C) 0 0 100 200 300 400 500 600 VB Boost Voltage (V) Figure 16A. Offset Supply Current vs. Temperature Figure 16B. Offset Supply Current vs. Voltage 100 100 80 VBS Supply Current (A) VBS Supply Current (A) 80 60 60 40 40 20 Typ. 20 Typ. 0 -50 0 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (C) VBS Floating Supply Voltage (V) Figure 17A. VBS Supply Current vs. Temperature Figure 17B. VBS Supply Current vs. Voltage 250 250 200 VCC Supply Current (A) VCC Supply Current (A) 200 150 150 100 100 Typ. Typ. 50 50 0 -50 0 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (C) VCC Fixed Supply Voltage (V) Figure 18A. VCC Supply Current vs. Temperature Figure 18B. VCC Supply Current vs. Voltage www.irf.com 9 IR2112 10.0 10.0 8.0 VDD Supply Current (A) VDD Supply Current (A) Typ. 8.0 6.0 6.0 4.0 4.0 2.0 2.0 Typ. 0.0 -50 0.0 -25 0 25 50 75 100 125 5 7.5 10 12.5 15 17.5 20 Temperature (C) VDD Logic Supply Voltage (V) Figure 19A. VDD Supply Current vs. Temperature Figure 19B. VDD Supply Current vs. Voltage 100 100 80 Logic "1" Input Bias Current (A) Logic "1" Input Bias Current (A) Typ. 80 60 60 40 40 20 20 Typ. 0 -50 0 -25 0 25 50 75 100 125 5 7.5 10 12.5 15 17.5 20 Temperature (C) VDD Logic Supply Voltage (V) Figure 20A. Logic "1" Input Current vs. Temperature Figure 20B. Logic "1" Input Current vs. Voltage 5.00 5.00 4.00 Logic "0" Input Bias Current (A) Logic "0" Input Bias Current (A) 4.00 3.00 3.00 2.00 2.00 1.00 Max. 1.00 Max. 0.00 -50 0.00 -25 0 25 50 75 100 125 5 7.5 10 12.5 15 17.5 20 Temperature (C) VDD Logic Supply Voltage (V) Figure 21A. Logic "0" Input Current vs. Temperature Figure 21B. Logic "0" Input Current vs. Voltage 10 www.irf.com IR2112 11.0 11.0 10.0 VBS Undervoltage Lockout + (V) VBS Undervoltage Lockout - (V) 10.0 9.0 Typ. 9.0 8.0 8.0 Typ. 7.0 7.0 6.0 -50 -25 0 25 50 75 100 125 6.0 -50 -25 0 25 50 75 100 125 Temperature (C) Temperature (C) Figure 22. VBS Undervoltage (+) vs. Temperature Figure 23. VBS Undervoltage (-) vs. Temperature 11.0 11.0 10.0 VCC Undervoltage Lockout + (V) VCC Undervoltage Lockout - (V) 10.0 9.0 Typ. 9.0 Typ. 8.0 8.0 7.0 7.0 6.0 -50 -25 0 25 50 75 100 125 6.0 -50 -25 0 25 50 75 100 125 Temperature (C) Temperature (C) Figure 24. VCC Undervoltage (+) vs. Temperature Figure 25. VCC Undervoltage (-) vs. Temperature 500 500 400 Output Source Current (mA) Output SourceSource Current (A) Output Current (mA) 400 300 Typ. 300 200 200 Typ. 100 100 0 -50 0 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (C) VBIAS Supply Voltage (V) Figure 26A. Output Source Current vs. Temperature Figure 26B. Output Source Current vs. Voltage www.irf.com 11 IR2112 750 750 600 Output Sink Current (mA) Typ. 600 Output Sink Current (A) 450 450 300 300 Typ. 150 150 0 -50 0 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (C) VBIAS Supply Voltage (V) Figure 27A. Output Sink Current vs. Temperature Figure 27B. Output Sink Current vs. Voltage 150 125 Junction Temperature (C) 100 75 140V 150 125 Junction Temperature (C) 100 75 50 25 0 1E+2 320V 320V 140V 50 25 0 1E+2 10V 10V 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6 Figure 28. IR2112 TJ vs. Frequency (IRFBC20) RGATE = 33, VCC = 15V 320V Figure 29. IR2112 TJ vs. Frequency (IRFBC30) RGATE = 22, VCC = 15V 320V 140V 10V 150 125 150 125 140V Junction Temperature (C) 100 75 50 25 0 1E+2 Junction Temperature (C) 10V 100 75 50 25 0 1E+2 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6 Figure 30. IR2112 TJ vs. Frequency (IRFBC40) RGATE = 15, VCC = 15V Figure 31. IR2112 TJ vs. Frequency (IRFPE50) RGATE = 10, VCC = 15V 12 www.irf.com IR2112 150 125 Junction Temperature (C) 100 140V 320V 150 125 Junction Temperature (C) 100 75 320V 140V 75 50 25 0 1E+2 10V 10V 50 25 0 1E+2 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6 Figure 32. IR2112S TJ vs. Frequency (IRFBC20) RGATE = 33, VCC = 15V Figure 33. IR2112S TJ vs. Frequency (IRFBC30) RGATE = 22, VCC = 15V 150 125 Junction Temperature (C) 100 75 50 25 0 1E+2 320V 140V 10V 150 125 Junction Temperature (C) 100 75 50 25 0 1E+2 320V 140V 10V 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6 Figure 34. IR2112S TJ vs. Frequency (IRFBC40) RGATE = 15, VCC = 15V Figure 35. IR2112S TJ vs. Frequency (IRFPE50) RGATE = 10, VCC = 15V 0.0 20.0 Typ. -6.0 VSS Logic Supply Offset Voltage (V) -3.0 VS Offset Supply Voltage (V) 16.0 12.0 -9.0 8.0 Typ. -12.0 4.0 -15.0 10 12 14 16 18 20 VBS Floating Supply Voltage (V) 0.0 10 12 14 16 18 20 VCC Fixed Supply Voltage (V) Figure 36. Maximum VS Negative Offset vs. VBS Supply Voltage Figure 37. Maximum VSS Positive Offset vs. VCC Supply Voltage 3/30/2000 www.irf.com 13 IR2112 Case Outlines 14 Lead PDIP 01-3002 03 14 Lead PDIP w/o Lead 4 14 01-3008 02 www.irf.com IR2112 16 Lead PDIP w/o Leads 4 & 5 01-3010 02 16 Lead SOIC (wide body) www.irf.com 01-3014 03 4/12/2000 15 |
Price & Availability of IR2112-2NBSP
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |