Part Number Hot Search : 
2SJ53 K2698B PZTM1102 12816 26000 B222M CN650 9843H
Product Description
Full Text Search
 

To Download VP2020L Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 VP2020L, BSS92
Vishay Siliconix
P-Channel Enhancement-Mode MOSFET Transistors
PRODUCT SUMMARY
Part Number
VP2020L BSS92
V(BR)DSS Min (V)
-200 -200
rDS(on) Max (W)
20 @ VGS = -4.5 V 20 @ VGS = -10 V
VGS(th) (V)
-0.8 to -2.5 -0.8 to -2.8
ID (A)
-0.12 -0.15
FEATURES
D D D D D High-Side Switching Secondary Breakdown Free: -220 V Low On-Resistance: 11.5 W Low-Power/Voltage Driven Excellent Thermal Stability
BENEFITS
D D D D D Ease in Driving Switches Full-Voltage Operation Low Offset Voltage Easily Driven Without Buffer No High-Temperature "Run-Away"
APPLICATIONS
D Drivers: Relays, Solenoids, Lamps, Hammers, Displays, Memories, Transistors, etc. D Power Supply, Converters D Motor Control D Switches
TO-226AA (TO-92)
S 1
TO-92-18CD (TO-18 Lead Form)
S 1
G
2
D
2
D
3
G
3
Top View VP2020L
Top View BSS92
ABSOLUTE MAXIMUM RATINGS (TA = 25_C UNLESS OTHERWISE NOTED)
Parameter
Drain-Source Voltage Gate-Source Voltage Continuous Drain Current (TJ = 150_C) Pulsed Drain Currenta Power Dissipation Maximum Junction-to-Ambient Operating Junction and Storage Temperature Range Notes a. Pulse width limited by maximum junction temperature. Document Number: 70210 S-00199--Rev. D, 21-Feb-00 www.Vishay Siliconix.com S FaxBack 408-970-5600 TA= 25_C TA= 100_C TA= 25_C TA= 100_C
Symbol
VDS VGS ID IDM PD RthJA TJ, Tstg
VP2020L
-200 "20 -0.12 -0.08 -0.48 0.8 0.32 156 -55 to 150
BSS92
-200 "20 -0.15 -0.09 -0.6 1.0 0.4 125
Unit
V
A
W _C/W _C
11-1
VP2020L, BSS92
Vishay Siliconix
SPECIFICATIONSa
Limits
VP2020L BSS92
Parameter Static
Drain-Source Breakdown Voltage Gate-Threshold Voltage Gate-Body Leakage
Symbol
Test Conditions
Typb
Min
Max
Min
Max
Unit
V(BR)DSS VGS(th) IGSS
VGS = 0 V, ID = -250 mA VDS = VGS, ID = -1 mA VDS = 0 V, VGS = "20 V TJ = 125_C VDS = 0.8 x V(BR)DSS, VGS = 0 V TJ = 125_C
-220 -1.9 -0.8 -2.5 "10 "50 -1 -100
-200 V -0.8 -2.8 "100 nA
Zero Gate Voltage Z G Vl Drain Current
IDSS
VDS = -200 V, VGS = 0 V TJ = 125_C VDS = -60 V, VGS = 0 V
-60 -200 -0.2 -250 11.5 15 28 15 28 170 170 -0.9 100 60 -1.2 20 40 -100 20
mA A
On-State Drain Currentc
ID(on)
VDS = -10 V, VGS = -4.5 V VGS = -10 V, ID = -0.1 A VGS = -4.5 V, ID = -0.1 A
mA
Drain-Source Drain Source DiS On-Resistancec
rDS(on) ()
TJ = 125_C VGS = -4.5 V, ID = -0.05 A TJ = 125_C VDS = -10 V, ID = -0.1 A VDS = -25 V, ID = -0.1 A IS = -0.3 A, VGS = 0 V
W
Forward Transconductancec T dt Diode Forward Voltage
gfs VSD
mS V
Dynamic
Input Capacitance Output Capacitance Reverse Transfer Capacitance Ciss Coss Crss VDS = -25 V, VGS = 0 V 25 V f = 1 MHz 30 10 3 70 20 10 130 30 15 pF F
Switchingd
tON Turn-On Time T O Ti td(on) tr tOFF Turn-Off Time T Off Ti td(off) tf Notes a. TA = 25_C unless otherwise noted. b. For DESIGN AID ONLY, not subject to production testing. c. Pulse test: PW v300 ms duty cycle v2%. d. Switching time is essentially independent of operating temperature. VDD = -25 V, RL = 250 W 25 V ID ^ -0.1 A, VGEN = -10 V RG = 25 W 14 6 8 35 18 17 30 25 VPDQ20 10 15 ns
www.Vishay Siliconix.com S FaxBack 408-970-5600
11-2
Document Number: 70210 S-00199--Rev. D, 1-Jan-00
VP2020L, BSS92
Vishay Siliconix
TYPICAL CHARACTERISTICS (25_C UNLESS NOTED)
Ohmic Region Characteristics
-500 -100
Output Characteristics for Low Gate Drive
-400 I D - Drain Current (mA)
VGS = -10 V I D - Drain Current (mA) -6 V -5 V -4.5 V
-80
VGS = -4 V -3.6 V
-300
-60
-200 -4 V -100 -3 V 0 0 -1 -2 -3 -4 -5 VDS - Drain-to-Source Voltage (V)
-40
-3 V
-20
-2 V
0 0 -0.4 -0.8 -1.2 -1.6 -2.0 VDS - Drain-to-Source Voltage (V)
Transfer Characteristics
-100 VDS = -15 V 25_C -80 I D - Drain Current (mA) r DS(on) - On-Resistance ( W ) 18 20
On-Resistance vs. Gate-to-Source Voltage
16
-60
14
ID = -0.1 A
-40
12 -0.05 A
-20
TJ = 125_C -55_C
10
-0.02 A
0 0 -1 -2 -3 -4 -5 VGS - Gate-Source Voltage (V)
8 0 -4 -8 -12 -16 -20 VGS - Gate-Source Voltage (V)
On-Resistance
25 r DS(on)-Drain Source On-Resistance (W ) r DS(on)-Drain Source On-Resistance (Normalized) 2.25 2.00 1.75 1.50 1.25 1.00 0.75 0.50 0 -50 -100 -150 -200 -250 -50
Normalized On-Resistance vs. Junction Temperature
VGS = -4.5 V ID = -0.1 A
20 VGS = -4.5 V 15
-10 V
10
5
0
-10
30
70
110
150
VGS - Gate-Source Voltage (V)
TJ - Junction Temperature (_C)
Document Number: 70210 S-00199--Rev. D, 1-Jan-00
www.Vishay Siliconix.com S FaxBack 408-970-5600
11-3
VP2020L, BSS92
Vishay Siliconix
TYPICAL CHARACTERISTICS (25_C UNLESS NOTED)
Threshold Region
-10.0 VDS = -5 V 100 I D - Drain Current (mA) C - Capacitance (pF) 120 VGS = 0 V f = 1 MHz
Capacitance
-1.0 TJ = 150_C
80
60
-0.1
25_C 125_C -55_C
40
Ciss Coss Crss 0 -10 -20 -30 -40 -50
20
-0.01 0 -1.0 -2.0 -3.0 -3.5
0 VGS - Gate-to-Source Voltage (V)
VDS - Drain-to-Source Voltage (V)
Gate Charge
-12 ID = -0.1 A V GS - Gate-to-Source Voltage (V) -10 100
Load Condition Effects on Switching
tf td(off) VDD = -25 V RG = 25 W VGS = 0 to -10 V
-8 VDS = -100 V -6 -160 V -4
t - Switching Time (ns)
10 tr td(on)
-2
0 0 0.5 1.0 1.5 2.0 2.5 Qg - Total Gate Charge (nC)
1 -10 -100 ID - Drain Current (A) -1000
Normalized Effective Transient Thermal Impedance, Junction-to-Ambient (TO-226AA)
1 Duty Cycle = 0.5 Normalized Effective Transient Thermal Impedance
0.2 0.1 0.1 0.05 0.02
t1 t2 1. Duty Cycle, D = t1 t2 Notes: PDM
0.01 Single Pulse 0.01 0.1 1.0 10 100
2. Per Unit Base = RthJA = 156_C/W 3. TJM - TA = PDMZthJA(t)
1K
10 K
t1 - Square Wave Pulse Duration (sec)
www.Vishay Siliconix.com S FaxBack 408-970-5600
11-4
Document Number: 70210 S-00199--Rev. D, 1-Jan-00


▲Up To Search▲   

 
Price & Availability of VP2020L

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X