![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
DATA SHEET MOS FIELD EFFECT TRANSISTOR PA1855 N-CHANNEL MOS FIELD EFFECT TRANSISTOR FOR SWITCHING DESCRIPTION The PA1855 is a switching device which can be driven directly by a 2.5 V power source. The PA1855 features a low on-state resistance and excellent switching characteristics, and is suitable for applications such as power switch of portable machine and so on. 8 PACKAGE DRAWING (Unit : mm) 5 1 2, 3 4 5 6, 7 8 :Drain1 :Source1 :Gate1 :Gate2 :Source2 :Drain2 1.2 MAX. 1.00.05 0.25 3 +5 -3 0.10.05 0.5 0.6 +0.15 -0.1 FEATURES * Can be driven by a 2.5 V power source * Low on-state resistance RDS(on)1 = 23 m MAX. (VGS = 4.5 V, ID = 3.0 A) RDS(on)2 = 24 m MAX. (VGS = 4.0 V, ID = 3.0 A) RDS(on)3 = 29 m MAX. (VGS = 2.5 V, ID = 3.0 A) * Built-in G-S protection diode against ESD 1 4 0.145 0.055 3.15 0.15 3.0 0.1 6.4 0.2 4.4 0.1 1.0 0.2 ORDERING INFORMATION PART NUMBER PACKAGE Power TSSOP8 0.65 0.27 +0.03 -0.08 0.8 MAX. PA1855GR-9JG 0.1 0.10 M ABSOLUTE MAXIMUM RATINGS (TA = 25C) Drain to Source Voltage Gate to Source Voltage Drain Current (DC) Drain Current (pulse) Note1 Note2 VDSS VGSS ID(DC) ID(pulse) PT Tch Tstg 20 12 6.0 24 2.0 150 -55 to +150 V V A A W C C Gate Protection Diode Gate1 EQUIVALENT CIRCUIT Drain1 Drain2 Total Power Dissipation Channel Temperature Storage Temperature Body Diode Gate2 Body Diode Notes 1. PW 10 s, Duty Cycle 1 % 2 2. Mounted on ceramic substrate of 5000 mm x 1.1 mm Remark Source1 Gate Protection Diode Source2 The diode connected between the gate and source of the transistor serves as a protector against ESD. When this device actually used, an additional protection circuit is externally required if a voltage exceeding the rated voltage may be applied to this device. The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information. Document No. D13454EJ1V0DS00 (1st edition) Date Published April 1999 NS CP(K) Printed in Japan (c) 1998, 1999 PA1855 ELECTRICAL CHARACTERISTICS (TA = 25 C) CHARACTERISTICS Drain Cut-off Current Gate Leakage Current Gate Cut-off Voltage Forward Transfer Admittance Drain to Source On-state Resistance SYMBOL IDSS IGSS VGS(off) | yfs | RDS(on)1 RDS(on)2 RDS(on)3 Input Capacitance Output Capacitance Reverse Transfer Capacitance Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time Total Gate Charge Gate to Source Charge Gate to Drain Charge Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Ciss Coss Crss td(on) tr td(off) tf QG QGS QGD VF(S-D) trr Qrr TEST CONDITIONS VDS = 20 V, VGS = 0 V VGS = 12 V, VDS = 0 V VDS = 10 V, ID = 1 mA VDS = 10 V, ID = 3.0 A VGS = 4.5 V, ID = 3.0 A VGS = 4.0 V, ID = 3.0 A VGS = 2.5 V, ID = 3.0 A VDS = 10 V VGS = 0 V f = 1 MHz VDD = 10 V ID = 3.0 A VGS(on) = 4.0 V RG = 10 VDD = 10 V ID = 6.0 A VGS = 4.0 V IF = 6.0 A, VGS = 0 V IF = 6.0 A, VGS = 0 V di/dt = 15 A / s 0.5 1 1.0 13.3 17 18 22 980 293 205 86 247 480 659 8.8 2.2 3.2 0.82 44 2.2 23 24 29 MIN. TYP. MAX. 10 10 1.5 UNIT A A V S m m m pF pF pF ns ns ns ns nC nC nC V ns nC TEST CIRCUIT 1 SWITCHING TIME TEST CIRCUIT 2 GATE CHARGE D.U.T. D.U.T. RL PG. RG RG = 10 VDD ID 90 % 90 % ID 0 10 % td(on) ton tr td(off) toff 10 % tf VGS IG = 2 mA VGS(on) 90 % VGS Wave Form RL VDD 0 10 % PG. 50 VGS 0 = 1 s Duty Cycle 1 % ID Wave Form 2 Data Sheet D13454EJ1V0DS00 PA1855 TYPICAL CHARACTERISTICS (TA = 25C) DERATING FACTOR OF FORWARD BIAS SAFE OPERATING AREA 100 80 ID - Drain Current - A FORWARD BIAS SAFE OPERATING AREA 100 RV (@ d ite ) im .5 V =4 dT - Derating Factor - % )L (on DS GS ID (pulse) PW 10 ID (DC) PW 60 1 DC =1 00 ms =1 ms =1 0m s PW 40 20 0.1 0 30 60 90 120 TA - Ambient Temperature - C 150 0.01 0.1 Single Pulse Mounted on Ceramic 2 Board of 50cm x 1.1mm PD(FET1) : PD(FET2) = 1:1 1 10 100 VDS - Drain to Source Voltage - V DRAIN CURRENT vs. DRAIN TO SOURCE VOLTAGE 25 VGS = 4.5 V VGS = 4.0 V TRANSFER CHARACTERISTICS 100 10 ID - Drain Current - A VDS = 10 V ID - Drain Current - A 20 VGS = 2.5 V 1 0.1 0.01 0.001 TA = 125C TA = 75C TA = 25C TA = -25C 15 10 5 0.0001 0.00001 0.0 0 0 0.2 0.4 0.6 0.8 1.0 VDS - Drain to Source Voltage - V GATE TO SOURCE CUT-OFF VOLTAGE vs. CHANNEL TEMPERATURE VGS(off) - Gate to Source Cut-off Voltage - V 1.5 VDS = 10 V ID = 1 mA 0.5 1.0 1.5 2.0 2.5 VGS - Gate to Sorce Voltage - V FORWARD TRANSFER ADMMITTANCE Vs. DRAIN CURRENT 100 | yfs | - Forward Transfer Admittance - S VDS = 10 V 10 TA = -25 C TA = 25 C 1.0 1 TA = 75 C TA = 125 C 0.1 0.5 - 50 0 50 100 150 0.01 0.01 0.1 1 ID - Drain Current - A 10 100 Tch - Channel Temperature - C Data Sheet D13454EJ1V0DS00 3 PA1855 DRAIN TO SOURCE ON-STATE RESISTANCE vs. CHANNEL TEMPERATURE 40 VGS = 2.5 V DRAIN TO SOURCE ON-STATE RESISTANCE vs. CHANNEL TEMPERATURE 40 VGS = 4.0 V RDS(on) - Drain to Source On-State Resistance - m 30 TA = 125C TA = 75C TA = 25C RDS(on) - Drain to Source On-State Resistance - m 30 TA = 125C TA = 75C 20 TA = -25C 20 TA = 25C TA = -25C 10 0.01 0.1 1 10 100 10 0.01 0.1 1 10 100 ID - Drain Current - A DRAIN TO SOURCE ON-STATE RESISTANCE vs. CHANNEL TEMPERATURE 40 VGS = 4.5 V ID - Drain Current - A RDS(on) - Drain to Source On-State Resistance - m RDS (on) - Drain to Source On-state Resistance - m DRAIN TO SOURCE ON STATE RESISTANCE vs. CHANNEL TEMPERATURE 30 ID = 3.0 A VGS = 2.5 V VGS = 4.0 V 30 TA = 125C 20 VGS = 4.5 V 20 TA = 75C TA = 25C TA = -25C 10 0.01 0.1 1 10 100 10 - 50 ID - Drain Current - A 0 50 100 Tch - Channel Temperature -C CAPACITANCE vs. DRAIN TO SOURCE VOLTAGE 150 RDS (on) - Drain to Source On-state Resistance - m DRAIN TO SOURCE ON-STATE RESISTANCE vs. GATE TO SOURCE VOLTAGE Ciss, Coss, Crss - Capacitance - pF 50 10000 ID = 3.0 A f = 1 MHz 40 1000 Ciss Coss Crss 30 20 100 10 0 0 10 0.1 2 4 6 8 10 12 1 10 100 VDS - Drain to Source Voltage - V VGS - Gate to Source Voltage - V 4 Data Sheet D13454EJ1V0DS00 PA1855 SWITCHING CHARACTERISTICS 1000 td(on), tr, td(off), tf - Swwitchig Time - ns SOURCE TO DRAIN DIODE FORWARD VOLTAGE 100 tf td(off) tr IF - Source to Drain Current - A 10 100 td(on) 1 0.1 VDD = 10V VGS(on) = 4.0V RG = 10 10 0.1 1 ID - Drain Current - A 10 0.01 0.4 0.6 0.8 1.0 1.2 VF(S-D) - Source to Drain Voltage - V DYNAMIC INPUT CHARACTERISTICS 5 VGS - Gate to Source Voltage - V ID = 6.0 A 4 VDD = 16 V 10 V 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 QG - Gate Charge - nC TRANSIENT THERMAL RESISTANCE vs. PULSE WIDTH 1000 rth(t) - Transient Thermal Resistance - C/W 100 62.5C/W 10 1 Mounted on ceramic board of 50cm2 x 1.1mm Single Pulse PD(FET1) : PD(FET2) = 1:1 0.1 1m 10m 100m 1 10 100 1000 PW - Pulse Width - S Data Sheet D13454EJ1V0DS00 5 PA1855 [MEMO] 6 Data Sheet D13454EJ1V0DS00 PA1855 [MEMO] Data Sheet D13454EJ1V0DS00 7 PA1855 * The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. * No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. * NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. * Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information. * While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features. * NEC devices are classified into the following three quality grades: "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application. Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc. The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance. M7 98. 8 |
Price & Availability of PA1855
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |