![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
SGF23N60UFD June 2001 IGBT SGF23N60UFD Ultra-Fast IGBT General Description Fairchild's Insulated Gate Bipolar Transistor(IGBT) UFD series provides low conduction and switching losses. UFD series is designed for the applications such as motor control and general inverters where High Speed Switching is required. Features * * * * High Speed Switching Low Saturation Voltage : VCE(sat) = 2.1 V @ IC = 12A High Input Impedance CO-PAK, IGBT with FRD : trr = 42ns (typ.) Application AC & DC Motor controls, General Purpose Inverters, Robotics, Servo Controls C G TO-3PF TO-3PF GCE E Absolute Maximum Ratings Symbol VCES VGES IC ICM (1) IF IFM PD TJ Tstg TL TC = 25C unless otherwise noted Description Collector-Emitter Voltage Gate-Emitter Voltage Collector Current Collector Current Pulsed Collector Current Diode Continuous Forward Current Diode Maximum Forward Current Maximum Power Dissipation Maximum Power Dissipation Operating Junction Temperature Storage Temperature Range Maximum Lead Temp. for Soldering Purposes, 1/8" from Case for 5 Seconds @ TC = 25C @ TC = 100C @ TC = 100C @ TC = 25C @ TC = 100C SGF23N60UFD 600 20 23 12 92 12 92 75 30 -55 to +150 -55 to +150 300 Units V V A A A A A W W C C C Notes : (1) Repetitive rating : Pulse width limited by max. junction temperature Thermal Characteristics Symbol RJC(IGBT) RJC(DIODE) RJA Parameter Thermal Resistance, Junction-to-Case Thermal Resistance, Junction-to-Case Thermal Resistance, Junction-to-Ambient Typ. ---Max. 1.6 3.0 40 Units C/W C/W C/W (c)2001 Fairchild Semiconductor Corporation SGF23N60UFD Rev. A SGF23N60UFD Electrical Characteristics of IGBT T Symbol Parameter C = 25C unless otherwise noted Test Conditions Min. Typ. Max. Units Off Characteristics BVCES BVCES/ TJ ICES IGES Collector-Emitter Breakdown Voltage Temperature Coeff. of Breakdown Voltage Collector Cut-Off Current G-E Leakage Current VGE = 0V, IC = 250uA VGE = 0V, IC = 1mA VCE = VCES, VGE = 0V VGE = VGES, VCE = 0V 600 ----0.6 ----250 100 V V/C uA nA On Characteristics VGE(th) VCE(sat) G-E Threshold Voltage Collector to Emitter Saturation Voltage IC = 12mA, VCE = VGE IC = 12A, VGE = 15V IC = 23A, VGE = 15V 3.5 --4.5 2.1 2.6 6.5 2.6 -V V V Dynamic Characteristics Cies Coes Cres Input Capacitance Output Capacitance Reverse Transfer Capacitance VCE = 30V, VGE = 0V, f = 1MHz ---720 100 25 ---pF pF pF Switching Characteristics td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Eon Eoff Ets Qg Qge Qgc Le Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Total Gate Charge Gate-Emitter Charge Gate-Collector Charge Internal Emitter Inductance ------------------17 27 60 70 115 135 250 23 32 100 220 205 320 525 49 11 14 14 --130 150 --400 --200 250 --800 80 17 22 -ns ns ns ns uJ uJ uJ ns ns ns ns uJ uJ uJ nC nC nC nH VCC = 300 V, IC = 12A, RG = 23, VGE = 15V, Inductive Load, TC = 25C VCC = 300 V, IC = 12A, RG = 23, VGE = 15V, Inductive Load, TC = 125C VCE = 300 V, IC = 12A, VGE = 15V Measured 5mm from PKG Electrical Characteristics of DIODE T Symbol VFM trr Irr Qrr Parameter Diode Forward Voltage Diode Reverse Recovery Time Diode Peak Reverse Recovery Current Diode Reverse Recovery Charge C = 25C unless otherwise noted Test Conditions TC = 25C IF = 12A TC = 100C TC = 25C TC = 100C IF = 12A, di/dt = 200A/us TC = 25C TC = 100C TC = 25C TC = 100C Min. --------- Typ. 1.4 1.3 42 80 3.5 5.6 80 220 Max. 1.7 -60 -6.0 -180 -- Units V ns A nC (c)2001 Fairchild Semiconductor Corporation SGF23N60UFD Rev. A SGF23N60UFD 100 Common Emitter T C = 25 80 20V 15V 50 Common Emitter VGE = 15V TC = 25 TC = 125 Collector Current, I C [A] 60 12V Collector Current, IC [A] 8 40 30 40 VGE = 10V 20 20 10 0 0 2 4 6 0 0.5 1 10 Collector - Emitter Voltage, VCE [V] Collector - Emitter Voltage, VCE [V] Fig 1. Typical Output Characteristics Fig 2. Typical Saturation Voltage Characteristics 4 18 Common Emitter VGE = 15V VCC = 300V Load Current : peak of square wave Collector - Emitter Voltage, VCE [V] 15 24A 3 2 12A Load Current [A] 12 9 IC = 6A 1 6 3 0 0 30 60 90 120 150 0 Duty cycle : 50% TC = 100 Power Dissipation = 16W 0.1 1 10 100 1000 Frequency [KHz] Case Temperature, TC [] Fig 3. Saturation Voltage vs. Case Temperature at Variant Current Level Fig 4. Load Current vs. Frequency 20 Common Emitter T C = 25 20 Common Emitter TC = 125 Collector - Emitter Voltage, VCE [V] Collector - Emitter Voltage, VCE [V] 16 16 12 12 8 8 24A 4 IC = 6A 0 12A 4 IC = 6A 0 0 4 24A 12A 8 12 16 20 0 4 8 12 16 20 Gate - Emitter Voltage, VGE [V] Gate - Emitter Voltage, V GE [V] Fig 5. Saturation Voltage vs. VGE (c)2001 Fairchild Semiconductor Corporation Fig 6. Saturation Voltage vs. VGE SGF23N60UFD Rev. A SGF23N60UFD 1200 Common Emitter V GE = 0V, f = 1MHz T C = 25 Cies 200 Common Emitter VCC = 300V, VGE = 15V IC = 12A TC = 25 TC = 125 1000 Ton 100 Capacitance [pF] 800 Switching Time [ns] Tr 600 Coes 400 200 Cres 0 1 10 30 10 1 10 100 200 Collector - Emitter Voltage, V CE [V] Gate Resistance, RG [ ] Fig 7. Capacitance Characteristics Fig 8. Turn-On Characteristics vs. Gate Resistance 1000 Switching Time [ns] Common Emitter V CC = 300V, V GE = 15V IC = 12A T C = 25 T C = 125 1000 Eoff Switching Loss [uJ] Toff Eon Eon Eoff 100 Common Emitter VCC = 300V, VGE = 15V IC = 12A TC = 25 TC = 125 30 1 10 100 200 Tf Toff 100 Tf 50 1 10 100 200 Gate Resistance, R G [ ] Gate Resistance, R G [] Fig 9. Turn-Off Characteristics vs. Gate Resistance Fig 10. Switching Loss vs. Gate Resistance 200 Common Emitter V CC = 300V, VGE = 15V RG = 23 TC = 25 TC = 125 1000 Common Emitter V CC = 300V, V GE = 15V RG = 23 T C = 25 T C = 125 100 Switching Time [ns] Switching Time [ns] Toff Tf Ton Toff 100 Tr 10 4 8 12 16 20 24 50 Tf 4 8 12 16 20 24 Collector Current, IC [A] Collector Current, IC [A] Fig 11. Turn-On Characteristics vs. Collector Current (c)2001 Fairchild Semiconductor Corporation Fig 12. Turn-Off Characteristics vs. Collector Current SGF23N60UFD Rev. A SGF23N60UFD 1000 15 Common Emitter RL = 25 TC = 25 Gate - Emitter Voltage, VGE [ V ] 12 Switching Loss [uJ] 9 300 V 6 VCC = 100 V 3 200 V 100 Eoff Eon Eon Eoff Common Emitter V CC = 300V, V GE = 15V RG = 23 T C = 25 T C = 125 4 8 12 16 20 24 10 0 0 10 20 30 40 50 Collector Current, IC [A] Gate Charge, Qg [ nC ] Fig 13. Switching Loss vs. Collector Current Fig 14. Gate Charge Characteristics 300 100 IC MAX. (Pulsed) 200 100 Collector Current, IC [A] IC MAX. (Continuous) 10 1 100us Collector Current, IC [A] 50us 10 DC Operation 1 Single Nonrepetitive Pulse TC = 25 Curves must be derated linearly with increase in temperature 0.3 1 10 100 1000 1 Safe Operating Area VGE = 20V, TC = 100 0.1 1 10 100 1000 0.1 Collector-Emitter Voltage, V CE [V] Collector-Emitter Voltage, VCE [V] Fig 15. SOA Characteristics Fig 16. Turn-Off SOA Characteristics 10 Thermal Response [Zthjc] 1 0.5 0.2 0.1 0.1 0.05 Pdm 0.02 0.01 single pulse 0.01 1E-5 1E-4 1E-3 0.01 0.1 t1 t2 Duty factor D = t1 / t2 Peak Tj = Pdm x Zthjc + TC 1 10 Rectangular Pulse Duration [sec] Fig 17. Transient Thermal Impedance of IGBT (c)2001 Fairchild Semiconductor Corporation SGF23N60UFD Rev. A SGF23N60UFD 100 100 T C = 25 T C = 100 VR = 200V IF = 12A TC = 25 TC = 100 Reverse Recovery Current, I rr [A] Forward Current, I F [A] 10 10 1 0 1 2 3 1 100 1000 Forward Voltage Drop, V FM [V] di/dt [A/us] Fig 18. Forward Characteristics Fig 19. Reverse Recovery Current 600 100 V R = 200V IF = 12A T C = 25 T C = 100 VR = 200V IF = 12A TC = 25 TC = 100 Stored Recovery Charge, Qrr [nC] 400 Reverce Recovery Time, trr [ns] 500 80 60 300 40 200 100 20 0 100 1000 0 100 1000 di/dt [A/us] di/dt [A/us] Fig 20. Stored Charge Fig 21. Reverse Recovery Time (c)2001 Fairchild Semiconductor Corporation SGF23N60UFD Rev. A SGF23N60UFD Package Dimension TO-3PF (FS PKG CODE AG) 5.50 0.20 4.50 0.20 15.50 0.20 o3.60 0.20 3.00 0.20 (1.50) 10.00 0.20 10 26.50 0.20 23.00 0.20 16.50 0.20 14.50 0.20 0.85 0.03 16.50 0.20 2.00 0.20 1.50 0.20 14.80 0.20 2.00 0.20 2.00 0.20 4.00 0.20 0.75 -0.10 +0.20 2.00 0.20 2.50 0.20 2.00 0.20 3.30 0.20 5.45TYP [5.45 0.30] 5.45TYP [5.45 0.30] 0.90 -0.10 +0.20 3.30 0.20 2.00 0.20 5.50 0.20 Dimensions in Millimeters (c)2001 Fairchild Semiconductor Corporation SGF23N60UFD Rev. A 22.00 0.20 TRADEMARKS The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. STAR*POWERTM FAST(R) OPTOPLANARTM ACExTM BottomlessTM CoolFETTM CROSSVOLTTM DenseTrenchTM DOMETM EcoSPARKTM E2CMOSTM EnSignaTM FACTTM FACT Quiet SeriesTM FASTrTM FRFETTM GlobalOptoisolatorTM GTOTM HiSeCTM ISOPLANARTM LittleFETTM MicroFETTM MICROWIRETM OPTOLOGICTM PACMANTM POPTM Power247TM PowerTrench(R) QFETTM QSTM QT OptoelectronicsTM Quiet SeriesTM SLIENT SWITCHER(R) SMART STARTTM StealthTM SuperSOTTM-3 SuperSOTTM-6 SuperSOTTM-8 SyncFETTM TruTranslationTM TinyLogicTM UHCTM UltraFET(R) VCXTM STAR*POWER is used under license DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL. As used herein: 1. Life support devices or systems are devices or systems 2. A critical component is any component of a life support which, (a) are intended for surgical implant into the body, device or system whose failure to perform can be or (b) support or sustain life, or (c) whose failure to perform reasonably expected to cause the failure of the life support when properly used in accordance with instructions for use device or system, or to affect its safety or effectiveness. provided in the labeling, can be reasonably expected to result in significant injury to the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Advance Information Product Status Formative or In Design First Production Definition This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. Preliminary No Identification Needed Full Production Obsolete Not In Production (c)2001 Fairchild Semiconductor Corporation Rev. H3 |
Price & Availability of SGF23N60UFD
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |