|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
PD-94576A IRGIB10B60KD1 INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features * Low VCE (on) Non Punch Through IGBT Technology. * Low Diode VF. * 10s Short Circuit Capability. * Square RBSOA. * Ultrasoft Diode Reverse Recovery Characteristics. * Positive VCE (on) Temperature Coefficient. * Maximum Junction Temperature Rated at 175C G E C VCES = 600V IC = 10A, TC=100C tsc > 10s, TJ=150C Benefits * Benchmark Efficiency for Motor Control. * Rugged Transient Performance. * Low EMI. * Excellent Current Sharing in Parallel Operation. n-channel VCE(on) typ. = 1.7V Absolute Maximum Ratings Parameter VCES IC @ TC = 25C IC @ TC = 100C ICM ILM IF @ TC = 25C IF @ TC = 100C IFM VISOL VGE PD @ TC = 25C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulse Collector Current (Ref.Fig.C.T.5) Clamped Inductive Load current TO-220 Full-Pak Max. 600 16 10 A 32 32 16 10 32 2500 20 44 22 -55 to +175 C 300 (0.063 in. (1.6mm) from case) 10 lbf.in (1.1N.m) W V Units V c Diode Continuous Forward Current Diode Continuous Forward Current Diode Maximum Forward Current RMS Isolation Voltage, Terminal to Case, t = 1 min Gate-to-Emitter Voltage Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature for 10 sec. Mounting Torque, 6-32 or M3 Screw PD @ TC = 100C Maximum Power Dissipation Thermal / Mechanical Characteristics Parameter RJC RJC RCS RJA Wt Junction-to-Case- IGBT Junction-to-Case- Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight Min. --- --- --- --- --- Typ. --- --- 0.50 --- 2.0 Max. 3.4 5.3 --- 62 --- Units C/W g www.irf.com 1 2/27/04 IRGIB10B60KD1 Electrical Characteristics @ TJ = 25C (unless otherwise specified) Parameter Min. Typ. Max. Units -- 0.99 1.70 2.05 2.06 4.5 -10 5.0 1.0 90 150 1.80 1.32 1.23 -- Conditions V(BR)CES Collector-to-Emitter Breakdown Voltage 600 V(BR)CES/TJ Temperature Coeff. of Breakdown Voltage -- 1.50 VCE(on) Collector-to-Emitter Voltage -- -- VGE(th) Gate Threshold Voltage 3.5 VGE(th)/TJ Threshold Voltage temp. coefficient -- gfe Forward Transconductance -- -- ICES Zero Gate Voltage Collector Current -- -- VFM Diode Forward Voltage Drop -- -- -- IGES Gate-to-Emitter Leakage Current -- -- V VGE = 0V, IC = 500A -- V/C VGE = 0V, IC = 1mA (25C-150C) IC = 10A, VGE = 15V, TJ = 25C 2.10 2.35 V IC = 10A, VGE = 15V, TJ = 150C IC = 10A, VGE = 15V, TJ = 175C 2.35 5.5 V VCE = VGE, IC = 250A -- mV/C VCE = VGE, IC = 1mA (25C-150C) -- S VCE = 50V, IC = 10A, PW = 80s VGE = 0V, VCE = 600V 150 250 A VGE = 0V, VCE = 600V, TJ = 150C VGE = 0V, VCE = 600V, TJ = 175C 400 2.40 V IF = 5.0A, VGE = 0V IF = 5.0A, VGE = 0V, TJ = 150C 1.74 IF = 5.0A, VGE = 0V, TJ = 175C 1.62 100 nA VGE = 20V, VCE = 0V Switching Characteristics @ TJ = 25C (unless otherwise specified) Parameter Qg Qge Qgc Eon Eoff Etot td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf LE Cies Coes Cres RBSOA SCSOA ISC (PEAK) Erec trr Irr Qrr Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area Short Circuit Safe Operating Area Peak Short Circuit Collector Current Reverse Recovery Energy of the Diode Diode Reverse Recovery Time Peak Reverse Recovery Current Diode Reverse Recovery Charge Min. Typ. Max. Units -- 41 62 -- 4.6 6.9 -- 19 29 -- 156 264 -- 165 273 -- 321 434 -- 25 33 -- 24 34 -- 180 250 -- 62 87 -- 261 372 -- 313 425 -- 574 694 -- 22 31 -- 24 34 -- 240 340 -- 48 67 -- 7.5 -- -- 610 915 -- 66 99 -- 23 35 FULL SQUARE 10 -- -- -- -- -- -- 100 99 79 14 553 -- -- 128 103 18 719 nC Conditions IC = 10A VCC = 400V VGE = 15V IC = 10A, VCC = 400V VGE = 15V, RG = 50, L = 1.07mH Ls= 150nH, TJ = 25C IC = 10A, VCC = 400V VGE = 15V, RG = 50, L = 1.1mH Ls= 150nH, TJ = 25C J d ns J ns IC = 10A, VCC = 400V VGE = 15V, RG = 50, L = 1.07mH Ls= 150nH, TJ = 150C IC = 8.0A, VCC = 400V VGE = 15V, RG = 50, L = 1.07mH Ls= 150nH, TJ = 150C d nH pF Measured 5 mm from package VGE = 0V VCC = 30V f = 1.0MHz TJ = 150C, IC = 32A, Vp = 600V VCC=500V,VGE = +15V to 0V,RG = 50 TJ = 150C, Vp = 600V, RG = 50 VCC=360V,VGE = +15V to 0V TJ = 150C VCC = 400V, IF = 10A, L = 1.07mH VGE = 15V, RG = 50 di/dt = 500A/s s A J ns A nC Vcc =80% (VCES), VGE = 20V, L =100H, RG = 50. Energy losses include "tail" and diode reverse recovery. 2 www.irf.com IRGIB10B60KD1 20 50 45 16 40 35 Ptot (W) 12 IC (A) 30 25 20 15 8 4 10 5 0 0 20 40 60 80 100 120 140 160 180 T C (C) 0 0 20 40 60 80 100 120 140 160 180 T C (C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 100 100 10 10 s 100 s IC (A) 1 1ms 0.1 DC IC A) 1 10 100 VCE (V) 1000 10000 10 0.01 1 10 100 1000 VCE (V) Fig. 3 - Forward SOA TC = 25C; TJ 175C Fig. 4 - Reverse Bias SOA TJ = 150C; VGE =15V www.irf.com 3 IRGIB10B60KD1 20 18 16 14 ICE (A) 20 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V ICE (A) 18 16 14 12 10 8 6 4 2 0 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 12 10 8 6 4 2 0 0 2 VCE (V) 4 6 0 2 VCE (V) 4 6 Fig. 5 - Typ. IGBT Output Characteristics TJ = -40C; tp = 80s Fig. 6 - Typ. IGBT Output Characteristics TJ = 25C; tp = 80s 20 18 16 14 ICE (A) 40 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 35 30 25 IF (A) -40C 25C 150C 12 10 8 6 20 15 10 4 2 0 0 2 VCE (V) 4 6 5 0 0.0 0.5 1.0 1.5 VF (V) 2.0 2.5 3.0 Fig. 7 - Typ. IGBT Output Characteristics TJ = 150C; tp = 80s Fig. 8 - Typ. Diode Forward Characteristics tp = 80s 4 www.irf.com IRGIB10B60KD1 20 18 16 14 VCE (V) VCE (V) 20 18 16 14 ICE = 5.0A ICE = 10A ICE = 20A 12 10 8 6 4 2 0 5 10 VGE (V) 15 20 5 10 VGE (V) 15 20 ICE = 5.0A ICE = 10A ICE = 20A 12 10 8 6 4 2 0 Fig. 9 - Typical VCE vs. VGE TJ = -40C Fig. 10 - Typical VCE vs. VGE TJ = 25C 20 18 16 14 VCE (V) 100 90 80 70 ICE = 10A ICE = 20A ICE (A) T J = 25C T J = 150C 12 10 8 6 4 2 0 5 10 VGE (V) ICE = 5.0A 60 50 40 30 20 10 0 T J = 150C T J = 25C 0 5 10 VGE (V) 15 20 15 20 Fig. 11 - Typical VCE vs. VGE TJ = 150C Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10s www.irf.com 5 IRGIB10B60KD1 700 600 500 Energy (J) 1000 tdOFF EOFF Swiching Time (ns) 100 400 300 200 100 0 0 5 10 IC (A) 15 EON tF tdON 10 tR 20 1 0 5 10 15 20 IC (A) Fig. 13 - Typ. Energy Loss vs. IC TJ = 150C; L=1.07mH; VCE= 400V RG= 50; VGE= 15V Fig. 14 - Typ. Switching Time vs. IC TJ = 150C; L=1.07mH; VCE= 400V RG= 50; VGE= 15V 1000 10000 800 EOFF Swiching Time (ns) EON Energy (J) 600 1000 tdOFF 400 100 200 tF tR tdON 10 0 0 100 200 300 400 500 0 100 200 300 400 500 RG () RG () Fig. 15 - Typ. Energy Loss vs. RG TJ = 150C; L=1.07mH; VCE= 400V ICE= 10A; VGE= 15V Fig. 16 - Typ. Switching Time vs. RG TJ = 150C; L=1.07mH; VCE= 400V ICE= 10A; VGE= 15V 6 www.irf.com IRGIB10B60KD1 15 16 RG = 50 RG = 150 RG = 270 5 14 12 10 10 IRR (A) IRR (A) 20 8 6 RG = 470 4 2 0 0 5 10 15 0 0 100 200 300 400 500 IF (A) RG () Fig. 17 - Typical Diode IRR vs. IF TJ = 150C Fig. 18 - Typical Diode IRR vs. RG TJ = 150C; IF = 10A 16 14 1000 50 150 800 270 470 Q RR (nC) 20A 10A 12 10 600 IRR (A) 8 6 4 2 400 5.0A 200 0 0 0 200 400 600 0 100 200 300 400 500 600 diF /dt (A/s) diF /dt (A/s) Fig. 19- Typical Diode IRR vs. diF/dt VCC= 400V; VGE= 15V; ICE= 10A; TJ = 150C Fig. 20 - Typical Diode QRR VCC= 400V; VGE= 15V;TJ = 150C www.irf.com 7 IRGIB10B60KD1 200 160 Energy (J) 120 470 80 270 150 50 40 0 5 10 15 20 25 IF (A) Fig. 21 - Typical Diode ERR vs. IF TJ = 150C 1000 16 Cies 14 300V 12 400V Capacitance (pF) 10 VGE (V) 100 8 6 4 Coes Cres 10 1 10 100 2 0 0 10 20 30 40 50 Q G , Total Gate Charge (nC) VCE (V) Fig. 22- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz Fig. 23 - Typical Gate Charge vs. VGE ICE = 10A; L = 2500H 8 www.irf.com IRGIB10B60KD1 10 Thermal Response ( Z thJC ) D = 0.50 1 0.20 0.10 0.05 R1 R1 J 1 2 R2 R2 R3 R3 3 R4 R4 C 2 3 4 4 Ri (C/W) 0.3628 0.2582 1.1008 1.6973 i (sec) 0.00018 0.000695 0.075305 1.781 0.1 0.02 0.01 J 1 Ci= i/Ri Ci i/Ri 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) 10 Thermal Response ( Z thJC ) D = 0.50 0.20 0.10 0.05 0.02 0.1 J J 1 R1 R1 2 R2 R2 R3 R3 3 R4 R4 C 2 3 4 4 1 Ri (C/W) 0.9004 1.3642 1.4540 1.5805 i (sec) 0.000103 0.000693 0.033978 1.6699 1 0.01 SINGLE PULSE ( THERMAL RESPONSE ) Ci= i/Ri Ci i/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.01 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 9 IRGIB10B60KD1 L L DUT 0 VCC 80 V + - DUT 480V 1K Rg Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit diode clamp / DUT Driver DC L 360V - 5V DUT / DRIVER Rg VCC DUT Fig.C.T.3 - S.C.SOA Circuit Fig.C.T.4 - Switching Loss Circuit R= VCC ICM DUT Rg VCC Fig.C.T.5 - Resistive Load Circuit 10 www.irf.com IRGIB10B60KD1 600 tf 500 Vce 400 90% Ice 300 Vce (V) 5% Vce 200 5% Ice 100 Ice 100 5 5% Vce 0 Eon Loss -100 0.05 -5 0.15 0.25 Time (uS) 0.35 0 15 12.5 10 600 30 500 tr 400 Vce Ice 25 20 90% Ice 10% Ice 7.5 Ice (A) Ice (A) Vce (V) 300 5 2.5 0 Eoff Loss -2.5 -5 0.4 0.6 0.8 Time (uS) 1 1.2 200 10 0 -100 -200 Fig. WF1- Typ. Turn-off Loss Waveform @ TJ = 150C using Fig. CT.4 100 QRR 0 tRR -100 5 10 300 Fig. WF2- Typ. Turn-on Loss Waveform @ TJ = 150C using Fig. CT.4 15 400 200 150 Vce (V) Vf (V) 200 100 -300 Peak IRR -400 10% Peak IRR -5 -10 100 50 -500 -15 0 0.00 0 50.00 -600 0.20 0.30 0.40 Time (uS) 0.50 -20 0.60 10.00 20.00 30.00 40.00 Tim e (uS) Fig. WF3- Typ. Diode Recovery Waveform @ TJ = 150C using Fig. CT.4 Fig. WF4- Typ. S.C Waveform @ TC = 150C using Fig. CT.3 www.irf.com 11 Ice (A) -200 0 If (A) Ice (A) 15 IRGIB10B60KD1 Dimensions are shown in millimeters (inches) 10.60 (.417) 10.40 (.409) o 3.40 (.133) 3.10 (.123) -A3.70 (.145) 3.20 (.126) TO-220 Full-Pak Package Outline 4.80 (.189) 4.60 (.181) 2.80 (.110) 2.60 (.102) LEAD ASSIGNMENTS 1 - GATE 2 - DRAIN 3 - SOURCE 7.10 (.280) 6.70 (.263) 16.00 (.630) 15.80 (.622) 1.15 (.045) MIN. 1 2 3 NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982 2 CONTROLLING DIMENSION: INCH. 3.30 (.130) 3.10 (.122) -B13.70 (.540) 13.50 (.530) C D A 3X 1.40 (.055) 1.05 (.042) 0.90 (.035) 3X 0.70 (.028) 0.25 (.010) 2.54 (.100) 2X M AM B 3X 0.48 (.019) 0.44 (.017) B 2.85 (.112) 2.65 (.104) MINIMUM CREEPAGE DISTANCE BETWEEN A-B-C-D = 4.80 (.189) TO-220 Full-Pak Part Marking Information EXAMPLE: THIS IS AN IRFI840G WITH AS SEMBLY LOT CODE 3432 AS S EMBLED ON WW 24 1999 IN THE AS S EMBLY LINE "K" INTERNATIONAL RECTIFIER LOGO AS S EMBLY LOT CODE PART NUMBER IRFI840G 924K 34 32 DAT E CODE YEAR 9 = 1999 WEEK 24 LINE K TO-220 Full-Pak package is not recommended for Surface Mount Application Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.2/04 12 www.irf.com |
Price & Availability of IRGIB10B60KD1 |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |