![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
Absolute Maximum Ratings Symbol Conditions 1) VCES VCGR IC ICM VGES Ptot Tj, (Tstg) Visol humidity climate IF = -IC IFM = -ICM IFSM I 2t RGE = 20 k Tcase = 25/85 C Tcase = 25/85 C; tp = 1 ms per IGBT, Tcase = 25 C AC, 1 min. DIN 40040 DIN IEC 68 T.1 Tcase = 25/80 C Tcase = 25/80 C; tp = 1 ms tp = 10 ms; sin.; Tj = 150 C tp = 10 ms; Tj = 150 C Values Units 1200 1200 290 / 200 580 / 400 20 1350 -40 ... +150 (125) 2500 Class F 40/125/56 195 / 130 580 / 400 1450 10 500 V V A A V W C V SEMITRANS(R) M Low Loss IGBT Modules SKM 200 GB 124 D Inverse Diode A A A A2s SEMITRANS 3 Characteristics Symbol Conditions 1) V(BR)CES VGE(th) ICES IGES VCEsat VCEsat gfs CCHC Cies Coes Cres LCE td(on) tr td(off) tf Eon Eoff VF = VEC VF = VEC VTO rt IRRM Qrr Rthjc Rthjc Rthch VGE = 0, IC = 4 mA VGE = VCE, IC = 6 mA Tj = 25 C VGE = 0 VCE = VCES Tj = 125 C VGE = 20 V, VCE = 0 IC = 150 A VGE = 15 V; IC = 200 A Tj = 25 (125) C VCE = 20 V, IC = 150 A per IGBT VGE = 0 VCE = 25 V f = 1 MHz VCC = 600 V VGE = -15 V / +15 V3) IC = 150 A, ind. load RGon = RGoff = 7 Tj = 125 C min. typ. - 5,5 0,4 12 - 2,1(2,4) 2,5(3,0) - - 11 1,6 0,8 - 75 50 520 50 21 19 2,0(1,8) 2,25(2,05) 1,1 - 78 19,5 - - - max. - 6,5 14 - 0,32 2,45(2,85) - - 700 15 2 1 20 - - - - - - 2,5 - 1,2 7 - - 0,09 0,25 0,038 Units V V mA mA A V V S pF nF nF nF nH ns ns ns ns mWs mWs V V V m A C C/W C/W C/W VCES 4,5 - - - - - 62 - - - - - - - - - - - - - - - - - - - - GB Features * MOS input (voltage controlled) * N channel, homogeneous Silicon structure NPT-IGBT (Non punch through) * Low saturation voltage * Low inductance case * Low tail current with low temperature dependence * High short circuit capability, self limiting to 6 * Icnom * Latch-up free * Fast & soft inverse CAL diodes 8) * Isolated copper baseplate using DCB Direct Copper Bonding Technology without hard mould * Large clearance (12 mm) and creepage distances (20 mm) Typical Applications B 6 - 161 * Switching (not for linear use) * Inverter drives * UPS 1) 2) 3) 8) Inverse Diode 8) IF = 150 A VGE = 0 V; IF = 200 A Tj = 25 (125) C Tj = 125 C 2) Tj = 125 C 2) IF = 150 A; Tj = 125 C2) IF = 150 A; Tj = 125 C2) per IGBT per diode per module Thermal characteristics Tcase = 25 C, unless otherwise specified IF = - IC, VR = 600 V, -diF/dt = 1500 A/s, VGE = 0 V Use VGEoff = -5... -15 V CAL = Controlled Axial Lifetime Technology Cases and mech. data B 6 - 162 (c) by SEMIKRON 0898 B 6 - 157 SKM 200 GB 124 D 1400 W 1200 1000 800 600 400 200 Ptot 0 0 TC 20 40 60 80 100 120 140 160 C M200G124.X LS-1 70 mWs 60 50 40 30 20 10 E 0 0 IC 50 100 150 200 250 M200G124.X LS -2 E on Tj = 125 C VCE = 600 V VGE = + 15 V RG = 7 E off 300 A 350 Fig. 1 Rated power dissipation Ptot = f (TC) Fig. 2 Turn-on /-off energy = f (IC) 90 mWs 80 70 60 50 40 30 20 M200G124.X LS-3 1000 M200G124.X LS -4 E on Tj = 125 C VCE = 600 V VGE = + 15 V IC = 150 A A t p=10s 1 pulse TC = 25 C Tj 150 C 100 100s E off 10 1ms Not for linear use 10ms 10 E 0 0R G 10 20 30 40 50 60 1 1 VCE 10 100 1000 V 10000 IC Fig. 3 Turn-on /-off energy = f (RG) M200G124.X LS -5 Fig. 4 Maximum safe operating area (SOA) IC = f (VCE) M200G124.X LS -6 2,5 Tj 150 C VGE = 15 V RGoff = 7 IC = 150 A 12 2 10 di/dt= 1000 A/s 3000 A/s 5000 A/s 8 1,5 6 1 4 0,5 ICpuls/IC 0 0 200 V CE 400 600 800 1000 1200 1400 V Tj 150 C VGE = 15 V tsc 10 s L < 25 nH IC = 150 A allowed numbers of short circuits: <1000 time between short circuits: >1s 2 ICSC/IC 0 0 VCE 200 400 600 800 1000 1200 V 1400 Fig. 5 Turn-off safe operating area (RBSOA) Fig. 6 Safe operating area at short circuit IC = f (VCE) B 6 - 158 0898 (c) by SEMIKRON M2 0 0G1 24 .X LS -8 300 A 250 Tj = 150 C VGE 15V 200 150 100 50 IC 0 0 TC 40 80 120 160 C Fig. 8 Rated current vs. temperature IC = f (TC) M2 0 0G1 24 .X LS -9 M 20 0G1 24 .X LS -1 0 300 A 250 17V 15V 13V 11V 9V 7V 300 A 250 17V 15V 13V 11V 9V 7V 200 200 150 150 100 100 50 IC 0 0 V CE 1 2 3 4 V 5 50 IC 0 0 VCE 1 2 3 4 V 5 Fig. 9 Typ. output characteristic, tp = 80 s; 25 C Fig. 10 Typ. output characteristic, tp = 80 s; 125 C M200G124.X LS-12 300 Pcond(t) = VCEsat(t) * IC(t) VCEsat(t) = VCE(TO)(Tj) + rCE(Tj) * IC(t) A 250 200 VCE(TO)(Tj) 1,3 + 0,0005 (Tj -25) [V] typ.: rCE(Tj) = 0,0053 + 0,000017 (Tj -25) [] max.: rCE(Tj) = 0,0077 + 0,000023 (Tj -25) [] +2 valid for VGE = + 15 -1 [V]; IC > 0,3 ICnom 150 100 50 IC 0 0 V GE 2 4 6 8 10 12 V 14 Fig. 11 Saturation characteristic (IGBT) Calculation elements and equations Fig. 12 Typ. transfer characteristic, tp = 80 s; VCE = 20 V (c) by SEMIKRON 0898 B 6 - 159 SKM 200 GB 124 D 20 V 18 16 14 12 10 8 6 4 V GE 2 0 0 200 QGate 400 600 800 1000 nC 1200 C 0,1 0 VCE 10 20 V 30 1 Cres Coes 600V 800V Cies 10 M200G124.X LS-13 Rthjc = 0,005 ICpuls = 150 A 100 nF M200G124.X LS -14 VGE = 0 V f = 1 MHz Fig. 13 Typ. gate charge characteristic M200G124.X LS-15 Fig. 14 Typ. capacitances vs.VCE Tj = 125 C VCE = 600 V VGE = 15 V RGon = 7 RGoff = 7 induct. load M200G124.X LS -16 1000 ns 10000 tdoff ns tdoff 1000 tdon tr Tj = 125 C VCE = 600 V VGE = 15 V IC = 150 A induct. load 100 t don 100 tf tr t 10 0 IC 50 100 150 200 250 300 A 350 t tf 10 0 RG 10 20 30 40 50 60 Fig. 15 Typ. switching times vs. IC M200GB 124.X LS -17 Fig. 16 Typ. switching times vs. gate resistor RG M200G124.X LS -18 200 A Tj=125C, typ. 10 mJ 8 RG= 4 6 VCC = 600 V Tj = 125 C VGE = 15 V 150 Tj=25C, typ. Tj=125C, max. 6 10 17 4 40 2 100 Tj=25C, max. 50 E offD 0 0 VF 1 2 V 3 0 0 IF 40 80 120 160 200 IF 240 A Fig. 17 Typ. CAL diode forward characteristic Fig. 18 Diode turn-off energy dissipation per pulse B 6 - 160 0898 (c) by SEMIKRON 1 K/W M 20 0G1 24 .X LS -1 9 1 K/W M2 0 0G1 24 .X LS -2 0 0,1 0,1 0,01 0,001 ZthJC 0,0001 0,00001 tp single pulse D=0,50 0,20 0,10 0,05 0,02 0,01 0,01 0,001 single pulse ZthJC 0,0001 0,00001 tp D=0,5 0,2 0,1 0,05 0,02 0,01 0,0001 0,001 0,01 0,1 s 1 0,0001 0,001 0,01 0,1 s 1 Fig. 19 Transient thermal impedance of IGBT ZthJC = f (tp); D = tp / tc = tp * f 280 A 240 200 160 120 10 80 40 IRR 0 0 IF 40 80 120 160 200 A 240 17 40 6 M200G124.X LS-22 Fig. 20 Transient thermal impedance of inverse CAL diodes ZthJC = f (tp); D = tp / tc = tp * f 280 M200G124.X LS -23 RG= 4 VCC = 600 V Tj = 125 C VGE = 15 V A 240 200 160 120 17 80 40 IRR 0 0 1000 diF/dt 2000 3000 40 10 RG= 4 VCC = 600 V Tj = 125 C VGE = 15 V IF = 150 A 6 4000 5000 6000 7000 A/s Fig. 22 Typ. CAL diode peak reverse recovery current IRR = f (IF; RG) Fig. 23 Typ. CAL diode peak reverse recovery current IRR = f (di/dt) 35 M2 0 0G1 24 .X LS -2 4 Typical Applications include Switched mode power supplies DC servo and robot drives Inverters DC choppers AC motor speed control UPS Uninterruptable power supplies General power switching applications Electronic (also portable) welders C 30 25 20 15 10 5 Qrr 0 0 diF/dt 2000 4000 40 A 10 17 40 6 RG= 4 IF = 200 A VCC = 600 V Tj = 125 C VGE = 15 V 150 A 110 A 75 A 6000 A/s 8000 Fig. 24 Typ. CAL diode recovered charge (c) by SEMIKRON 0898 B 6 - 161 SKM 200 GB 124 D SEMITRANS 3 Case D 56 UL Recognized File no. E 63 532 SKM 200 GB 124 D Dimensions in mm Case outline and circuit diagram Mechanical Data Symbol Conditions min. M1 M2 a w to heatsink, SI Units to heatsink, US Units for terminals, SI Units for terminals, US Units (M6) (M6) 3 27 2,5 22 - - Values typ. - - - - - - Units max. 5 44 5 44 5x9,81 325 Nm lb.in. Nm lb.in. m/s2 g This is an electrostatic discharge sensitive device (ESDS). Please observe the international standard IEC 747-1, Chapter IX. Three devices are supplied in one SEMIBOX A without mounting hardware, which can be ordered separately under Ident No. 33321100 (for 10 SEMITRANS 3). Larger packing units of 12 and 20 pieces are used if suitable Accessories B 6 - 4. SEMIBOX C - 1. (c) by SEMIKRON B 6 - 162 0898 |
Price & Availability of SKM200GB124D
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |