![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
PROFET(R) ITS 410 E2 Smart Highside Power Switch for Industrial Applications * Overload protection * Current limitation * Short circuit protection * Thermal shutdown * Overvoltage protection (including load dump) * Fast demagnetization of inductive loads * Reverse battery protection1) * Undervoltage and overvoltage shutdown with auto-restart and hysteresis * Open drain diagnostic output * Open load detection in ON-state * CMOS compatible input * Loss of ground and loss of Vbb protection * Electrostatic discharge (ESD) protection Features Product Summary Overvoltage protection Operating voltage On-state resistance Load current (ISO) Current limitation Operating temperature Vbb(AZ) Vbb(on) RON IL(ISO) IL(SCr) Ta 65 V 4.7 ... 42 V 220 m 1.8 A 5 A -30...+85 C PG-TO220AB/5 5 1 Straight leads 5 Standard Application * C compatible power switch with diagnostic feedback for 12 V and 24 V DC grounded loads in industrial applications * All types of resistive, inductive and capacitve loads * Replaces electromechanical relays, fuses and discrete circuits General Description N channel vertical power FET with charge pump, ground referenced CMOS compatible input and diagnostic feedback, monolithically integrated in Smart SIPMOS technology. Providing embedded protective functions. + V bb Voltage source V Logic Voltage sensor 3 Overvoltage protection Current limit Gate protection OUT Charge pump Level shifter Rectifier Limit for unclamped ind. loads Open load 2 IN Temperature sensor 5 ESD Logic Load detection Short circuit detection GND 4 ST PROFET Load GND 1 Signal GND 1) With external current limit (e.g. resistor RGND=150 ) in GND connection, resistors in series with IN and ST connections, reverse load current limited by connected load. Infineon Technologies AG 1 of 15 2006-Mar-28 PROFET(R) ITS 410 E2 Pin 1 2 3 4 5 Symbol GND IN Vbb ST OUT (Load, L) I + S O Function Logic ground Input, activates the power switch in case of logical high signal Positive power supply voltage, the tab is shorted to this pin Diagnostic feedback, low on failure Output to the load Maximum Ratings at Tj = 25 C unless otherwise specified Parameter Supply voltage (overvoltage protection see page 3) Load dump protection2) VLoadDump = UA + Vs, UA = 13.5 V RI3)= 2 , RL= 6.6 , td= 400 ms, IN= low or high Load current (Short circuit current, see page 4) Junction temperature Operating temperature range Storage temperature range Power dissipation (DC), TC 25 C Inductive load switch-off energy dissipation, single pulse Vbb = 12V, Tj,start = 150C, TC = 150C const. IL = 1.8 A, ZL = 2.3 H, 0 : Electrostatic discharge capability (ESD) IN: (Human Body Model) all other pins: acc. MIL-STD883D, method 3015.7 and ESD assn. std. S5.1-1993 Symbol Vbb 4 VLoad dump ) IL Tj Ta Tstg Ptot EAS VESD VIN IIN IST Values 65 100 self-limited +150 -30 ...+85 -40 ...+105 50 4.5 1 2 -0.5 ... +6 5.0 5.0 Unit V V A C W J kV V mA Input voltage (DC) Current through input pin (DC) Current through status pin (DC) see internal circuit diagrams page 6 Thermal Characteristics Parameter and Conditions Thermal resistance Symbol chip - case: RthJC junction - ambient (free air): RthJA Values min typ max --2.5 --75 Unit K/W 2) 3) 4) Supply voltages higher than Vbb(AZ) require an external current limit for the GND and status pins, e.g. with a 150 resistor in the GND connection and a 15 k resistor in series with the status pin. A resistor for the protection of the input is integrated. RI = internal resistance of the load dump test pulse generator VLoad dump is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839 Infineon Technologies AG 2 2006-Mar-28 PROFET(R) ITS 410 E2 Electrical Characteristics Parameter and Conditions at Tj = 25 C, Vbb = 12 V unless otherwise specified Symbol Values min typ max Unit Load Switching Capabilities and Characteristics On-state resistance (pin 3 to 5) IL = 1.6 A Tj=25 C: Tj=150 C: Nominal load current, ISO Norm (pin 3 to 5) VON = 0.5 V, TC = 85 C Output current (pin 5) while GND disconnected or GND pulled up, Vbb=30 V, VIN= 0, see diagram page 7, Tj =-40...+150C Turn-on time IN to 90% VOUT: to 10% VOUT: Turn-off time IN RL = 12 , Tj =-40...+150C Slew rate on 10 to 30% VOUT, RL = 12 , Tj =-40...+150C Slew rate off 70 to 40% VOUT, RL = 12 , Tj =-40...+150C Operating Parameters Operating voltage 5) Undervoltage shutdown RON -190 390 1.8 -----220 440 -1 125 85 3 6 m IL(ISO) IL(GNDhigh) ton toff dV /dton -dV/dtoff 1.6 -12 5 --- A mA s V/s V/s Tj =-40...+150C: Tj =25C: Tj =-40...+150C: Undervoltage restart Tj =-40...+150C: Undervoltage restart of charge pump see diagram page 13 Undervoltage hysteresis Vbb(under) = Vbb(u rst) - Vbb(under) Overvoltage shutdown Tj =-40...+150C: Overvoltage restart Tj =-40...+150C: Overvoltage hysteresis Tj =-40...+150C: 6) Overvoltage protection Tj =-40...+150C: Ibb=4 mA Standby current (pin 3) Tj=-40...+25C: VIN=0 Tj= 150C: Leakage output current (included in Ibb(off)) VIN=0 Operating current (Pin 1)7), VIN=5 V, Tj =-40...+150C 5) 6) Vbb(on) Vbb(under) Vbb(u rst) Vbb(ucp) Vbb(under) Vbb(over) Vbb(o rst) Vbb(over) Vbb(AZ) Ibb(off) IL(off) IGND 4.7 2.9 2.7 ---42 40 -65 ----- ----5.6 0.1 --0.1 70 10 18 -1 42 4.5 4.7 4.9 6.0 -52 ---15 25 20 2.1 V V V V V V V V V A A mA At supply voltage increase up to Vbb= 5.6 V typ without charge pump, VOUT Vbb - 2 V Meassured without load. See also VON(CL) in table of protection functions and circuit diagram page 7. Infineon Technologies AG 3 2006-Mar-28 PROFET(R) ITS 410 E2 Parameter and Conditions at Tj = 25 C, Vbb = 12 V unless otherwise specified Symbol Values min typ max Unit Protection Functions8) Initial peak short circuit current limit (pin 3 to 5)9), IL(SCp) ( max 450 s if VON > VON(SC) ) Tj =-40C: Tj =25C: Tj =+150C: Repetitive overload shutdown current limit IL(SCr) VON= 8 V, Tj = Tjt (see timing diagrams, page 12) Short circuit shutdown delay after input pos. slope VON > VON(SC), Tj =-40..+150C: td(SC) min value valid only, if input "low" time exceeds 60 s 9 -4 --61 --150 --- -12 -5 -68 -8.5 -10 -- 23 -15 -450 73 75 ---32 A A s V Output clamp (inductive load switch off) at VOUT = Vbb - VON(CL) IL= 40 mA, Tj =-40..+150C: IL= 1 A, Tj =-40..+150C: Short circuit shutdown detection voltage (pin 3 to 5) Thermal overload trip temperature Thermal hysteresis Reverse battery (pin 3 to 1) 10) Diagnostic Characteristics Open load detection current (on-condition) VON(CL) VON(SC) Tjt Tjt -Vbb V C K V Tj=-40 ..150C: IL (OL) 2 -- 150 mA 7) 8) Add IST, if IST > 0, add IIN, if VIN>5.5 V Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation. 9) Short circuit current limit for max. duration of td(SC) max=450 s, prior to shutdown 10) Requires 150 resistor in GND connection. The reverse load current through the intrinsic drain-source diode has to be limited by the connected load. Note that the power dissipation is higher compared to normal operating conditions due to the voltage drop across the intrinsic drain-source diode. The temperature protection is not active during reverse current operation! Input and Status currents have to be limited (see max. ratings page 2 and circuit page 7). Infineon Technologies AG 4 2006-Mar-28 PROFET(R) ITS 410 E2 Parameter and Conditions at Tj = 25 C, Vbb = 12 V unless otherwise specified Symbol Values min typ max 1.5 1.0 -1 10 -300 --0.5 -25 --2.4 --30 70 450 1400 Unit Input and Status Feedback11) Tj =-40..+150C: Input turn-on threshold voltage Input turn-off threshold voltage Tj =-40..+150C: Input threshold hysteresis Off state input current (pin 2), VIN = 0.4 V On state input current (pin 2), VIN = 5 V Status invalid after positive input slope (short circuit) Tj=-40 ... +150C: Status invalid after positive input slope (open load) Tj=-40 ... +150C: Status output (open drain) Zener limit voltage Tj =-40...+150C, IST = +50 uA: ST low voltage Tj =-40...+150C, IST = +1.6 mA: VIN(T+) VIN(T-) VIN(T) IIN(off) IIN(on) td(ST SC) td(ST) V V V A A s s VST(high) VST(low) 5.0 -- 6 -- -0.4 V 11) If a ground resistor RGND is used, add the voltage drop across this resistor. Infineon Technologies AG 5 2006-Mar-28 PROFET(R) ITS 410 E2 Truth Table Inputlevel Normal operation Open load Short circuit to GND Short circuit to Vbb Overtemperature Undervoltage Overvoltage L = "Low" Level H = "High" Level L H L H L H L H L H L H L H Output level L H Status 410 E2 H H H L H L H 13 H (L )) L L H H H H 12) H L L H H L L L L L L X = don't care Z = high impedance, potential depends on external circuit Status signal after the time delay shown in the diagrams (see fig 5. page 13) Terms Ibb I IN 2 I ST V V bb IN V ST 4 ST GND 1 R GND I GND V OUT IN 3 V bb IL PROFET OUT 5 V ON Input circuit (ESD protection) R IN I ESDZDI1 ZDI2 GND I I ZDI1 6 V typ., ESD zener diodes are not to be used as voltage clamp at DC conditions. Operation in this mode may result in a drift of the zener voltage (increase of up to 1 V). 12) 13) Power Transistor off, high impedance. Low resistance short Vbb to output may be detected in ON-state by the no-load-detection Infineon Technologies AG 6 2006-Mar-28 PROFET(R) ITS 410 E2 Status output +5V V Overvolt. and reverse batt. protection + V bb Z2 R ST(ON) R IN IN ST R ST ST V Logic GND ESDZD Z1 PROFET GND ESD-Zener diode: 6 V typ., max 5 mA; RST(ON) < 250 at 1.6 mA, ESD zener diodes are not to be used as voltage clamp at DC conditions. Operation in this mode may result in a drift of the zener voltage (increase of up to 1 V). R GND Signal GND VZ1 = 6.2 V typ., VZ2 = 70 V typ., RGND= 150 , RIN, RST= 15 k Short circuit detection Fault Condition: VON > 8.5 V typ.; IN high + V bb Open-load detection ON-state diagnostic condition: VON < RON * IL(OL); IN high + V bb V ON OUT ON VON Logic unit Short circuit detection OUT Logic unit Open load detection Inductive and overvoltage output clamp + V bb V Z GND disconnect VON 3 IN Vbb PROFET 4 V bb V IN V ST ST GND 1 V GND OUT OUT GND 2 PROFET 5 VON clamped to 68 V typ. Any kind of load. In case of Input=high is VOUT VIN - VIN(T+) . Due to VGND >0, no VST = low signal available. Infineon Technologies AG 7 2006-Mar-28 PROFET(R) ITS 410 E2 GND disconnect with GND pull up 3 IN Vbb PROFET 4 ST GND 1 V V bb IN ST V V OUT Inductive Load switch-off energy dissipation E bb E AS 2 5 IN Vbb PROFET OUT ELoad = GND ST GND ZL { L RL EL Any kind of load. If VGND > VIN - VIN(T+) device stays off Due to VGND >0, no VST = low signal available. ER Vbb disconnect with energized inductive load 3 high 2 IN Vbb PROFET 4 ST GND 1 V OUT Energy stored in load inductance: EL = 1/2*L*I L While demagnetizing load inductance, the energy dissipated in PROFET is EAS= Ebb + EL - ER= VON(CL)*iL(t) dt, 2 5 with an approximate solution for RL > 0 : IL* L IL*RL ) EAS= 2*R *(Vbb + |VOUT(CL)|)* ln (1+ |V L OUT(CL)| bb Maximum allowable load inductance for a single switch off L = f (IL ); Tj,start = 150C,TC = 150C const., Vbb = 12 V, RL = 0 L [mH] 10000 Normal load current can be handled by the PROFET itself. Vbb disconnect with charged external inductive load S high 2 IN 3 Vbb PROFET 4 ST GND 1 V OUT 1000 5 D 100 bb If other external inductive loads L are connected to the PROFET, additional elements like D are necessary. 10 1 1 2 3 4 5 IL [A] 6 Infineon Technologies AG 8 2006-Mar-28 PROFET(R) ITS 410 E2 Typ. transient thermal impedance chip case ZthJC = f(tp, D), D=tp/T ZthJC [K/W] 10 1 0.1 D= 0.5 0.2 0.1 0.05 0.02 0.01 0 0.01 1E-5 1E-4 1E-3 1E-2 1E-1 1E0 1E1 tp [s] Infineon Technologies AG 9 2006-Mar-28 PROFET(R) ITS 410 E2 Options Overview High-side switch, Input protection, ESD protection, load dump and reverse battery protection with 150 in GND connection, protection against loss of ground Type Logic version Overtemperature protection with hysteresis Tj >150 C, latch function14)15) Tj >150 C, with auto-restart on cooling Short circuit to GND protection switches off when VON>3.5 V typ. and Vbb> 7 V typ14) (when first turned on after approx. 150 s) switches off when VON>8.5 V typ.14) (when first turned on after approx. 150 s) Achieved through overtemperature protection X ITS410E2 E X Open load detection in OFF-state with sensing current 30 A typ. in ON-state with sensing voltage drop across power transistor X X X X X 17 -) Undervoltage shutdown with auto restart Overvoltage shutdown with auto restart Status feedback for overtemperature short circuit to GND short to Vbb open load undervoltage overvoltage 16) X - Status output type CMOS Open drain X Output negative voltage transient limit (fast inductive load switch off) to Vbb - VON(CL) X X X Load current limit high level (can handle loads with high inrush currents) low level (better protection of application) Protection against loss of GND 14) Latch except when Vbb -VOUT < VON(SC) after shutdown. In most cases VOUT = 0 V after shutdown (VOUT 0 V only if forced externally). So the device remains latched unless Vbb < VON(SC) (see page 4). No latch between turn on and td(SC). 15) With latch function. Reseted by a) Input low, b) Undervoltage 16) No auto restart after overvoltage in case of short circuit 17) Low resistance short Vbb to output may be detected in ON-state by the no-load-detection Infineon Technologies AG 10 2006-Mar-28 PROFET(R) ITS 410 E2 Timing diagrams Figure 1a: Vbb turn on: Figure 2b: Switching an inductive load IN IN t V bb d(bb IN) t ST *) d(ST) V OUT V A OUT ST open drain IL t A in case of too early VIN=high the device may not turn on (curve A) td(bb IN) approx. 150 s I L(OL) t *) if the time constant of load is too large, open-load-status may occur Figure 2a: Switching a lamp, IN ST V OUT I L t Infineon Technologies AG 11 2006-Mar-28 PROFET(R) ITS 410 E2 Figure 3a: Turn on into short circuit, Figure 3c: Short circuit while on: IN IN ST ST VOUT td(SC) V OUT I L IL t **) t td(SC) approx. -- s if Vbb - VOUT > 8.5 V typ. **) current peak approx. 20 s Figure 3b: Turn on into overload, Figure 4a: Overtemperature: Reset if Tj IL I L(SCp) IL(SCr) ST V OUT T ST t J t Heating up may require several seconds, Vbb - VOUT < 8.5 V typ. Infineon Technologies AG 12 2006-Mar-28 PROFET(R) ITS 410 E2 Figure 5a: Open load: detection in ON-state, turn on/off to open load Figure 6a: Undervoltage: IN IN ST t d(ST) V bb V bb(under) Vbb(u cp) Vbb(u rst) V OUT V OUT I L open t ST open drain t Figure 5b: Open load: detection in ON-state, open load occurs in on-state Figure 6b: Undervoltage restart of charge pump Von IN VON(CL) ST t d(ST OL1) t d(ST OL2) off-state on-state V V bb(over) OUT V normal V t bb(u rst) V bb(o rst) I normal L open V bb(under) bb(u cp) charge pump starts at Vbb(ucp) =5.6 V typ. td(ST OL1) = tbd s typ., td(ST OL2) = tbd s typ Infineon Technologies AG 13 2006-Mar-28 off-state V bb PROFET(R) ITS 410 E2 Figure 7a: Overvoltage: IN Vbb VON(CL) Vbb(over) V bb(o rst) V OUT ST t Figure 9a: Overvoltage at short circuit shutdown: IN Vbb V bb(o rst) Output short to GND VOUT short circuit shutdown IL ST t Overvoltage due to power line inductance. No overvoltage autorestart of PROFET after short circuit shutdown. Infineon Technologies AG 14 2006-Mar-28 PROFET(R) ITS 410 E2 Package and Ordering Code All dimensions in mm Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81669 Munchen (c) Infineon Technologies AG 2006 All Rights Reserved. Attention please! Standard PG-TO220AB/5 ITS 410 E2 Ordering code SP000221219 The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. PG-TO220AB/5, Option E3043 Ordering code ITS 410 E2 E3043 SP000221227 Infineon Technologies Components may only be used in lifesupport devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Infineon Technologies AG 15 2006-Mar-28 |
Price & Availability of ITS410E2
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |