Part Number Hot Search : 
XMXXX X1209 F20W60C3 BPC351 30414 CY2510 ST62T01 SD101AW
Product Description
Full Text Search
 

To Download SI1499DH Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 SI1499DH
New Product
Vishay Siliconix
P-Channel 1.2-V (G-S) MOSFET
PRODUCT SUMMARY
VDS (V) rDS(on) () 0.078 at VGS = - 4.5 V 0.095 at VGS = - 2.5 V -8 0.115 at VGS = - 1.8 V 0.153 at VGS = - 1.5 V 0.424 at VGS = - 1.2 V ID (A)c - 1.6 - 1.6 - 1.6 - 1.6 - 1.6b 10.5 nC Qg (Typ)
FEATURES
* TrenchFET(R) Power MOSFET * Ultra-Low On-Resistance * RoHS Compliant
RoHS
COMPLIANT
APPLICATIONS
* Load Switch for Portable Devices - Guaranteed Operation at VGS = 1.2 V Critical for Optimized Design and Longer Battery Life
S
SOT-363 SC-70 (6-LEADS)
D 1 6 D Marking Code BI D 2 5 D Part # Code XX YY Lot Traceability and Date Code
G
G
3 Top View
4
S
D P-Channel MOSFET
Ordering Information: SI1499DH-T1-E3 (Lead (Pb)-free)
ABSOLUTE MAXIMUM RATINGS TA = 25 C, unless otherwise noted
Parameter Drain-Source Voltage Gate-Source Voltage TC = 25 C Continuous Drain Current (TJ = 150 C)a, b TC = 70 C TA = 25 C TA = 70 C Pulsed Drain Current (10 s Pulse Width) Continuous Source-Drain Diode Currenta, b TC = 25 C TA = 25 C TC = 25 C Maximum Power Dissipationa, b TC = 70 C TA = 25 C TA = 70 C Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature)c, d TJ, Tstg PD IDM IS ID Symbol VDS VGS Limit -8 5 -1.6c - 1.6c - 1.6a, b, c - 1.6a, b, c - 6.5c - 1.6c - 1.3a, b 2.78 1.78 2.5a, b 1a, b - 55 to 150 260 C W A Unit V
THERMAL RESISTANCE RATINGS
Parameter Maximum Junction-to-Ambient
a, d
Symbol t 5 sec Steady State RthJA RthJF
Typical 60 34
Maximum 80 45
Unit C/W
Maximum Junction-to-Foot (Drain) Notes: a. Surface Mounted on 1" x 1" FR4 board. b. t = 5 sec. c. Package limited. d. Maximum under Steady State conditions is 125 C/W. Document Number: 73338 S-61963-Rev. C, 09-Oct-06
www.vishay.com 1
SI1499DH
Vishay Siliconix
SPECIFICATIONS TJ = 25 C, unless otherwise noted
Parameter Static Drain-Source Breakdown Voltage VDS Temperature Coefficient VGS(th) Temperature Coefficient Gate-Source Threshold Voltage Gate-Source Leakage Zero Gate Voltage Drain Current On-State Drain Currenta VDS VDS/TJ VGS(th)/TJ VGS(th) IGSS IDSS ID(on) VGS = 0 V, ID = - 250 A ID = - 250 A VDS = VGS, ID = - 250 A VDS = VGS, ID = - 5 mA VDS = 0 V, VGS = - 5 V VDS = - 8 V, VGS = 0 V VDS = - 8 V, VGS = 0 V, TJ = 55 C VDS 5 V, VGS = - 4.5 V VGS = - 4.5 V, ID = - 2.0 A VGS = - 2.5 V, ID = - 1.9 A Drain-Source On-State Resistancea rDS(on) VGS = - 1.8 V, ID = - 0.8 A VGS = - 1.5 V, ID = - 0.5 A VGS = - 1.5 V, ID = - 0.100 A Forward Transconductancea gfs Ciss Coss Crss Qg Qgs Qgd Rg td(on) tr td(off) tf td(on) tr td(off) tf IS ISM VSD trr Qrr ta tb IF = - 2.0 A, di/dt = 100 A/s, TJ = 25 C IS = - 2.4 A, VGS = 0 V - 0.7 25 7 9 16 TC = 25 C VDD = - 4 V, RL = 2 ID - 2 A, VGEN = - 8 V, Rg = 1 VDD = - 4 V, RL = 2 ID - 2 A, VGEN = - 4.5 V, Rg = 1 f = 1 MHz VDS = - 4 V, VGS = - 4.5 V, ID = - 1.6 A VDS = - 4 V, VGS = 0 V, f = 1 MHz VDS = - 4 V, ID = - 2.0 A 8 Dynamicb Input Capacitance Output Capacitance Reverse Transfer Capacitance Total Gate Charge Gate-Source Charge Gate-Drain Charge Gate Resistance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current Pulse Diode Forward Current Body Diode Voltage Body Diode Reverse Recovery Time Body Diode Reverse Recovery Charge Reverse Recovery Fall Time Reverse Recovery Rise Time - 1.6 - 6.5 - 1.2 38 11 A V ns nC ns 650 220 122 10.5 1.3 1.9 9.5 9 40 50 60 8 40 46 60 14 60 75 90 15 60 70 90 ns 16 nC pF - 6.5 0.0622 0.078 0.094 0.118 0.078 0.095 0.115 0.153 0.424 S - 0.35 - 0.55 - 100 -1 - 10 -8 -9 - 2.2 - 0.8 V mV/C V ns A A Symbol Test Conditions Min Typ Max Unit
Notes: a. Pulse test; pulse width 300 s, duty cycle 2 %. b. Guaranteed by design, not subject to production testing.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
www.vishay.com 2
Document Number: 73338 S-61963-Rev. C, 09-Oct-06
SI1499DH
Vishay Siliconix
TYPICAL CHARACTERISTICS
10
25 C, unless noted
10 TC = - 55 C
8
I D - Drain Current (A)
VGS = 5 thru 2 V
I D - Drain Current (A)
8 25 C 6 125 C 4
6
1.5 V
4
2 1V 0 0.0
2
0.5
1.0
1.5
2.0
0 0.0
0.5
1.0
1.5
2.0
2.5
VDS - Drain-to-Source Voltage (V)
VGS - Gate-to-Source Voltage (V)
Output Characteristics
0.25 1000
Transfer Characteristics
rDS(on) - On-Resistance (m)
0.20 VGS = 1.5 V 0.15 VGS = 1.8 V 0.10 VGS = 2.5 V C - Capacitance (pF)
800 Ciss 600
400 Coss
0.05
200 VGS = 4.5 V 0 0 2 4 6 8 10 0 1 2 3 4 5 6 7 8 Crss
0.00
ID - Drain Current (A)
VDS - Drain-to-Source Voltage (V)
On-Resistance vs. Drain Current and Gate Voltage
5 ID = 2 A 4 rDS(on) - On-Resistance (Normalized) 1.4 1.6 ID = 2 A
Capacitance
V GS - Gate-to-Source Voltage (V)
VGS = 4.5 V 1.2 VGS = 2.5 V 1.0
3
VDS = 4 V
2
VDS = 5.6 V
1
0.8
0 0 2 4 6 8 10 12
0.6 - 50
- 25
0
25
50
75
100
125
150
Qg - Total Gate Charge (nC)
TJ - Junction Temperature (C)
Gate Charge Document Number: 73338 S-61963-Rev. C, 09-Oct-06
On-Resistance vs. Junction Temperature www.vishay.com 3
SI1499DH
Vishay Siliconix
TYPICAL CHARACTERISTICS 25 C, unless noted
10 rDS(on) - Drain-to-Source On-Resistance () 0.5 ID = 2 A 0.4
I S - Source Current (A)
TJ = 150 C 1
TJ = 25 C
0.3
0.2 TJ = 125 C 0.1 TJ = 25 C 0.0
0.1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 VSD - Source-to-Drain Voltage (V)
0
1
2
3
4
5
VGS - Gate-to-Source Voltage (V)
Source-Drain Diode Forward Voltage
0.4 12 10 ID = 250 A 0.2 Power (W) VGS(th) (V) 8
On-Resistance vs. Gate-to-Source Voltage
0.3
0.1
6 TA = 25 C 4
0.0
- 0.1
2
- 0.2 - 50
- 25
0
25
50
75
100
125
150
0 0.01
0.1
1 Time (sec)
10
100
1000
TJ - Temperature (C)
Threshold Voltage
100
Single Pulse Power, Junction-to-Ambient
*Limited by rDS(on) 10 I D - Drain Current (A) 10 s, 100 s 1 ms 1 10 ms 100 ms 1s 10 s TA = 25 C Single Pulse dc, 100 s
0.1
0.01 0.1 1 VDS - Drain-to-Source Voltage (V) *VGS > minimum VGS at which rDS(on) is specified 10
Safe Operating Area, Junction-to-Ambient www.vishay.com 4 Document Number: 73338 S-61963-Rev. C, 09-Oct-06
SI1499DH
Vishay Siliconix
TYPICAL CHARACTERISTICS 25 C, unless noted
6
5
ID - Drain Current (A)
4
3 Package Limited
2
1
0 0 25 50 75 100 125 150 175 TC - Case Temperature (C)
Current Derating*
*The power dissipation PD is based on TJ(max) = 175 C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.
TYPICAL CHARACTERISTICS 25 C, unless noted
2 1 Normalized Effective Transient Thermal Impedance Duty Cycle = 0.5
0.2
Notes:
0.1 0.1
PDM
0.05
t1
0.02
t2 1. Duty Cycle, D =
t1 t2 2. Per Unit Base = R thJA = C/W
Single Pulse 0.01 10 -4 10-3 10 -2 10-1 1 Square Wave Pulse Duration (sec)
3. T JM - TA = PDMZthJA(t) 4. Surface Mounted
10
100
600
Normalized Thermal Transient Impedance, Junction-to-Ambient
2 1 Normalized Effective Transient Thermal Impedance Duty Cycle = 0.5 0.2
0.1 0.1 0.05 0.02 0.02
Single Pulse 0.01 10-4 10-3 10-2 10-1 Square Wave Pulse Duration (sec) 1 10
Normalized Thermal Transient Impedance, Junction-to-Case
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?73338.
Document Number: 73338 S-61963-Rev. C, 09-Oct-06
www.vishay.com 5
Legal Disclaimer Notice
Vishay
Notice
Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies. Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.
Document Number: 91000 Revision: 08-Apr-05
www.vishay.com 1


▲Up To Search▲   

 
Price & Availability of SI1499DH

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X