|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
STR73xF ARM7TDMITM 32-BIT MCU WITH FLASH, 3x CAN, 4 UARTs, 20 TIMERS, ADC, 12 COMM. INTERFACES PRELIMINARY DATA Core - ARM7TDMI 32-bit RISC CPU - 32 MIPS @ 36 MHz Temperature Range - Operating temperature range -40 to 105 C Memories - Up to 256 Kbytes FLASH program memory (10,000 cycles endurance, data retention 20 years at 55C) - 16 Kbytes RAM Clock, Reset and Supply Management - 4.5 - 5.5V application supply and I/O interface - Embedded 1.8V regulator for core supply - Embedded oscillator running from external 4-8MHz crystal or ceramic resonator - Up to 36 MHz CPU freq. with internal PLL - Internal RC oscillator 32kHz or 2MHz software configurable for fast startup and backup clock - Realtime Clock for clock-calendar function - Wakeup Timer driven by internal RC for wakeup from STOP mode - 5 power saving modes: SLOW, WAIT, LPWAIT, STOP and HALT modes Nested interrupt controller - Fast interrupt handling with multiple vectors - 64 maskable IRQ with 64 vectors and 16 priority levels - 2 maskable FIQ sources - 16 external interrupts and up to 32 wake up lines Up to 112 I/O ports - 72/112 multifunctional bidirectional I/O lines TQFP100 14 x 14 TQFP144 20 x 20 LFBGA144 10 x 10 x 1.7 DMA - 4 DMA controllers with 4 channels each Timers - 16-bit watchdog timer (WDG) - 6/10 16-bit timers (TIM) each with: 2 input captures, 2 output compares, PWM and pulse counter modes - 6 16-bit PWM modules (PWM) - 3 16-bit timebase timers with 8-bit prescalers 12 Communications Interfaces - 2 I2C interfaces - 4 UART asynchronous serial communications interfaces - 3 BSPI synchronous serial interfaces - Up to 3 CAN interfaces (2.0B Active) 10-bit A/D Converter - 12/16 channels - Conversion time: min 3s, range: 0 to 5V Development Tools Support - JTAG interface Table 1. Device Summary Features FLASH memory - bytes RAM - bytes Peripheral Functions CAN Peripherals Operating Voltage Operating Temperature Packages T=TQFP144 20 x 20 H=LFBGA144 10 x10 STR730FZx 128K 256K STR735FZx 128K 256K 64K STR731FVx 128K 256K 16K 6 TIM Timers, 72 I/Os, 18 Wake-Up lines, 12 ADC channels 3 4.5 to 5.5V (optional 1.8V for core) -40 to +105C T=TQFP100 14x14 0 64K STR736FVx 128K 256K 16K 10 TIM Timers, 112 I/Os, 32 Wake-Up lines, 16 ADC channels 3 0 Rev. 1 September 2005 This is preliminary information on a new product now in development. Details are subject to change without notice. 1/39 1 Table of Contents 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Related Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3.1 STR730F/STR735F (TQFP144) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3.2 STR730F/STR735F (LFBGA144) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3.3 STR731F/STR736F (TQFP100) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.4 Memory Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2 ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3 Voltage Regulator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4 Preliminary Power Consumption Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.5 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.6 RSTIN Input Filter Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.7 Main Oscillator Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.8 PLL Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.9 RC Oscillator Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.10 Flash Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.11 ADC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3 PACKAGE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.1 Package Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2 Power Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4 ORDER CODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5 REVISION HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Note: For detailed information on the STR73xF Microcontroller memory, registers and peripherals. please refer to the STR73xF Reference Manual. 39 2/39 1 STR73xF - INTRODUCTION 1 INTRODUCTION This Preliminary Data provides the STR73x Ordering Information, Mechanical and Electrical Device Characteristics. For complete information on the STR73xF Microcontroller memory, registers and peripherals. please refer to the STR73x Reference Manual. For information on programming, erasing and protection of the internal Flash memory please refer to the STR7 Flash Programming Reference Manual For information on the ARM7TDMI core please refer to the ARM7TDMI Technical Reference Manual. 1.1 Overview ARM core with embedded Flash & RAM STR73xF family combines the high performance ARM7TDMITM CPU with an extensive range of peripheral functions and enhanced I/O capabilities. All devices have on-chip high-speed single voltage FLASH memory and high-speed RAM. The STR73xF family has an embedded ARM core and is therefore compatible with all ARM tools and software. Extensive tools support STMicroelectronics' 32-bit, ARM core-based microcontrollers are supported by a complete range of high-end and low-cost development tools to meet the needs of application developers. This extensive line of hardware/software tools includes starter kits and complete development packages all tailored for ST's ARM core-based MCUs. The range of development packages includes third-party solutions that come complete with a graphical development environment and an in-circuit emulator/programmer featuring a JTAG application interface. These support a range of embedded operating systems (OS), while several royalty-free OSs are also available. For more information, please refer to ST MCU site http://www.st.com/mcu Figure 1 shows the general block diagram of the device family. Package Choice: Reduced Pin-Count TQFP100 or Feature-Rich 144-pin TQFP or LFBGA The STR73xF family is available in 3 packages. The TQFP144 and LFBGA144 versions have the full set of all features. The 100-pin version has fewer timers, I/Os and ADC channels. Refer to the Device Summary on Page 1 for a comparison of the I/Os available on each package. The family includes versions with and without CAN. 3/39 1 STR73xF - INTRODUCTION High Speed Flash Memory The Flash program memory is organized in 32-bit wide memory cells which can be used for storing both code and data constants. It is accessed by CPU with zero wait states @ 36 MHz. The STR7 embedded Flash memory can be programmed using In-Circuit Programming or In-Application programming. The Flash memory endurance is 10K write/erase cycles and the data retention is 20 years at 55C. IAP (In-Application Programming): The IAP is the ability to re-program the Flash memory of a microcontroller while the user program is running. ICP (In-Circuit Programming): The ICP is the ability to program the Flash memory of a microcontroller using JTAG protocol while the device is mounted on the user application board. The Flash memory can be protected against different types of unwanted access (read/write/ erase). There are two types of protection: * * Sector Write Protection Flash Debug Protection (locks JTAG access) Flexible Power Management To minimize power consumption, you can program the STR73xF to switch to SLOW, WAIT LPWAIT, STOP or HALT modes depending on the current system activity in the application. Flexible Clock Control Two clock sources are used to drive the microcontroller, a main clock driven by an external crystal or ceramic resonator and an internal backup RC oscillator that operates at 2MHz or 32 kHz. The embedded PLL allows the internal system clock (up to 36 MHz) to be generated from a main clock frequency of 10 MHz or less. The PLL output frequency can be programmed using a wide selection of multipliers and dividers. Voltage Regulators The STR73xF requires an external 4.5 to 5.5V power supply. There are two internal Voltage Regulators for generating the 1.8V power supply needed by the core and peripherals. The main VR is switched off and the Low Power VR switched on when the application puts the STR73xF in Low Power Wait (LPWAIT) mode. Low Voltage Detectors The voltage regulator and Flash modules each have an embedded LVD that monitors the internal 1.8V supply. If the voltage drops below a certain threshold, the LVD will reset the STR73xF. 4/39 STR73xF - INTRODUCTION Note: An external power-on reset must be provided ensure the microcontroller starts-up correctly. On-Chip Peripherals CAN Interfaces The three CAN modules are compliant with the CAN specification V2.0 part B (active). The bit rate can be programmed up to 1 MBaud. These are not available in the STR735 and STR736. DMA 4 DMA controllers, each with 4 data streams manage memory to memory, peripheral to memory and memory to peripheral transfers. The DMA requests are connected to TIM timers, BSPI0, BSPI1, BSPI2 and ADC. One of the streams can be configured to be triggered by a software request, independently from any peripheral activity. 16-bit Timers (TIM) Each of the ten timers (six in 100-pin devices) have a 16-bit free-running counter with 7-bit prescaler, up to two input capture/output compare functions, a pulse counter function, and a PWM channel with selectable frequency. This provides a total of 16 independent PWMs (12 in 100-pin devices) when added with the PWM modules (see next paragraph). PWM Modules (PWM) The six 16-bit PWM modules have independently programmable periods and duty-cycles, with 5+3 bit prescaler factor. Timebase Timers (TB) The three 16-bit Timebase Timers with 8-bit prescaler for general purpose time triggering operations. Realtime Clock (RTC) The RTC provides a set of continuously running counters driven by separate clock signal derived from the main oscillator. The RTC can be used as a general timebase or clock/ calendar/alarm function. When the STR73xF is in LPWFI mode the RTC keeps running, powered by the low power voltage regulator. UARTs The 4 UARTs allow full duplex, asynchronous, communications with external devices with independently programmable TX and RX baud rates up to 625K baud. Buffered Serial Peripheral Interfaces (BSPI) Each of the three BSPIs allow full duplex, synchronous communications with external devices, master or slave communication at up 6 Mb/s (@36 MHz System Clock). 5/39 STR73xF - INTRODUCTION I2C Interfaces The two I2C Interfaces provide multi-master and slave functions, support normal and fast I2C mode (400 kHz) and 7 or 10-bit addressing modes. A/D Converter The 10-bit Analog to Digital Converter, converts up to 16 channels in single-shot or continuous conversion modes (12 channels in 100-pin devices). The minimum conversion time is 3us. Watchdog The 16-bit Watchdog Timer protects the application against hardware or software failures and ensures recovery by generating a reset. I/O Ports Up to 112 I/O ports (72 in 100-pin devices) are programmable as general purpose input/ output or Alternate Function. External Interrupts and Wake-Up Lines 16 external interrupts lines are available for application use. In addition, up to 32 external Wakeup lines (18 in 100-pin devices) can be used as general purpose interrupts or to wake-up the application from STOP mode. 6/39 STR73xF - INTRODUCTION Figure 1. STR730F/STR735F Block Diagram RSTIN PRCCU/PLL ARM7TDMI CPU ARM7 NATIVE BUS FLASH Program Memory 64/128/256K RAM 16K APB BRIDGE 0 APB BRIDGE 1 M0 M1 TEST JTDI JTCK JTMS JTRST JTDO V18 VDD VSS VDDA VSSA JTAG POWER SUPPLY VREG AHB BRIDGE AHB BUS DMA0-3 CLOCK MGT (CMU) XTAL1 XTAL2 OSC RTC WATCHDOG I2C0-1 WAKEUP/INT (WIU) UART0, 1, 2, 3 APB BUS APB BUS 4 AF 32 AF 8 AF INTERRUPT CTL (EIC) 16 AF 12 AF 12 AF 6 AF 6 AF 122 ports A/D CONVERTER (ADC) TIMER (TIM) 2-4 BSPI 0-2 CAN 0-2* PWM 0-5 GPIO PORTS 0-6 TIMEBASE TIMER (TB) 0-2 WAKEUP TIMER (WUT) TIMER (TIM) 0-1 TIMER (TIM) 5-9 8 AF 20 AF *CAN peripherals not available on STR735F. AF: alternate function on I/O port pin 7/39 STR73xF - INTRODUCTION Figure 2. STR731F/STR736 Block Diagram RSTIN PRCCU/PLL ARM7TDMI CPU ARM7 NATIVE BUS FLASH Program Memory 64/128/256K RAM 16K APB BRIDGE 0 APB BRIDGE 1 M0 M1 TEST JTDI JTCK JTMS JTRST JTDO V18 VDD VSS VDDA VSSA JTAG POWER SUPPLY VREG AHB BRIDGE AHB BUS DMA0-3 CLOCK MGT (CMU) XTAL1 XTAL2 OSC RTC WATCHDOG I2C0-1 WAKEUP/INT (WIU) UART0, 1, 2, 3 APB BUS APB BUS 4 AF 18 AF 8 AF INTERRUPT CTL (EIC) 12 AF 12 AF 12 AF 6 AF 6 AF 72 ports A/D CONVERTER (ADC) TIMER (TIM) 2-4 BSPI 0-2 CAN 0-2* PWM 0-5 GPIO PORTS 0-6 TIMEBASE TIMER (TB) 0-2 WAKEUP TIMER (WUT) TIMER (TIM) 0-1 TIMER (TIM) 5 8 AF 4 AF *CAN peripherals not available on STR736F. AF: alternate function on I/O port pin 8/39 STR73xF - INTRODUCTION 1.2 Related Documentation Available from www.arm.com: ARM7TDMI Technical Reference Manual Available from http://www.st.com: STR73x Reference Manual STR7 Flash Programming Reference Manual STR73x Software Library User Manual For a list of related application notes refer to http://www.st.com. 9/39 STR73xF - INTRODUCTION 1.3 Pin Description 1.3.1 STR730F/STR735F (TQFP144) Figure 3. STR730F/STR735F Pin Configuration (top view) OCMPB2 / P0.0 OCMPA2 / P0.1 ICAPA2 / P0.2 ICAPB2 / P0.3 VSS VDD OCMPA5 / P0.4 OCMPB5 / P0.5 ICAPA5 / P0.6 ICAPB5 / P0.7 OCMPA6 / P0.8 OCMPB6 / P0.9 OCMPA7 / P0.10 OCMPB7 / P0.11 VDD VSS ICAPA3 / P0.12 ICAPB3 / P0.13 OCMPB3 / P0.14 OCMPA3 / P0.15 OCMPA4 / P1.0 OCMPB4 / P1.1 ICAPB4 / P1.2 ICAPA4 / P1.3 VSS VDD P1.4 P1.5 OCMPB1 / P1.6 OCMPA1 / P1.7 INT0 / OCMPA0 / P1.8 INT1 / OCMPB0 / P1.9 ICAPB0 / WUP28 / P1.10 ICAPA0 / WUP29 / P1.11 ICAPA1 / WUP30 / P1.12 ICAPB1 / WUP31 / P1.13 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 P6.15 / WUP9 P6.14 / SS0 P6.13 / SCK0 / WUP11 P6.12 / MOSI0 P6.11 / MISO0 P6.10 / WUP8 P6.9 / TDO0 P6.8 / RDI0 / WUP10 P6.7 / WUP7 P6.6 / WUP6 P6.5 / WUP5 P6.4 / TDO3 / WUP4 P6.3 / WUP3 P6.2 / RDI3 / WUP2 P6.1 / WUP1 P6.0 / WUP0 VDD VSS V18 P5.15 / INT13 P5.14 / INT12 P5.13 / INT11 P5.12 / INT10 P5.11 / TDO2 / INT9 P5.10 / RDI2 / INT8 P5.9 / INT7 P5.8 / INT6 P5.7 / MISO2 P5.6 / MOSI2 P5.5 / SCK2 / WUP23 P5.4 / SS2 P5.3 / OCMPB9 P5.2 / OCMPA9 P5.1 / MISO1 P5.0 / MOSI1 P4.15 / SCK1 / WUP22 STR730F/STR735F 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 P4.14 / SS1 P4.13 / ICAPB9 P4.12 / ICAPA9 / WUP21 P4.11 / OCMPB8 P4.10 / ICAPA6 / WUP20 P4.9 / ICAPB6 P4.8 / OCMPA8 P4.7 / SDA1 P4.6 / SCL1 / WUP19 P4.5 / CAN2RX / WUP18 P4.4 / CAN2TX P4.3 / ICAPB8 / WUP27 P4.2 / ICAPA8 / WUP26 P4.1 / ICAPB7 / WUP25 P4.0 / ICAPA7 / WUP24 VDD VSS JTDO JTCK JTMS JTDI JTRST VSS VDD P3.15 / AIN15 / INT5 P3.14 / AIN14 / INT4 P3.13 / AIN13 / INT3 P3.12 / AIN12 / INT2 P3.11 / AIN11 P3.10 / AIN10 P3.9 / AIN9 P3.8 / AIN8 VDDA VSSA P3.7 / AIN7 P3.6 / AIN6 Note 1: CAN alternate functions not available on STR735F. 10/39 WUP12 / CAN0RX / P1.14 CAN0TX / P1.15 PWM0 / P2.0 WUP13 / CAN1RX / P2.1 CAN1TX / P2.2 PWM1 / P2.3 PWM2 / P2.4 PWM3 / P2.5 PWM4 / P2.6 PWM5 / P2.7 M0 RSTIN M1 VDD VSS XTAL1 XTAL2 VSS TDO1 / P2.8 WUP14 / RDI1 / P2.9 WUP16 / P2.10 WUP17 / P2.11 INT14 / P2.12 INT15 / P2.13 WUP15 / SCL0 / P2.14 SDA0 / P2.15 TEST VBIAS VSS VDD AIN0 / P3.0 AIN1 / P3.1 AIN2 / P3.2 AIN3 / P3.3 AIN4 / P3.4 AIN5 / P3.5 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 STR73xF - INTRODUCTION 1.3.2 STR730F/STR735F (LFBGA144) Table 2. STR730F/STR735F LFBGA Ball Connections Ball A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 Name P0.0 / OCMPB2 P6.10 / WUP8 P6.9 / TDO0 P6.12 / MOSI0 P6.6 / WUP6 V18 P5.15 / INT13 P5.8 / INT6 P5.2 / OCMPA9 P5.7 / MISO2 P5.6 / MOSI2 P5.11 / TDO2 / INT9 Ball B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 Name P0.4 / OCMPA5 P0.1 / OCMPA2 P6.15 / WUP9 P6.13 / SCKO / WUP11 P6.7 / WUP7 P6.2 / WUP2 / RDI3 P5.14 / INT12 P5.9 / INT7 P5.3 / OCMPB9 P5.0 / MOSI1 P4.15 / SCK1 / WUP22 P4.8 / OCMPA8 Ball C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 Name P0.5 / OCMPB5 P0.2 / ICAPA2 P0.3 / ICAPB2 P6.14 / SSO P6.8 / RDI0 / WUP10 P6.3 / WUP3 VSS P5.10 / INT8 / RDI2 P5.4 / SS2 P5.1 / MISO1 P4.14 / SS1 P4.7 / SDA1 Ball D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 Name VSS VDD P0.6 / ICAPA5 P0.7 /ICAPB5 P6.11 / MISO0 P6.4 / WUP4 /TDO3 VDD P5.12 / INT10 P5.5 / SCK2 / WUP23 P4.13 / ICAPB9 P4.12 / ICAPA9 / WUP21 P4.11 / OCMPB8 E1 E2 E3 E4 E5 E6 E7 E8 E9 P0.8 / OCMPA6 P0.9 / OCMPB6 P0.10 / OCMPA7 P0.11 / OCMPB7 P0.12 / ICAPA3 P6.5 / WUP5 P6.0 / WUP0 P5.13 / INT11 P4.10 / ICAPA6 / WUP20 F1 F2 F3 F4 F5 F6 F7 F8 F9 VDD P0.13 / ICAPB3 P0.14 / OCMPB3 P0.15 / OCMPA3 P1.0 / OCMPA4 P1.1 / OCMPB4 P6.1 / WUP1 P4.4 / CAN2TX1) G1 G2 G3 G4 G5 G6 G7 G8 G9 VSS P1.2 / ICAPB4 P1.3 / ICAPA4 VSS P1.5 P2.11 / WUP17 P4.0 / ICAPA7 / WUP24 VDD VSS H1 H2 H3 H4 H5 H6 H7 H8 H9 VDD P1.8 / OCMPA0 / INT0 P1.9 / OCMPB0 / INT1 P1.10 / ICAPB0 / WUP28 XTAL2 P2.10 / WUP16 P2.15 / SDA 0 JTMS VSS P4.3 / ICAPB8 / WUP27 11/39 STR73xF - INTRODUCTION Table 2. STR730F/STR735F LFBGA Ball Connections Ball E10 E11 E12 Name P4.9 / ICAPB6 P4.6 / SCL1 / WUP19 P4.5 / WUP18 / CAN2RX 1) Ball F10 F11 F12 Name P4.2 / ICAPA8 / WUP26 P4.1 / ICAPB7 / WUP25 JTDI Ball G10 G11 G12 Name JTDO JTCK nJTRST Ball H10 H11 H12 Name VDD P3.15 / AIN15 / INT5 P3.14 / AIN14 / INT4 J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 P1.4 P1.11 / ICAPA0 / WUP29 P1.12 / ICAPA1 / WUP30 P2.7 / PWM5 VDD P2.9 / RDI1 / WUP14 P2.14 / SCL 0 / WUP15 P3.1 / AIN1 P3.13 / AIN13 / INT3 P3.12 / AIN12 / INT2 P3.9 / AIN9 P3.8 / AIN8 K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 P1.6 / OCMPB1 P1.13 / ICAPB1 / WUP31 P2.1 / WUP13 CAN1RX1) / L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 P1.7 / OCMPA1 P1.15 / CAN0TX1) P2.0 / PWM0 P2.3 / PWM1 RSTIN VSS P2.12 / INT14 VBIAS P3.3 / AIN3 P3.5 / AIN5 P3.7 / AIN7 P3.10 / AIN10 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 P1.14 / CAN0RX 1) / WUP12 P2.4 / PWM2 P2.5 / PWM3 P2.2 / CAN1TX1) M0 VSS XTAL1 TST P3.2 / AIN2 VSS VDD P3.6 / AIN6 P2.6 / PWM4 M1 P2.8 / TDO1 P2.13 / INT15 P3.0 / AIN0 P3.4 / AIN4 VDDA VSSA P3.11 / AIN11 Note 1: CAN alternate functions not available on STR735F. 12/39 STR73xF - INTRODUCTION 1.3.3 STR731F/STR736F (TQFP100) Figure 4. STR731F/STR736F Pin Configuration (top view) OCMPB2 / P0.0 OCMPA2 / P0.1 ICAPA2 / P0.2 ICAPB2 / P0.3 OCMPA5 / P0.4 OCMPB5 / P0.5 ICAPA5 / P0.6 VDD VSS ICAPA3 / P0.12 ICAPB3 / P0.13 OCMPB3 / P0.14 OCMPA3 / P0.15 OCMPA4 / P1.0 OCMPB4 / P1.1 ICAPB4 / P1.2 ICAPA4 / P1.3 OCMPB1 / P1.6 OCMPA1 / P1.7 INT0 / OCMPA0 / P1.8 INT1 / OCMPB0 / P1.9 ICAPB0 / WUP28 / P1.10 ICAPA0 / WUP29 / P1.11 ICAPA1 / WUP30 / P1.12 ICAPB1 / WUP31 / P1.13 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 P6.14 / SS0 P6.13 / SCK0 / WUP11 P6.12 / MOSI0 P6.11 / MISO0 P6.9 / TDO0 P6.8 / RDI0 / WUP10 P6.6 / WUP6 P6.4 / TDO3 / WUP4 P6.2 / RDI3 / WUP2 P6.0 / WUP0 VDD VSS V18 P5.12 / INT10 P5.11 / TDO2 / INT9 P5.10 / RDI2 / INT8 P5.9 / PWM5 / INT7 P5.8 / PWM4 / INT6 P5.7 / MISO2 P5.6 / MOSI2 P5.5 / SCK2 / WUP23 P5.4 / SS2 /PWM3 P5.1 / MISO1 P5.0 / MOSI1 P4.15 / SCK1 / WUP22 STR731F/STR736F 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 P4.14 / SS1 P4.10 / ICAPB5 / WUP20 P4.7 / SDA1 P4.6 / SCL1 / WUP19 VDD VSS JTDO JTCK JTMS JTDI JTRST VSS VDD P3.15 / AIN11 / INT5 P3.14 / AIN10 / INT4 P3.13 / AIN9 / INT3 P3.12 / AIN8 / INT2 P3.11 / AIN7 P3.10 / AIN6 P3.9 / AIN5 P3.8 / AIN4 VDDA VSSA P3.7 / AIN3 P3.6 / AIN2 Note 1: CAN alternate functions not available on STR736F. WUP12 / CAN0RX / P1.14 CAN0TX / P1.15 PWM0 / P2.0 WUP13 / CAN1RX / P2.1 CAN1TX / P2.2 PWM1 / P2.3 PWM2 / P2.4 M0 RSTIN M1 VDD VSS XTAL1 XTAL2 VSS CAN2RX / TDO1 / P2.8 WUP14 / CAN2TX / RDI1 / P2.9 WUP15 / SCL0 / P2.14 SDA0 / P2.15 TEST VBIAS VSS VDD AIN0 / P3.4 AIN1 / P3.5 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 13/39 STR73xF - INTRODUCTION Legend / Abbreviations for Table 3: Type: I = input, O = output, S = supply, HiZ= high impedance, In/Output level: TT= TTL 0.8V / 2V with input trigger CT= CMOS 0.3VDD/0.7VDD with input trigger Port and control configuration: - Input: pu/pd = with internal 100k weak pull-up or pull down - Output: OD = open drain (logic level) PP = push-pull Interrupts: INTx =external interrupt line WUPx =Wake-Up interrupt line The reset state of the I/O ports is input floating. To avoid excess power consumption, unused I/O ports must be tied to ground. Table 3. STR73xF Pin Description Pin n LFBGA144 Input Level TQFP144 TQFP100 Type Pin Name Input interrupt pu/pd Output Capability Main function (after reset) Alternate function OD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 A1 B2 C2 C3 D1 D2 B1 C1 D3 D4 E1 E2 E3 E4 F1 G1 E5 F2 F3 1 2 3 4 P0.0/OCMPB2 P0.1/OCMPA2 P0.2/ICAPA2 P0.3/ICAPB2 VSS VDD I/O TT I/O TT I/O TT I/O TT S S I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT 2mA X 2mA X 2mA X 2mA X PP X X X X X X X X X X X X Port 0.0 TIM2: Output Compare B output Port 0.1 TIM2: Output Compare A output Port 0.2 TIM2: Input Capture A input Port 0.3 TIM2: Input Capture B input Ground for digital I/O (5V) Supply voltage for digital I/O (5V) 5 6 7 P0.4/OCMPA5 P0.5/OCMPB5 P0.6/ICAPA5 P0.7/ICAPB5 P0.8/OCMPA6 P0.9/OCMPB6 2mA X 2mA X 2mA X 2mA X 2mA X 2mA X 2mA X 2mA X Port 0.4 TIM5: Output Compare A output Port 0.5 TIM5: Output Compare B output Port 0.6 TIM5: Input Capture A input Port 0.7 TIM5: Input Capture B input Port 0.8 TIM6: Output Compare A output Port 0.9 TIM6: Output Compare B output Port 0.10 Port 0.11 TIM7: Output Compare A output TIM7: Output Compare B output P0.10/OCMPA7 I/O TT P0.11/OCMPB7 I/O TT 8 9 10 11 12 VDD VSS P0.12/ICAPA3 P0.13/ICAPB3 S S I/O TT I/O TT Supply voltage for digital I/O (5V) Ground for digital I/O (5V) 2mA X 2mA X 2mA X X X X Port 0.12 Port 0.13 Port 0.14 TIM3: Input Capture A input TIM3: Input Capture B input TIM3: Output Compare B output P0.14/OCMPB3 I/O TT 14/39 STR73xF - INTRODUCTION Table 3. STR73xF Pin Description Pin n LFBGA144 Input Level TQFP144 TQFP100 Type Pin Name Input interrupt pu/pd Output Capability Main function (after reset) Port 0.15 Alternate function OD 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 F4 F5 F6 G2 G3 G4 H1 J1 G5 K1 L1 H2 H3 H4 J2 J3 K2 M1 L2 L3 K3 M4 L4 M2 M3 K4 J4 M5 L5 K5 J5 13 14 15 16 17 P0.15/OCMPA3 I/O TT P1.0/OCMPA4 P1.1/OCMPB4 P1.2/ICAPB4 P1.3/ICAPA4 VSS VDD P1.4 P1.5 I/O TT I/O TT I/O TT I/O TT S S I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I I I S INT0 INT1 2mA X 2mA X 2mA X 2mA X 2mA X PP X X X X X TIM3: Output Compare A output Port 1.0 TIM4: Output Compare A output Port 1.1 TIM4: Output Compare B output Port 1.2 TIM4: Input Capture B input Port 1.3 TIM4: Input Capture A input Ground for digital I/O (5V) Supply voltage for digital I/O (5V) 2mA X 2mA X 2mA X 2mA X 2mA X 2mA X X X X X X X X X X X X X X X X X X X X X Port 1.4 Port 1.5 Port 1.6 TIM1: Output Compare B output Port 1.7 TIM1: Output Compare A output Port 1.8 TIM0: Output Compare A output Port 1.9 TIM0: Output Compare B output Port 1.10 Port 1.11 Port 1.12 Port 1.13 Port 1.14 Port 1.15 TIM0: Input Capture B input TIM0: Input Capture A input TIM1: Input Capture A input TIM1: Input Capture B input CAN0: Receive Data input CAN0: Transmit Data output 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 P1.6/OCMPB1 P1.7/OCMPA1 P1.8/OCMPA0 P1.9/OCMPB0 P1.10/ICAPB0 P1.11/ICAPA0 P1.12/ICAPA1 P1.13/ICAPB1 P1.14/CAN0RX P1.15/CAN0TX P2.0/PWM0 P2.1/CAN1RX P2.2/CAN1TX P2.3/PWM1 P2.4/PWM2 P2.5/PWM3 P2.6/PWM4 P2.7/PWM5 WUP28 2mA X WUP29 2mA X WUP30 2mA X WUP31 2mA X WUP12 2mA X 2mA X 2mA X WUP13 2mA X 2mA X 2mA X 2mA X 2mA X 2mA X 2mA X Port 2.0 PWM0: PWM output Port 2.1 CAN1: Receive Data input Port 2.2 CAN1: Transmit Data output Port 2.3 PWM1: PWM output Port 2.4 PWM2: PWM output Port 2.5 PWM3: PWM output Port 2.6 PWM4: PWM output Port 2.7 PWM5: PWM output BOOT: Mode selection 0 input Reset input BOOT: Mode selection 1 input Supply voltage for digital I/O (5V) 33 34 35 36 M0 RSTIN M1 VDD TT pd CT pu TT pd 15/39 STR73xF - INTRODUCTION Table 3. STR73xF Pin Description Pin n LFBGA144 Input Level TQFP144 TQFP100 Type Pin Name Input interrupt pu/pd Output Capability Main function (after reset) Alternate function OD 51 52 53 54 55 M6 M7 H5 L6 K6 37 38 39 40 41 VSS XTAL1 XTAL2 VSS P2.8/TDO1/ CAN2RX P2.9/RDI1/ CAN2TX P2.10 P2.11 P2.12 P2.13 S I O S I/O TT 2mA X X PP Ground for digital I/O (5V) Oscillator amplifier circuit input and internal clock generator input. Oscillator amplifier circuit output. Ground for digital I/O (5V) Port 2.8 CAN2: Receive UART1: Transmit Data input Data output (TQFP100 only) UART1: Receive Data input CAN2: Transmit Data output (TQFP100 only) 56 57 58 59 60 61 62 63 64 J6 H6 G6 L7 K7 J7 H7 M8 L8 42 I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I S S S I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT pd WUP14 2mA X WUP16 2mA X WUP17 2mA X INT14 2mA X INT15 2mA X WUP15 2mA X 2mA X X X X X X X X Port 2.9 Port 2.10 Port 2.11 Port 2.12 Port 2.13 Port 2.14 Port 2.15 43 44 45 46 P2.14/SCL0 P2.15/SDA0 Test VBIAS VSS VDD P3.0/AIN0 P3.1/AIN1 P3.2/AIN2 P3.3/AIN3 I2C0:Serial Clock I2C0:Serial Data Reserved pin. Must be tied to ground Internal RC Oscillator bias. A 1.3M external resistor has to be connected to this pin when a 32kHZ RC oscillator frequency is used. Ground for digital I/O (5V) Supply voltage for digital I/O (5V) 2mA X 2mA X 2mA X 2mA X 2mA X 2mA X 2mA X 2mA X X X X X X X X X Port 3.0 ADC: Analog input 0 Port 3.1 ADC: Analog input 1 Port 3.2 ADC: Analog input 2 Port 3.3 ADC: Analog input 3 Port 3.4 Port 3.5 Port 3.6 Port 3.7 ADC: Analog input 4 (AIN0 in TQFP100) ADC: Analog input 5 (AIN1 in TQFP100) ADC: Analog input 6 (AIN2 in TQFP100) ADC: Analog input 7 (AIN3 in TQFP100) 65 M10 47 66 M11 48 67 68 69 70 71 K8 J8 M9 L9 K9 49 P3.4/AIN4 P3.5/AIN5 P3.6/AIN6 P3.7/AIN7 72 L10 50 73 M12 51 74 L11 52 16/39 STR73xF - INTRODUCTION Table 3. STR73xF Pin Description Pin n LFBGA144 Input Level TQFP144 TQFP100 Type Pin Name Input interrupt pu/pd Output Capability Main function (after reset) Alternate function OD 75 K11 53 76 K10 54 77 J12 55 78 J11 56 79 L12 57 80 K12 58 81 J10 59 82 J9 60 VSSA VDDA P3.8/AIN8 P3.9/AIN9 P3.10/AIN10 P3.11/AIN11 P3.12/AIN12 P3.13/AIN13 P3.14/AIN14 P3.15/AIN15 VDD VSS JTRST JTDI JTMS JTCK JTDO VSS VDD P4.0/ICAPA7 P4.1/ICAPB7 P4.2/ICAPA8 P4.3/ICAPB8 P4.4/CAN2TX P4.5/CAN2RX P4.6/SCL1 P4.7/SDA1 P4.8/OCMPA8 P4.9/ICAPB6 S S I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT S S I I I I O S S I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT WUP24 2mA X WUP25 2mA X WUP26 2mA X WUP27 2mA X 2mA X WUP18 2mA X WUP19 2mA X 2mA X 2mA X 2mA X X X X X X X X X X X TT pu INT2 INT3 INT4 INT5 2mA X 2mA X 2mA X 2mA X 2mA X 2mA X 2mA X 2mA X X X X X X X X X PP Reference ground for A/D converter Reference voltage for A/D converter Port 3.8 Port 3.9 Port 3.10 Port 3.11 Port 3.12 Port 3.13 Port 3.14 Port 3.15 ADC: Analog input 8 (AIN4 in TQFP100) ADC: Analog input 9 (AIN5 in TQFP100) ADC: Analog input 10 (AIN6 in TQFP100) ADC: Analog input 11 (AIN7 in TQFP100) ADC: Analog input 12 (AIN8 in TQFP100) ADC: Analog input 13 (AIN9 in TQFP100) ADC: Analog input 14 (AIN10 in TQFP100) ADC: Analog input 15 (AIN11 in TQFP100) 83 H12 61 84 H11 62 85 H10 63 86 H9 64 87 G12 65 88 F12 66 89 H8 67 Supply voltage for digital I/O (5V) Ground for digital I/O (5V) JTAG Reset Input JTAG Data input JTAG Mode Selection Input JTAG Clock Input 4mA JTAG data output. Note: Reset state = HiZ Ground for digital I/O (5V) Supply voltage for digital I/O (5V) Port 4.0 TIM7: Input Capture A input Port 4.1 TIM7: Input Capture B input Port 4.2 TIM8: Input Capture A input Port 4.3 TIM8: Input Capture B input Port 4.4 CAN2: Transmit Data output Port 4.5 CAN2: Receive Data input Port 4.6 I2C1:Serial Clock Port 4.7 I2C1:Serial Data Port 4.8 TIM8: Output Compare A output Port 4.9 TIM6: Input Capture B input TT pu TT pu TT pd 90 G11 68 91 G10 69 92 93 94 G9 G8 G7 70 71 95 F11 96 F10 97 98 F9 F8 99 E12 100 E11 72 101 C12 73 102 B12 103 E10 17/39 STR73xF - INTRODUCTION Table 3. STR73xF Pin Description Pin n LFBGA144 Input Level TQFP144 TQFP100 Type Pin Name Input interrupt pu/pd Output Capability Main function (after reset) Alternate function OD PP 104 E9 105 D12 106 D11 107 D10 74 P4.10/ICAPA6/ ICAPB5 I/O TT WUP20 2mA X 2mA X WUP21 2mA X 2mA X 2mA X WUP22 2mA X 2mA X 2mA X 2mA X 2mA X 2mA X WUP23 2mA X 2mA X 2mA X INT6 INT7 INT8 INT9 2mA X 2mA X 2mA X 2mA X X X X X X X X X X X X X X X X X X X X X X X Port 4.10 Port 4.11 Port 4.12 Port 4.13 Port 4.14 Port 4.15 TIM6: Input TIM5: Input Capture A input Capture B input (144-pin pkg only) (TQFP100 only) TIM8: Output Compare B output TIM9: Input Capture A input TIM9: Input Capture B input BSPI1: Slave Select BSPI1: Serial Clock P4.11/OCMPB8 I/O TT P4.12/ICAPA9 P4.13/ICAPB9 P4.14/SS1 P4.15/SCK1 P5.0/MOSI1 P5.1/MISO1 P5.2/OCMPA9 P5.3/OCMPB9 79 80 P5.4/SS2/ PWM3 P5.5/SCK2 P5.6/MOSI2 P5.7/MISO2 P5.8/PWM4 P5.9/PWM5 P5.10/RDI2 P5.11/TDO2 P5.12 P5.13 P5.14 P5.15 88 89 90 V18 VSS VDD I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT S S S 108 C11 75 109 B11 76 110 B10 77 111 C10 78 112 A9 113 B9 114 C9 115 D9 Port 5.0 BSPI1: Master Output/Slave input Port 5.1 BSPI1: Master input/Slave output Port 5.2 TIM9: Output Compare A output Port 5.3 TIM9: Output Compare B output Port 5.4 BSPI2: Slave Select PWM3: PWM output (TQFP100 only) Port 5.5 BSPI2: Serial Clock Port 5.6 BSPI2: Master Output/Slave input Port 5.7 BSPI2: Master input/Slave output Port 5.8 PWM4: PWM output (TQFP100 only) Port 5.9 PWM5: PWM output (TQFP100 only) Port 5.10 Port 5.11 Port 5.12 Port 5.13 Port 5.14 Port 5.15 Supply voltage for core provided by internal voltage regulator Ground for digital I/O (5V) Supply voltage for digital I/O (5V) UART2: Receive Data input UART2: Transmit Data output 116 A11 81 117 A10 82 118 A8 119 B8 120 C8 83 84 85 121 A12 86 122 D8 123 E8 124 B7 125 A7 126 A6 127 C7 128 D7 87 INT10 2mA X INT11 2mA X INT12 2mA X INT13 2mA X 18/39 STR73xF - INTRODUCTION Table 3. STR73xF Pin Description Pin n LFBGA144 Input Level TQFP144 TQFP100 Type Pin Name Input interrupt pu/pd Output Capability Main function (after reset) Port 6.0 Port 6.1 Port 6.2 UART3: Receive Data input Port 6.3 Port 6.4 UART3: Transmit Data output Port 6.5 Port 6.6 Port 6.7 Port 6.8 UART0: Receive Data input Port 6.9 UART0: Transmit Data output Port 6.10 Port 6.11 Port 6.12 Port 6.13 Port 6.14 Port 6.15 BSPI0: Master input/Slave output BSPI0: Master Output/Slave input BSPI0: Serial Clock BSPI0: Slave Select Alternate function OD 129 E7 130 F7 131 B6 132 C6 133 D6 134 E6 135 A5 136 B5 137 C5 138 A3 139 A2 140 D5 141 A4 142 B4 91 P6.0 P6.1 I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT I/O TT WUP0 8mA X WUP1 2mA X WUP2 2mA X WUP3 2mA X WUP4 2mA X WUP5 2mA X WUP6 2mA X WUP7 2mA X WUP10 2mA X 2mA X WUP8 2mA X 2mA X 2mA X WUP11 2mA X 2mA X WUP9 2mA X 92 P6.2/RDI3 P6.3 93 P6.4/TDO3 P6.5 94 P6.6 P6.7 95 96 P6.8/RDI0 P6.9/TDO0 P6.10 97 98 99 P6.11/MISO0 P6.12/MOSI0 P6.13/SCK0 143 C4 100 P6.14/SS0 144 B3 P6.15 PP X X X X X X X X X X X X X X X X 19/39 STR73xF - INTRODUCTION 1.4 Memory Mapping Figure 5 shows the various memory configurations of the STR73xF system. The system memory map (from 0x0000_0000 to 0xFFFF_FFFF) is shown on the left part of the figure, the right part shows maps of the Flash and APB areas. For flexibility the Flash or RAM addresses can be aliased to Block 0 addresses using the remapping feature Most reserved memory spaces (gray shaded areas in Figure 5) are protected from access by the user code. When an access this memory space is attempted, an ABORT signal is generated. Depending on the type of access, the ARM processor will enter "prefetch abort" state (Exception vector 0x0000_000C) or "data abort" state (Exception vector 0x0000_0010). It is up to the application software to manage these abort exceptions. 20/39 STR73xF - INTRODUCTION Figure 5. Memory Map Addressable Memory Space 4 Gbytes 0xFFFF FFFF 0xFFFF 8000 APB TO ARM7 BRIDGE APB Memory Space 32 Kbytes 0xFFFF FFFF 0xFFFF FC00 0xFFFF FBFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF F800 F7FF F600 F400 F3FF 32K EIC ADC CMU RTC DMA 0-3 TIM 4 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 7 0xE000 0000 0xDFFF FFFF FLASH Memory Space 64K/128/256 Kbytes 0x8010 DFFF 0xFFFF F000 0xFFFF EFFF 0xFFFF EC00 0xFFFF EBFF 6 0xC000 0000 0xBFFF FFFF System Memory Flash registers 0x8010 C000 0x8010 0017 0x8010 0000 8K 20B TIM 3 0xFFFF E800 0xFFFF E7FF TIM 2 0xFFFF E400 0xFFFF E3FF 0xFFFF E000 0xFFFF DFFF 0xFFFF DC00 0xFFFF DBFF BSPI 2 BSPI 1 BSPI 0 GP I/O 0-6 PWM 0-5 CAN 2(4) 5 0xA000 3FFF 0xA000 0000 0x9FFF FFFF RAM 0xFFFF D800 0xFFFF D7FF 0xFFFF D400 0xFFFF D3FF 16K 0xFFFF D000 0xFFFF CFFF 0xFFFF CC00 0xFFFF CBFF 4 0x8010 0017 0x8000 0000 0x7FFF FFFF FLASH 0xFFFF C800 0xFFFF C7FF 0xFFFF C400 0xFFFF C3FF CAN 1(4) CAN 0(4) 64K/128K/256K 0xFFFF C000 0xFFFF BFFF 0xFFFF BC00 0xFFFF BBFF APB BRIDGE 1 REGS reserved WAKEUP reserved TIM 5-9 TIM 1 TIM 0 WAKEUPTIM WDG UART 3 UART 1 UART 2 UART 0 TB 0-2 3 0x6000 03FF 0x6000 0000 0x5FFF FFFF PRCCU 0xFFFF B800 0xFFFF B7FF 0xFFFF B400 0xFFFF B3FF 1K 0x8003 FFFF 0xFFFF B000 0xFFFF AFFF B0F7(2) 64K 0xFFFF AC00 0xFFFF ABFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF A800 A7FF A600 A400 A3FF A200 A000 9FFF 9E00 9C00 9BFF 2 0x4000 003F 0x4000 0000 0x3FFF FFFF CONFIG. REGS 0x8003 0000 0x8002 FFFF 64B 0x8002 0000 0x8001 FFFF B0F6(2) 64K 1 0x2000 000F 0x2000 0000 0x1FFF FFFF NATIVE ARBITER B0F5(3) 64K 0xFFFF 9800 0xFFFF 97FF reserved 0xFFFF 9400 0xFFFF 93FF 16B 0x8001 0000 0x8000 FFFF 0xFFFF 9000 0xFFFF 8FFF reserved reserved I C1 I2C 0 APB BRIDGE 0 REGS 2 B0F4 0x8000 0x8000 0x8000 0x8000 0x8000 0x8000 0x8000 0x8000 0x8000 8000 7FFF 6000 5FFF 4000 3FFF 2000 1FFF 0000 32K 8K 8K 8K 8K 0xFFFF 8C00 0xFFFF 8BFF 0xFFFF 8800 0xFFFF 87FF 0xFFFF 8400 0xFFFF 83FF 0xFFFF 8000 0 0x0010 0017 0x0000 0000 FLASH (1) B0F3 B0F2 B0F1 B0TF 64K/128K/256K (1) FLASH aliased at 0x0000 0000h by system decoder for booting with valid instruction upon RESET from Block B0 (8 Kbytes) (2) Only available in STR73xZ2/V2 (3) Only available in STR73xZ2/V2 and STR73xZ1/V1 (4) Only available in STR730/STR731 Drawing not to scale access to gray shaded area will return an ABORT 21/39 STR73xF - ELECTRICAL CHARACTERISTICS 2 ELECTRICAL CHARACTERISTICS This product contains devices to protect the inputs against damage due to high static voltages, however it is advisable to take normal precautions to avoid application of any voltage higher than the specified maximum rated voltages. For proper operation it is recommended that VIN be higher than VSS and lower than VDD. Reliability is enhanced if unused inputs are connected to an appropriate logic voltage level (VDD or VSS). The parameters listed in the following tables represent the characteristics of the STR73xF and its demands on the system. Caution: All values indicated in this section are preliminary and to be confirmed by product characterization. 2.1 Absolute Maximum Ratings Stresses exceeding the recommended "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During overload conditions (VIN>VDD or VIN 1) Unit V V V V mA mA C V 75 -55 to +150 2000 Note 1: In 144-pin devices, only +10mA on P0.3, P1.13, P3.6 and P4.13 pins (negative injection not allowed). 22/39 STR73xF - ELECTRICAL CHARACTERISTICS 2.2 Recommended Operating Conditions Table 5. Operating Conditions Value Symbol VDD VSSA VDDA TA TJ Parameter Min Operating Supply Voltage with respect to ground (VSS) Voltage on VSSA pin with respect to ground (VSS) Operating Analog Reference Voltage with respect to ground (VSS) Ambient temperature under bias Junction temperature under bias 4.5 VSS 4.5 -40 -40 Max 5.5 VSS VDD + 0.1 +105 +125 V V V C C Unit Note RAM data retention is not guaranteed when VDD is below 3.5Volt. 2.3 Voltage Regulator Characteristics VDD = 5V 10%, TA = -40 / +105C, unless otherwise specified. Figure 6. Voltage Regulator Characteristics Symbol VREG VOUT CV18 Parameter Input Voltage to bypass regulator Main Regulator Output Voltage External decoupling capacitor to be connected between V18 pin and nearest VSS pin. 10 Conditions Value Min 1.7 Typ 1.8 1.8 100 nF Max 1.9 Unit V 23/39 STR73xF - ELECTRICAL CHARACTERISTICS 2.4 Preliminary Power Consumption Data Table 6 to Table 8 give expected typical values based on bench measurements on a small number of parts. Table 6. STR73xF consumption in Run mode at 85C Conditions fMCLK (MHz) 10 Code executing in RAM TA= 85C, VDD= 5.5V, fADC=10 MHz, ADC in scan mode, CMU on, RTC enabled, 1 Timer running Code executing in Flash 20 32.3 20 10 29.5 22.2 IDD (mA) 20.9 Table 7. STR73xF consumption in Run mode at 25C Conditions fMCLK (MHz) 10 Code executing in RAM 20 10 TA= 25C, VDD= 5.5V, ADC in scan mode, CMU on, RTC enabled, 1 Timer running Code executing in Flash 20 1.4 Off 31.2 25.6 10 21.7 31.4 28.8 fADC (MHz) IDD (mA) 20.3 Table 8. Comparison of different configurations at 25C Low Power Mode Run Mode All peripherals on 36 MHz Main Voltage Regulator off, Flash in power down mode, RTC off Stop Mode Main Voltage Regulator off, Flash in power down mode, RTC on 387 A 77.7 mA 82.4 A fMCLK 24 MHz IDD 56.8 mA 24/39 STR73xF - ELECTRICAL CHARACTERISTICS Low Power Mode Main Voltage Regulator on, Flash in power down mode, CLK2_16 LPWAIT Main Voltage Regulator off, Flash in power down mode, CLK2_16 Main Voltage Regulator on, Flash on, CLK2_16 Main Voltage Regulator off, Flash on, CLK2_16 SLOW Main Voltage Regulator on, Flash on, CLK2, PLL off Main Voltage Regulator off, Flash on, 32kHz RC fMCLK 250 kHz IDD 4.99 mA 250 kHz 1.02 mA 250kHz 7.01mA 250kHz 2.7mA 4 MHz 8.89mA 32 kHz 2 MHz 6.83mA 8.22mA 25mA 32.9mA 81.9A WAIT 24 MHz 36 MHz HALT 25/39 STR73xF - ELECTRICAL CHARACTERISTICS 2.5 DC Electrical Characteristics VDD = 5V 10%, TA = -40 / +105C, unless otherwise specified. Table 9. DC Electrical Characteristics Value Symbol Parameter Input High Level TTL Schmitt Trigger M0, M1 144-pin: P0(15:0), P1(15:0), P2(15:0), P3(15:0), P4(15:0), P5(15:0), P6(15:0), 100-pin: P0(15:0), P1(15:0), P2(15:0), P3(15:0), P4(7:0) Input High Level TTL Schmitt Trigger JTDI, JTCK, JTRST, JTMS Input High Level CMOS Schmitt Trigger RSTIN Input Low Level TTL Schmitt Trigger M0, M1 144-pin: P0(15:0), P1(15:0), P2(15:0), P3(15:0), P4(15:0), P5(15:0), P6(15:0), 100-pin: P0(15:0), P1(15:0), P2(15:0), P3(15:0), P4(7:0) Input Low Level TTL Schmitt Trigger JTDI, JTCK, JTRST, JTMS Input Low Level CMOS Schmitt Trigger RSTIN Input Hysteresis TTL Schmitt Trigger M0, M1 144-pin: P0(15:0), P1(15:0), P2(15:0), P3(15:0), P4(15:0), P5(15:0), P6(15:0), 100-pin: P0(15:0), P1(15:0), P2(15:0), P3(15:0), P4(7:0) Input Hysteresis TTL Schmitt Trigger JTDI, JTCK, JTRST, JTMS Input Hysteresis CMOS Schmitt Trigger RSTIN Conditions Min Typ Max Unit 2.0 - VDD+0.3 V VIH 2.0 - VDD+0.3 V 0.7 VDD - VDD+0.3 V -0.3 - 0.8 V VIL -0.3 - 0.8 V -0.3 - 0.3 VDD V 450 - - mV VHYS 450 - - mV 800 - - mV 26/39 STR73xF - ELECTRICAL CHARACTERISTICS Table 9. DC Electrical Characteristics Value Symbol Parameter Output high level standard 144-pin: P0(15:0), P1(15:0), P2(15:0), P3(15:0), P4(15:0), P5(15:0), P6(15:1) 100-pin: P0(15:0), P1(15:0), P2(15:0), P3(15), P3(13:0), P4(7:0) Output high level standard 144-pin: P6(0) 100-pin: P3(14) Output high level (JTAG) JTDO Output Low Level standard 144-pin: P0(15:0), P1(15:0), P2(15:0), P3(15:0), P4(15:0), P5(15:0), P6(15:1) 100-pin:P0(15:0), P1(15:0), P2(15:0), P3(15), P3(13:0), P4(7:0) Output Low Level standard 144-pin: P6(0) 100-pin: P3(14) Output Low Level (JTAG) JTDO Conditions Min Typ Max Unit Push Pull, IOH = 2mA VDD - 0.8 - - V VOH1 Push Pull, IOH = 8mA VDD - 0.8 - - V Push Pull, IOH = 4mA VDD - 0.8 - - V Push Pull, IOL= 2mA - - 0.4 V VOL Push Pull, IOL = 8mA - - 0.4 V Push Pull, IOL= 4mA - - 0.4 V Output transition time standard (10%-90% and 90%-10%) P0(15:0), P1(15:0), P2(15:0), CL = 20pF P3(15:0), P4(15:0), P5(15:0), CL = 50pF P6(15:1) P3(15), P3(13:0), P4(7:0) ttr Output transition time standard CL = 50pF (10%-90% and 90%-10%) CL = 100pF P6(0)P3(14) Output transition time (10%-90% and 90%-10%) JTDO RWPU RWPD Weak Pull-Up Resistor Weak Pull-Down Resistor CL = 20pF CL = 50pF 3 6 5 10 10 20 ns 1 3 2 3 80 80 3 5 3 6 120 120 7 10 7 12 200 200 ns ns k k 27/39 STR73xF - ELECTRICAL CHARACTERISTICS Table 9. DC Electrical Characteristics Value Symbol Parameter Input Leakage Current Standard M0, M1, JTDI, JTCK, JTRST, JTMS, RSTIN 144-pin: P0(15:0), P1(15:0), P2(15:0), P4(15:0), P5(15:0), P6(15:0) 100-pin: P0(15:0), P1(15:0), P2(15:14), P2(1:0), P3(15:0), P4(7:0) Input Leakage Current Analog Input 1) 1 A Conditions Min Typ Max Unit Ilkg - - 1 A This specification is not valid for outputs which are switched to open drain mode. In this case, the respective output will float and the voltage is imposed by external circuitry. 2.6 RSTIN Input Filter Characteristics VDD = 5V 10%, TA = -40 / +105C, unless otherwise specified. Table 10. RSTIN Input Filter Characteristics Symbol tFRST tNFRST tSTART Parameter RSTIN Input Filtered Pulse RSTIN Input Not Filtered Pulse RSTIN removal after Power-up Conditions Value Min 2000 100 Typ Max 50 Unit ns ns s 28/39 STR73xF - ELECTRICAL CHARACTERISTICS 2.7 Main Oscillator Electrical Characteristics The STR73xF can operate with a crystal oscillator or resonator clock source. Figure 7 describes a simple model of the internal oscillator driver as well as example of connection for an oscillator or a resonator. Figure 7. Crystal Oscillator and Resonator DEVICE VDD I R XTAL1 XTAL2 DEVICE XTAL1 XTAL2 XTAL1 DEVICE XTAL2 Resonator Crystal RS CL CL VDD = 5V 10%, TA = -40 / +105C, unless otherwise specified. Table 11. Main Oscillator Electrical Characteristics Symbol FOSC gm Parameter Oscillator frequency Oscillator Transconductance Conditions Value Min 4 1.5 2.3 Typ Max 8 4.2 Unit MHz mA/V 29/39 STR73xF - ELECTRICAL CHARACTERISTICS Table 11. Main Oscillator Electrical Characteristics Symbol VOSC VAV Parameter Oscillation amplitude Oscillator operating point Conditions fOSC = 4 MHz, TA= 25oC fOSC = 8 MHz, TA= 25oC Sine wave middle, TA= 25oC External crystal, VDD = 5.5V, fOSC = 4 MHz, TA=-40oC External crystal, VDD = 5.0V, fOSC = 4 MHz, TA=25oC tSTUP Oscillator Start-up Time External crystal, VDD = 5.5V, fOSC = 6 MHz, TA=-40oC External crystal, VDD = 5.0V, fOSC = 6 MHz, TA=25oC External crystal, VDD = 5.5V, fOSC = 8 MHz, TA=-40oC External crystal, VDD = 5.0V, fOSC = 8 MHz, TA= 25oC fOSC = 4 MHz Cp1 = 10pF C1 2 = C 2 3 = 10pF C1 = C2 = 20pF C1 = C2 = 30pF C1 = C2 = 40pF C1 = C2 = 10pF fOSC = 5 MHz Cp = 10pF C1 = C2 = 20pF C1 = C2 = 30pF C1 = C2 = 40pF R-ESR Module of oscillator Negative Resistance C1 = C2 = 10pF fOSC = 6 MHz Cp = 10pF C1 = C2 = 20pF C1 = C2 = 30pF C1 = C2 = 40pF C1 = C2 = 10pF fOSC = 7 MHz Cp = 10pF C1 = C2 = 20pF C1 = C2 = 30pF C1 = C2 = 40pF C1 = C2 = 10pF fOSC = 8MHz Cp = 10pF C1 = C2 = 20pF C1 = C2 = 30pF C1 = C2 = 40pF 1) 150 490 490 380 160 415 340 260 160 325 250 180 160 260 185 135 155 210 145 100 Value Min Typ 2.3 1.5 0.85 5.5 3.3 2.7 555 1035 1030 850 470 800 735 580 415 640 550 420 375 525 420 315 340 435 335 245 12 8 7 Max Unit V V ms ms ms ms ms ms CP represents the total capacitance between XTAL1 and XTAL2, including the shunt capacitance of the external quartz crystal as well as the total board parasitic cross-capacitance between XTAL1 track and XTAL2 track. C1 represents the total capacitance between XTAL1 and ground, including the external capacitance tied to XTAL1 pin (CL) as well as the total parasitic capacitance between XTAL1 track and ground (this includes application board track capacitance to ground and device pin capacitance). C2 represents the total capacitance between XTAL2 and ground, including the external capacitance tied to XTAL1 pin (CL) as well as the total parasitic capacitance between XTAL2 track and ground (this includes application board track capacitance to ground and device pin capacitance): 2) 3) 30/39 STR73xF - ELECTRICAL CHARACTERISTICS 2.8 PLL Electrical Characteristics VDD = 5V 10%, TA = -40 / +105C, unless otherwise specified. Table 12. PLL Electrical Characteristics Symbol fPLLIN1 Parameter PLL reference clock Conditions FREF_RANGE = `0' FREF_RANGE = `1' MX = "00" MX = "01" MX = "10" MX = "11" DX = 1..7 FREF_RANGE = `0', MX0 = '1' FREF_RANGE = `0', MX0 = '0' FREF_RANGE = `1', MX0 = '1' FREF_RANGE = `1', MX0 = '0' stable oscillator (fPLLIN = 4 MHz), stable VDD fPLLIN = 4 MHz (pulse generator) fPLLIN = 4 MHz (resonator) fPLLIN = 4 MHz (pulse generator) Value Min 1.5 3.0 20 x fPLLIN 12 x fPLLIN 28 x fPLLIN 16 x fPLLIN fPLLOUT/DX 1.5 2.7 2.7 5.1 300 1000 500 10 36 Typ Max 3.0 5.0 Unit MHz fPLLOUT fMCLK fFREE PLL output clock System clock PLL free running frequency MHz MHz MHz tLOCK PLL lock time PLL jitter (pk to pk) PLL Long term jitter s ps ns tPKJIT tLTJIT 1) fPLLIN is obtained from fOSC directly or through an optional divider by 2. 2.9 RC Oscillator Electrical Characteristics VDD = 5V 10%, TA = -40 / +105C, unless otherwise specified. Table 13. RC Oscillator Electrical Characteristics Symbol fRC IDD(RC) tSTUP tHFSTOP tLFSTOP Parameter RC Frequency RC Current consumption RC Start-up Time RC High Freq Recovery Time from STOP mode RC Low Freq Recovery Time from STOP mode Conditions High Frequency mode Low Frequency mode TA = 25 C, High Frequency mode TA = 25oC, Low Frequency mode Stable VDD, fRC = 2.35 MHz, TA = 25oC Exit from STOP mode, Freq = 2 MHz, TA = 25oC Exit from STOP mode, Freq = 32 kHz, TA = 25oC o Value Min Typ 2.35 29 90 10 TBD 2 31 Max Unit MHz kHz A A s s s 31/39 STR73xF - ELECTRICAL CHARACTERISTICS 2.10 Flash Electrical Characteristics VDD = 5V 10%, TA = -40 / +105C, unless otherwise specified. Table 14. Flash Electrical Characteristics Value Symbol Parameter Conditions Typ TA = 25 C 0 cycles tPW tPDW tES tES Word Program (32-bit) Double Word Program (64-bit) Bank 0 Program (128K) Bank 0 Program (256K) Sector Erase (8K) tES Sector Erase (32K) Sector Erase (64K) tRPD tPSL tESL tESRR tSP Recovery from Power-Down Program Suspend Latency Erase Suspend Latency Erase Suspend Request Rate Set Protection Min delay between 2 requests 10 60 72 145 not preprogrammed preprogrammed not preprogrammed preprogrammed not preprogrammed preprogrammed 50 80 1.3 2.6 0.7 0.6 1.6 1.2 2.8 2.0 0 cycles 60 95 1.5 3 1,1 0.9 2.4 1.8 4.2 3.0 40 10 300 Max TA = 105 C 10k cycles 120 190 3.1 6.2 1.3 1.1 3.0 2.3 5.3 3.8 40 10 300 s s s s s s s s s s ms s Unit 32/39 STR73xF - ELECTRICAL CHARACTERISTICS 2.11 ADC Electrical Characteristics VDD = 5V 10%, TA = -40 / +105C, unless otherwise specified. Table 15. ADC Electrical Characteristics Symbol VSSA VDDA VAINX2 fADC CAIN tS3 ton tC4 RASRC IINJ ADC Input Capacitance Sample time Power up time Conversion time Internal resistance of analog source Input current Injection Current injection on one ADC input, different from the converted one No current injection |ET| Total Unadjusted Error Current injection on adjacent channel -10 10 MHz fADC 3 1 10 2 7 Not sampling Sampling 10 MHz fADC 1 600 3 6 Parameter Analog Reference Ground Analog Reference Voltage Analog Input voltage Conditions Value Min VSS 4.5 1 Typ Max VSS VDD+0.1 VDDA 10 Unit V V V MHz pF s ns s k mA LSB LSB VSSA 1) VDDA can be tied to ground when A/D converter is not in use: however extra consumption (around 200 uA) on main VDD will occur due to internal analog circuitry not being completely turned off: so, it is recommended to keep VDDA at VDD level even when not in use. VAINx may exceed VSSA and VDDA limits, remaining within absolute maximum ratings, but the results of the conversion will be clamped respectively to 0x000 or 0x3FF. During the sample time the input capacitance CAIN can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within tS. After the end of the sample time tS, changes to the analog input voltage have no effect on the conversion result. Values for the sample clock tS depend on programming. This parameter includes the sample time tS, the time for determining the digital result and the time for loading the result register with the conversion result. 2) 3) 4) 33/39 STR73xF - PACKAGE CHARACTERISTICS 3 PACKAGE CHARACTERISTICS 3.1 Package Mechanical Data Figure 8. 100-Pin Thin Quad Flat Package D D1 A A2 Dim. A mm Min 0.05 1.35 0.17 0.09 16.00 14.00 16.00 14.00 0.50 0 0.45 3.5 0.60 1.00 100 7 0 1.40 0.22 Typ Max 1.60 0.15 0.002 Min inches Typ Max 0.063 0.006 A1 A1 A2 b 1.45 0.053 0.055 0.057 0.27 0.007 0.009 0.011 0.20 0.004 0.630 0.551 0.630 0.551 0.020 3.5 0.039 7 0.75 0.018 0.024 0.030 0.008 b C D e E1 E D1 E E1 e L c L1 L h L1 N Number of Pins Figure 9. 144-Pin Thin Quad Flat Package mm Min 0.05 1.35 0.17 0.09 1.40 0.22 Typ Max 1.60 0.15 0.002 1.45 0.053 0.27 0.007 0.20 0.004 Min inches Typ Max 0.063 0.006 0.057 0.011 0.008 Dim. D D1 D3 A1 108 109 73 72 0.10mm .004 in. b Seating Plane E A A2 A A1 A2 b c D D1 D3 E E1 c b E3 E1 21.80 22.00 22.20 0.858 0.867 0.874 19.80 20.00 20.20 0.780 0.787 0.795 17.50 0.699 21.80 22.00 22.20 0.858 0.867 0.874 19.80 20.00 20.20 0.780 0.787 0.795 17.50 0.50 0 0.45 3.5 0.60 1.00 144 7 0 0.699 0.020 3.5 0.039 7 0.75 0.018 0.024 0.030 144 1 e 37 36 E3 e K L1 L h L L1 N Number of Pins 34/39 STR73xF - PACKAGE CHARACTERISTICS Figure 10. 144-Low Profile Fine Pitch Ball Grid Array Package Dim. A A1 A2 b D D1 E E1 e F ddd eee fff N mm Min 1.21 0.21 1.12 0.35 0.40 8.80 8.80 0.80 0.60 0.10 0.15 0.08 Typ Max Min 0.008 1.70 0.048 inches Typ Max 0.067 0.044 0.45 0.014 0.016 0.018 0.346 0.346 0.031 0.024 0.004 0.006 0.003 9.85 10.00 10.15 0.388 0.394 0.400 9.85 10.00 10.15 0.388 0.394 0.400 Number of Pins 144 35/39 STR73xF - PACKAGE CHARACTERISTICS 3.2 Power Considerations The average chip-junction temperature, TJ, in degrees Celsius, may be calculated using the following equation: TJ = TA + (PD x JA) Where: - TA is the Ambient Temperature in C, - JA is the Package Junction-to-Ambient Thermal Resistance, in C/W, - PD is the sum of PINT and PI/O (PD = PINT + PI/O), - PINT is the product of IDD and VDD, expressed in Watt. This is the Chip Internal Power, - PI/O represents the Power Dissipation on Input and Output Pins; User Determined. Most of the time for the applications PI/O < PINT and may be neglected. On the other hand, PI/ O may be significant if the device is configured to drive continuously external modules and/or memories. An approximate relationship between PD and TJ (if PI/O is neglected) is given by: PD = K / (TJ + 273C) Therefore (solving equations 1 and 2): K = PD x (TA + 273C) + JA x PD2 Where: - K is a constant for the particular part, which may be determined from equation (3) by measuring PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ may be obtained by solving equations (1) and (2) iteratively for any value of TA. Table 16. Thermal Characteristics Symbol Description Package LFBGA144 Value (typical) TBD 40 55 C/W Unit (1) (2) (3) JA Thermal Resistance Junction-Ambient TQFP144 TQFP100 36/39 STR73xF - ORDER CODES 4 ORDER CODES Table 17. Order Codes Partnumber STR730FZ1T7 STR730FZ2T7 STR730FZ1H7 STR730FZ2H7 STR735FZ1T7 STR735FZ2T7 STR735FZ1H7 STR735FZ2H7 STR731FV0T7 STR731FV1T7 STR731FV2T7 STR736FV0T7 STR736FV1T7 STR736FV2T7 FLASH Kbytes 128 256 128 256 128 256 128 256 64 128 256 64 128 256 Package TQFP144 20x20 LFBGA144 10x10 TQFP144 20x20 LFBGA144 10x10 TQFP100 14x14 6 TQFP100 14x14 0 16 3 12 18 72 TIM CAN RAM Kbytes Timers Periph. A/D Chan. Wake-up Lines I/O Ports Temp. Range 3 10 0 -40 to +105C 16 32 112 37/39 STR73xF - REVISION HISTORY 5 REVISION HISTORY Table 18. Revision history Date 19-Sep 2005 Revision 1.0 First release Description of Changes 38/39 STR73xF - REVISION HISTORY Notes: Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners (c) 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 39/39 |
Price & Availability of STR730FZ1 |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |