Part Number Hot Search : 
ECG88 XT314 NME4812 UZ720 GBL401 KMM35 8HT40 RT1N250U
Product Description
Full Text Search
 

To Download 1980 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD - 9.1112
IRGPC40F
INSULATED GATE BIPOLAR TRANSISTOR
Features
* Switching-loss rating includes all "tail" losses * Optimized for medium operating frequency (1 to 10kHz) See Fig. 1 for Current vs. Frequency curve
G E C
Fast Speed IGBT
VCES = 600V VCE(sat) 2.0V
@VGE = 15V, IC = 27A
n-channel
Description
Insulated Gate Bipolar Transistors (IGBTs) from International Rectifier have higher usable current densities than comparable bipolar transistors, while at the same time having simpler gate-drive requirements of the familiar power MOSFET. They provide substantial benefits to a host of high-voltage, high-current applications.
TO -2 4 7 AC
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25C IC @ TC = 100C I CM ILM VGE EARV PD @ T C = 25C PD @ TC = 100C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Gate-to-Emitter Voltage Reverse Voltage Avalanche Energy Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting torque, 6-32 or M3 screw.
Max.
600 49 27 200 200 20 15 160 65 -55 to +150 300 (0.063 in. (1.6mm) from case) 10 lbf*in (1.1N*m)
Units
V A
V mJ W
C
Thermal Resistance
Parameter
RJC RCS RJA Wt Junction-to-Case Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight
Min.
---------------------
Typ.
-----0.24 -----6 (0.21)
Max.
0.77 -----40 ------
Units
C/W g (oz)
IRGPC40F
Electrical Characteristics @ TJ = 25C (unless otherwise specified)
Parameter Min. Collector-to-Emitter Breakdown Voltage 600 Emitter-to-Collector Breakdown Voltage 20 V(BR)CES /T J Temperature Coeff. of Breakdown Voltage---Collector-to-Emitter Saturation Voltage ---VCE(on) ------VGE(th) Gate Threshold Voltage 3.0 V GE(th)/TJ Temperature Coeff. of Threshold Voltage ---Forward Transconductance 9.2 gfe ICES Zero Gate Voltage Collector Current ------IGES Gate-to-Emitter Leakage Current ---V(BR)CES V(BR)ECS Typ. ------0.70 1.7 2.2 1.9 ----12 12 ---------Max. Units Conditions ---V VGE = 0V, IC = 250A ---V VGE = 0V, IC = 1.0A ---- V/C VGE = 0V, IC = 1.0mA 2.0 IC = 27A VGE = 15V ---V IC = 49A See Fig. 2, 5 ---IC = 27A, TJ = 150C 5.5 VCE = VGE, IC = 250A ---- mV/C VCE = VGE, IC = 250A ---S VCE = 100V, IC = 27A 250 A VGE = 0V, VCE = 600V 1000 VGE = 0V, VCE = 600V, TJ = 150C 100 nA VGE = 20V
Switching Characteristics @ TJ = 25C (unless otherwise specified)
Qg Qge Q gc t d(on) tr t d(off) tf Eon Eoff Ets t d(on) tr t d(off) tf Ets LE Cies Coes Cres Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. ---------------------------------------------------------Typ. 59 8.6 25 25 37 240 230 0.65 3.0 3.65 28 37 380 460 6.0 13 1500 190 20 Max. Units Conditions 80 IC = 27A 10 nC VCC = 400V See Fig. 8 42 VGE = 15V ---TJ = 25C ---ns IC = 27A, VCC = 480V 410 VGE = 15V, RG = 10 420 Energy losses include "tail" ------mJ See Fig. 9, 10, 11, 14 6.0 ---TJ = 150C, ---ns IC = 27A, VCC = 480V ---VGE = 15V, RG = 10 ---Energy losses include "tail" ---mJ See Fig. 10, 14 ---nH Measured 5mm from package ---VGE = 0V ---pF VCC = 30V See Fig. 7 --- = 1.0MHz
Notes:
Repetitive rating; VGE=20V, pulse width
limited by max. junction temperature. ( See fig. 13b )
Repetitive rating; pulse width limited
by maximum junction temperature.
Pulse width 5.0s,
single shot.
VCC=80%(VCES), VGE=20V, L=10H,
RG= 10, ( See fig. 13a )
Pulse width 80s; duty factor 0.1%.
IRGPC40F
60
For both:
Triangular wave:
LOAD CURRENT (A)
Duty cycle: 50% TJ = 125C Tsink = 90C Gate drive as specified Power Dissipation = 35W
40
Square wave: 60% of rated voltage
Clamp voltage: 80% of rated
20
Ideal diodes
0 0.1
1
10
100
f, Frequency (kHz)
Fig. 1 - Typical Load Current vs. Frequency
(For square wave, I=IRMS of fundamental; for triangular wave, I=IPK )
1000
1000
I C, Collector-to-Emitter Current (A)
IC , Collector-to-Emitter Current (A)
100
TJ = 25C
100
TJ = 150C
10
TJ = 150C
TJ = 25C
1
10
0.1
1 0.1
VGE = 15V 20s PULSE WIDTH
1 10
0.01 5 10
VCC = 100V 5s PULSE WIDTH
15 20
VCE , Collector-to-Emitter Voltage (V)
VGE , Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
IRGPC40F
50
VGE = 15V
3.0
VGE = 15V 80s PULSE WIDTH IC = 54A
40
VCE , Collector-to-Emitter Voltage (V)
Maximum DC Collector Current (A)
2.5
30
2.0
I C = 27A
20
1.5
10
I C = 14A
0 25 50 75 100 125 150
1.0 -60 -40 -20
0
20
40
60
80 100 120 140 160
T C , Case Temperature (C)
TC , Case Temperature (C)
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 - Collector-to-Emitter Voltage vs. Case Temperature
1
Thermal Response (Z thJC)
D = 0.50
0.20
0.1
0.10 0.05 SINGLE PULSE (THERMAL RESPONSE)
Notes: 1. Duty factor D = t 1 /t 2 P DM
t
0.02 0.01
1 t2
0.01 0.00001
2. Peak TJ = PDM x Z thJC + T C
0.0001
0.001
0.01
0.1
1
10
t 1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
IRGPC40F
3000
2500
2000
C ies
1500
Coes
VGE , Gate-to-Emitter Voltage (V)
100
V GE = 0V, f = 1MHz Cies = Cge + C gc , Cce SHORTED Cres = C gc Coes = Cce + C gc
20
VCE = 400V I C = 27A
16
C, Capacitance (pF)
12
8
1000
500
Cres
4
0 1 10
0 0 10 20 30 40 50 60
V CE , Collector-to-Emitter Voltage (V)
Q g , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
4.8
Total Switching Losses (mJ)
4.7
Total Switching Losses (mJ)
VCC VGE TC IC
= 480V = 15V = 25C = 27A
100
RG = 10 V GE = 15V V CC = 480V
4.6
I C = 54A
10
I C = 27A
4.5
I C = 14A
4.4
4.3 0 10 20 30 40 50 60
1 -60 -40 -20
0
20
40
60
80 100 120 140 160
R G , Gate Resistance ( )
W
TC, Case Temperature (C)
Fig. 9 - Typical Switching Losses vs. Gate Resistance
Fig. 10 - Typical Switching Losses vs. Case Temperature
IRGPC40F
20
I C , Collector-to-Emitter Current (A)
Total Switching Losses (mJ)
RG = 10 T C = 150C VCC = 480V 16 VGE = 15V
1000
VGE = 20V GE TJ = 125C
100
12
SAFE OPERATING AREA
8
10
4
0 0 20 40 60
1 1 10 100 1000
I C , Collector-to-Emitter Current (A)
VCE , Collector-to-Emitter Voltage (V)
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
15.90 ( .626) 15.30 ( .602)
-B-
3.65 (.143) 3.55 (.140) 0.25 (.010) M D B M -A5.50 (.217)
-D-
5.30 ( .209) 4.70 ( .185) 2.50 (.089) 1.50 (.059)
4
NO TES: 1 DIMENSIO NS & T OLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH. 3 DIMENSIO NS ARE SHOW N MILLIMETE RS (INCHES). 4 CONFO RM S TO JEDEC OUTLINE T O-247AC.
20.30 (.800) 19.70 (.775) 1
2X
5.50 (.217) 4.50 (.177)
2
3
-C-
LEAD ASSIGNMENT S 1 - GAT E 2 - CO LLECTO R 3 - EMIT TER 4 - CO LLECTO R
*
14.80 (.583) 14.20 (.559)
2.40 (.094) 2.00 (.079) 2X
4.30 (.170) 3.70 (.145)
1.40 (.056) 3X 1.00 (.039) 0.25 ( .010) M 3.40 (.133) 3.00 (.118) 0.80 ( .031) 3X 0.40 ( .016) 2.60 (.102) 2.20 (.087)
* LO NGE R LEADED (20m m) VERS ION AVAILAB LE (TO-247AD)
TO ORDE R ADD "-E " SUFF IX TO PART NUMBER
5.45 (.215) 2X
CA
S
CONFORMS TO JEDEC OUTLINE TO-247AC (TO-3P)
Dimensions in Millimeters and (Inches)
IRGPC40F
L 50V 1000V VC *
0 - 480V
D.U.T.
RL = 480V 4 X IC@25C
480F 960V
Q
R
* Driver same type as D.U.T.; Vc = 80% of Vce(max) * Note: Due to the 50V power supply, pulse width and inductor will increase to obtain rated Id.
Fig. 13a - Clamped Inductive
Load Test Circuit
Fig. 13b - Pulsed Collector
Current Test Circuit
IC L Driver* 50V D.U.T. VC
Fig. 14a - Switching
Loss Test Circuit
* Driver same type as D.U.T., VC = 480V
Q
1000V
R
S
Q R
90%
S
VC 90%
10%
Fig. 14b - Switching Loss
Waveforms
t d(off)
10% I C 5% t d(on)
tr Eon Ets = (Eon +Eoff )
tf t=5s Eoff


▲Up To Search▲   

 
Price & Availability of 1980

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X