Part Number Hot Search : 
M25JZ51 00MTR RH5VT12C BD3403FV MN6500KB 4CV47BE DLM5239B 030AP
Product Description
Full Text Search
 

To Download IR2110 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Data Sheet No. PD60147-M
IR2110/IR2113
HIGH AND LOW SIDE DRIVER
Features
* Floating channel designed for bootstrap operation
Fully operational to +500V or +600V Tolerant to negative transient voltage dV/dt immune Gate drive supply range from 10 to 20V Undervoltage lockout for both channels Separate logic supply range from 5 to 20V Logic and power ground 5V offset CMOS Schmitt-triggered inputs with pull-down Cycle by cycle edge-triggered shutdown logic Matched propagation delay for both channels Outputs in phase with inputs
Product Summary
VOFFSET (IR2110) (IR2113) IO+/VOUT ton/off (typ.) Delay Matching 500V max. 600V max. 2A / 2A 10 - 20V 120 & 94 ns 10 ns
* * * * * * *
Description
Packages
The IR2110/IR2113 are high voltage, high speed power MOSFET and IGBT drivers with independent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable rugge14 Lead PDIP 16 Lead SOIC IR2110/IR2113 dized monolithic construction. Logic inputs are comIR2110S/IR2113S patible with standard CMOS or LSTTL output. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 500 or 600 volts.
Typical Connection
up to 500V or 600V
HO VDD HIN SD LIN V SS VCC V DD HIN SD LIN V SS V CC COM LO VB VS TO LOAD
www.irf.com
1
IR2110/IR2113
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Additional information is shown in Figures 28 through 35.
Symbol
VB VS VHO VCC VLO VDD VSS VIN dVs/dt PD RTHJA TJ TS TL
Definition
High side floating supply voltage (IR2110) (IR2113) High side floating supply offset voltage High side floating output voltage Low side fixed supply voltage Low side output voltage Logic supply voltage Logic supply offset voltage Logic input voltage (HIN, LIN & SD) Allowable offset supply voltage transient (figure 2) Package power dissipation @ TA +25C Thermal resistance, junction to ambient Junction temperature Storage temperature Lead temperature (soldering, 10 seconds) (14 lead DIP) (16 lead SOIC) (14 lead DIP) (16 lead SOIC)
Min.
-0.3 -0.3 VB - 25 VS - 0.3 -0.3 -0.3 -0.3 VCC - 25 VSS - 0.3 -- -- -- -- -- -- -55 --
Max.
525 625 VB + 0.3 VB + 0.3 25 VCC + 0.3 VSS + 25 VCC + 0.3 VDD + 0.3 50 1.6 1.25 75 100 150 150 300
Units
V
V/ns W
C/W
C
Recommended Operating Conditions
The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The VS and VSS offset ratings are tested with all supplies biased at 15V differential. Typical ratings at other bias conditions are shown in figures 36 and 37.
Symbol
VB VS VHO VCC VLO VDD VSS VIN TA
Definition
High side floating supply absolute voltage High side floating supply offset voltage High side floating output voltage Low side fixed supply voltage Low side output voltage Logic supply voltage Logic supply offset voltage Logic input voltage (HIN, LIN & SD) Ambient temperature (IR2110) (IR2113)
Min.
VS + 10 Note 1 Note 1 VS 10 0 VSS + 4.5 -5 VSS -40
Max.
VS + 20 500 600 VB 20 VCC VSS + 20 5 VDD 125
Units
V
C
Note 1: Logic operational for VS of -4 to +500V. Logic state held for VS of -4V to -VBS.
2
www.irf.com
IR2110/IR2113
Dynamic Electrical Characteristics
VBIAS (VCC , VBS , VDD) = 15V, CL = 1000 pF, TA = 25C and VSS = COM unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Figure 3.
Symbol
ton toff tsd tr tf MT
Definition
Turn-on propagation delay Turn-off propagation delay Shutdown propagation delay Turn-on rise time Turn-off fall time Delay matching, HS & LS turn-on/off
Figure Min. Typ. Max. Units Test Conditions
7 8 9 10 11 -- -- -- -- -- -- -- 120 94 110 25 17 -- 150 125 140 35 25 10 Figure 5 VS = 0V VS = 500V/600V VS = 500V/600V
ns
Static Electrical Characteristics
VBIAS (VCC, VBS, VDD) = 15V, TA = 25C and VSS = COM unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and are applicable to all three logic input leads: HIN, LIN and SD. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO.
Symbol
VIH VIL VOH VOL ILK IQBS IQCC IQDD IIN+ IINVBSUV+ VBSUVVCCUV+ VCCUVIO+ IO-
Definition
Logic "1" input voltage Logic "0" input voltage High level output voltage, VBIAS - VO Low level output voltage, VO Offset supply leakage current Quiescent VBS supply current Quiescent VCC supply current Quiescent VDD supply current Logic "1" input bias current Logic "0" input bias current VBS supply undervoltage positive going threshold VBS supply undervoltage negative going threshold VCC supply undervoltage positive going threshold VCC supply undervoltage negative going threshold Output high short circuit pulsed current Output low short circuit pulsed current
Figure Min. Typ. Max. Units Test Conditions
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 9.5 -- -- -- -- -- -- -- -- -- 7.5 7.0 7.4 7.0 2.0 2.0 -- -- -- -- -- 125 180 15 20 -- 8.6 8.2 8.5 8.2 2.5 2.5 -- 6.0 1.2 0.1 50 230 340 30 40 1.0 9.7 9.4 9.6 V 9.4 -- -- A VO = 0V, VIN = VDD PW 10 s VO = 15V, VIN = 0V PW 10 s A V IO = 0A IO = 0A VB=VS = 500V/600V VIN = 0V or VDD VIN = 0V or VDD VIN = 0V or VDD VIN = VDD VIN = 0V
www.irf.com
3
IR2110/IR2113
Functional Block Diagram
VB VDD RQ S HIN
HV LEVEL SHIFT
UV DETECT PULSE FILTER
R R S
Q HO
VDD /VCC LEVEL SHIFT
PULSE GEN
VS
SD UV DETECT
VCC VDD /VCC LEVEL SHIFT
LIN RQ VSS S
LO DELAY COM
Lead Definitions
Symbol Description
VDD HIN SD LIN VSS VB HO VS VCC LO COM Logic supply Logic input for high side gate driver output (HO), in phase Logic input for shutdown Logic input for low side gate driver output (LO), in phase Logic ground High side floating supply High side gate drive output High side floating supply return Low side supply Low side gate drive output Low side return
Lead Assignments
14 Lead PDIP
16 Lead SOIC (Wide Body)
IR2110/IR2113 Part Number 4
IR2110S/IR2113S www.irf.com
IR2110/IR2113
HV =10 to 500V/600V
Figure 1. Input/Output Timing Diagram
Figure 2. Floating Supply Voltage Transient Test Circuit
HIN LIN
(0 to 500V/600V)
50%
50%
ton
tr 90%
toff 90%
tf
HO LO
10%
10%
Figure 3. Switching Time Test Circuit
Figure 4. Switching Time Waveform Definition
SD
50%
HIN LIN
50%
50%
LO
tsd
HO
10%
HO LO
90%
MT 90% MT
LO
Figure 3. Shutdown Waveform Definitions
HO
Figure 6. Delay Matching Waveform Definitions
www.irf.com
5
IR2110/IR2113
250
250
200 Turn-On Delay Time (ns) Turn-On Delay Time (ns)
200
Max.
150
Max.
150
Typ.
100
Typ.
100
50
50
0 -50 -25 0 25 50 75 100 125 Temperature (C)
0 10 12 14 16 18 20 VBIAS Supply Voltage (V)
Figure 7A. Turn-On Time vs. Temperature
Figure 7B. Turn-On Time vs. Voltage
250
250
200 Turn-Off Delay Time (ns) Turn-Off Delay Time (ns)
200
Max.
150
150
Typ.
Max.
100
Typ.
100
50
50
0 -50 -25 0 25 50 75 100 125 Temperature (C)
0 10 12 14 16 18 20 VBIAS Supply Voltage (V)
Figure 8A. Turn-Off Time vs. Temperature
Figure 8B. Turn-Off Time vs. Voltage
250
250
200 Shutdown Delay Time (ns) Shutdown Delay time (ns)
200
Max.
150
Max.
150
Typ.
100
Typ.
100
50
50
0 -50 -25 0 25 50 75 100 125 Temperature (C)
0 10 12 14 16 18 20 VBIAS Supply Voltage (V)
Figure 9A. Shutdown Time vs. Temperature
Figure 9B. Shutdown Time vs. Voltage
6
www.irf.com
IR2110/IR2113
100 100
80 Turn-On Rise Time (ns) Turn-On Rise Time (ns)
80
60
60
Max.
40
Max. Typ.
40
Typ.
20
20
0 -50 -25 0 25 50 75 100 125 Temperature (C)
0 10 12 14 16 18 20 VBIAS Supply Voltage (V)
Figure 10A. Turn-On Rise Time vs. Temperature
Figure 10B. Turn-On Rise Time vs. Voltage
50
50
40 Turn-Off Fall Time (ns) Turn-Off Fall Time (ns)
40
30
Max.
30
20
Typ.
20
Max. Typ.
10
10
0 -50 -25 0 25 50 75 100 125 Temperature (C)
0 10 12 14 16 18 20 VBIAS Supply Voltage (V)
Figure 11A. Turn-Off Fall Time vs. Temperature
Figure 11B. Turn-Off Fall Time vs. Voltage
15.0
15.0
12.0 Logic "1" Input Threshold (V)
Max Min.
12.0 Logic "1" Input Threshold (V)
9.0
9.0
6.0
6.0
Min. Max
3.0
3.0
0.0 -50 -25 0 25 50 75 100 125 Temperature (C)
0.0 5 7.5 10 12.5 15 17.5 20 VDD Logic Supply Voltage (V)
Figure 12A. Logic "1" Input Threshold vs. Temperature
Figure 12B. Logic "1" Input Threshold vs. Voltage
www.irf.com
7
IR2110/IR2113
15.0
15.0
12.0 Logic "0" Input Threshold (V) Logic "0" Input Threshold (V)
12.0
9.0
9.0
6.0
Max. Min.
6.0
3.0
3.0
Max. Min.
0.0 -50 -25 0 25 50 75 100 125 Temperature (C)
0.0 5 7.5 10 12.5 15 17.5 20 VDD Logic Supply Voltage (V)
Figure 13A. Logic "0" Input Threshold vs. Temperature
Figure 13B. Logic "0" Input Threshold vs. Voltage
5.00
5.00
4.00 High Level Output Voltage (V) High Level Output Voltage (V)
4.00
3.00
3.00
2.00
Max.
2.00
Max.
1.00
1.00
0.00 -50 -25 0 25 50 75 100 125 Temperature (C)
0.00 10 12 14 16 18 20 VBIAS Supply Voltage (V)
Figure 14A. High Level Output vs. Temperature
1.00
Figure 14B. High Level Output vs. Voltage
1.00
0.80 Low Level Output Voltage (V) Low Level Output Voltage (V)
0.80
0.60
0.60
0.40
0.40
0.20
Max.
0.20
Max.
0.00 -50 -25 0 25 50 75 100 125 Temperature (C)
0.00 10 12 14 16 18 20 VBIAS Supply Voltage (V)
Figure 15A. Low Level Output vs. Temperature
Figure 15B. Low Level Output vs. Voltage
8
www.irf.com
IR2110/IR2113
500
500
Offset Supply Leakage Current (A)
Offset Supply Leakage Current (A)
400
400
300
300
200
200
100
Max.
100
Max.
0 -50 -25 0 25 50 75 100 125 Temperature (C)
0 0 100 200 300 400 V B Boost Voltage (V) 500 IR2110 600 IR2113
Figure 16A. Offset Supply Current vs. Temperature
Figure 16B. Offset Supply Current vs. Voltage
500
500
400 VBS Supply Current (A) VBS Supply Current (A)
400
300
Max.
300
200
Typ.
200
Max.
100
100
Typ.
0 -50 -25 0 25 50 75 100 125 Temperature (C)
0 10 12 14 16 18 20 VBS Floating Supply Voltage (V)
Figure 17A. VBS Supply Current vs. Temperature
625
Figure 17B. VBS Supply Current vs. Voltage
625
500 VCC Supply Current (A) VCC Supply Current (A)
500
375
Max.
375
250
Typ.
250
Max.
125
125
Typ.
0 -50 -25 0 25 50 75 100 125 Temperature (C)
0 10 12 14 16 18 20 VCC Fixed Supply Voltage (V)
Figure 18A. VCC Supply Current vs. Temperature
Figure 18B. VCC Supply Current vs. Voltage
www.irf.com
9
IR2110/IR2113
100 100
80 VDD Supply Current (A) VDD Supply Current (A)
80
60
60
40
Max.
40
Max.
20
Typ.
20
Typ.
0 -50 -25 0 25 50 75 100 125 Temperature (C)
0 5 7.5 10 12.5 15 17.5 20 VDD Logic Supply Voltage (V)
Figure 19A. VDD Supply Current vs. Temperature
Figure 19B. VDD Supply Current vs. Voltage
100
100
80 Logic "1" Input Bias Current (A) Logic "1" Input Bias Current (A)
80
60
60
40
Max.
40
20
Typ.
20
Max. T yp.
0 -50 -25 0 25 50 75 100 125 Temperature (C)
0 5 7.5 10 12.5 15 17.5 20 VDD Logic Supply Voltage (V)
Figure 20A. Logic "1" Input Current vs. Temperature
Figure 20B. Logic "1" Input Current vs. Voltage
5.00
5.00
4.00 Logic "0" Input Bias Current (A) Logic "0" Input Bias Current (A)
4.00
3.00
3.00
2.00
2.00
1.00
Max.
1.00
Max.
0.00 -50 -25 0 25 50 75 100 125 Temperature (C)
0.00 5 7.5 10 12.5 15 17.5 20 VDD Logic Supply Voltage (V)
Figure 21A. Logic "0" Input Current vs. Temperature
Figure 21B. Logic "0" Input Current vs. Voltage
10
www.irf.com
IR2110/IR2113
11.0 11.0
10.0 VBS Undervoltage Lockout + (V) VBS Undervoltage Lockout - (V)
Max.
10.0
Max.
9.0
Typ.
9.0
8.0
Min.
Typ.
8.0
7.0
7.0
Min.
6.0 -50 -25 0 25 50 75 100 125 Temperature (C)
6.0 -50 -25 0 25 50 75 100 125 Temperature (C)
Figure 22. VBS Undervoltage (+) vs. Temperature
11.0
Figure 23. VBS Undervoltage (-) vs. Temperature
11.0
10.0 VCC Undervoltage Lockout + (V)
Max.
10.0 VCC Undervoltage Lockout - (V)
Max.
9.0
Typ.
9.0
8.0
Min.
Typ.
8.0
7.0
7.0
Min.
6.0 -50 -25 0 25 50 75 100 125 Temperature (C)
6.0 -50 -25 0 25 50 75 100 125 Temperature (C)
Figure 24. VCC Undervoltage (+) vs. Temperature
Figure 25. VCC Undervoltage (-) vs. Temperature
5.00
5.00
4.00 Output Source Current (A) Output Source Current (A)
4.00
3.00
Typ. Min.
3.00
2.00
2.00
Typ.
1.00
1.00
Min.
0.00 -50
0.00 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (C) VBIAS Supply Voltage (V)
Figure 26A. Output Source Current vs. Temperature
Figure 26B. Output Source Current vs. Voltage
www.irf.com
11
IR2110/IR2113
5.00 5.00
4.00 Output Sink Current (A) Output Sink Current (A)
4.00
3.00
Typ. Min.
3.00
2.00
2.00
Typ.
1.00
1.00
Min.
0.00 -50
0.00 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (C) VBIAS Supply Voltage (V)
Figure 27A. Output Sink Current vs. Temperature
Figure 27B. Output Sink Current vs. Voltage
150
320V
150
320V
125 Junction Temperature (C) Junction Temperature (C)
140V
125
140V
100
100
75
10V
75
10V
50
50
25
25
0 1E+2
1E+3
1E+4 Frequency (Hz)
1E+5
1E+6
0 1E+2
1E+3
1E+4 Frequency (Hz)
1E+5
1E+6
Figure 28. IR2110/IR2113 TJ vs. Frequency (IRFBC20) RGATE = 33, VCC = 15V
150
320V 140V
Figure 29. IR2110/IT2113 TJ vs. Frequency (IRFBC30) RGATE = 22, VCC = 15V
150
320V 140V
125 Junction Temperature (C) Junction Temperature (C)
125
10V
100
10V
100
75
75
50
50
25
25
0 1E+2
1E+3
1E+4 Frequency (Hz)
1E+5
1E+6
0 1E+2
1E+3
1E+4 Frequency (Hz)
1E+5
1E+6
Figure 30. IR2110/IR2113 TJ vs. Frequency (IRFBC40) RGATE = 15, VCC = 15V
Figure 31. IR2110/IR2113 TJ vs. Frequency (IRFPE50) RGATE = 10, VCC = 15V
12
www.irf.com
IR2110/IR2113
150
320V 140V
150
320V
140V
125 Junction Temperature (C) Junction Temperature (C)
125
100
100
10V
75
10V
75
50
50
25
25
0 1E+2
1E+3
1E+4 Frequency (Hz)
1E+5
1E+6
0 1E+2
1E+3
1E+4 Frequency (Hz)
1E+5
1E+6
Figure 32. IR2110S/IR2113S TJ vs. Frequency (IRFBC20) RGATE = 33, VCC = 15V
150
320V 140V
Figure 33. IR2110S/IR2113S TJ vs. Frequency (IRFBC30) RGATE = 22, VCC = 15V
150
320V 140V 10V
125 Junction Temperature (C)
10V
125 Junction Temperature (C)
100
100
75
75
50
50
25
25
0 1E+2
1E+3
1E+4 Frequency (Hz)
1E+5
1E+6
0 1E+2
1E+3
1E+4 Frequency (Hz)
1E+5
1E+6
Figure 34. IR2110S/IR2113S TJ vs. Frequency (IRFBC40) RGATE = 15, VCC = 15V
0.0
Figure 35. IR2110S/IR2113S TJ vs. Frequency (IRFPE50) RGATE = 10, VCC = 15V
20.0
VS Offset Supply Voltage (V)
Typ.
-4.0
VSS Logic Supply Offset Voltage (V)
-2.0
16.0
12.0
-6.0
8.0
Typ.
-8.0
4.0
-10.0 10 12 14 16 18 20 VBS Floating Supply Voltage (V)
0.0 10 12 14 16 18 20 VCC Fixed Supply Voltage (V)
Figure 36. Maximum VS Negative Offset vs. VBS Supply Voltage
Figure 37. Maximum VSS Positive Offset vs. VCC Supply Voltage
www.irf.com
13
IR2110/IR2113
Case Outlines
14 Lead PDIP
01-3002 03
16 Lead SOIC (wide body)
14
01-3014 03 10/21/2000
www.irf.com


▲Up To Search▲   

 
Price & Availability of IR2110

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X