![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
SN74AVCH16244 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS SCES150E - DECEMBER 1998 - REVISED FEBRUARY 2000 D D D D D Member of the Texas Instruments Widebus TM Family EPICTM (Enhanced-Performance Implanted CMOS) Submicron Process DOCTM (Dynamic Output Control) Circuit Dynamically Changes Output Impedance, Resulting in Noise Reduction Without Speed Degradation Less Than 2-ns Maximum Propagation Delay at 2.5-V and 3.3-V VCC Dynamic Drive Capability Is Equivalent to Standard Outputs With IOH and IOL of 24 mA at 2.5-V VCC D D D D Overvoltage-Tolerant Inputs/Outputs Allow Mixed-Voltage-Mode Data Communications Ioff Supports Partial-Power-Down Mode Operation Bus Hold on Data Inputs Eliminates the Need for External Pullup / Pulldown Resistors Package Options Include Plastic Thin Shrink Small-Outline (DGG) and Thin Very Small-Outline (DGV) Packages description A Dynamic Output Control (DOC) circuit is implemented, which, during the transition, initially lowers the output impedance to effectively drive the load and, subsequently, raises the impedance to reduce noise. Figure 1 shows typical VOL vs IOL and VOH vs IOH curves to illustrate the output impedance and drive capability of the circuit. At the beginning of the signal transition, the DOC circuit provides a maximum dynamic drive that is equivalent to a high-drive standard-output device. For more information, refer to the TI application reports, AVC Logic Family Technology and Applications, literature number SCEA006, and Dynamic Output Control (DOCTM) Circuitry Technology and Applications, literature number SCEA009. 3.2 2.8 VOL - Output Voltage - V 2.4 2.0 1.6 VCC = 2.5 V 1.2 VCC = 1.8 V 0.8 0.4 0 17 34 51 68 85 102 119 IOL - Output Current - mA 136 153 170 VCC = 3.3 V TA = 25C Process = Nominal - Output Voltage - V TA = 25C Process = Nominal 2.8 2.4 2.0 1.6 1.2 0.8 VCC = 3.3 V 0.4 VCC = 2.5 V VCC = 1.8 V -32 -16 0 -160 -144 -128 -112 -96 -80 -64 -48 IOH - Output Current - mA Figure 1. Output Voltage vs Output Current This 16-bit buffer/driver is operational at 1.2-V to 3.6-V VCC, but is designed specifically for 1.65-V to 3.6-V VCC operation. The SN74AVCH16244 is designed specifically to improve the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. The device can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer. It provides true outputs and symmetrical active-low output-enable (OE) inputs. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. DOC, EPIC, and Widebus are trademarks of Texas Instruments Incorporated. PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice. Copyright (c) 2000, Texas Instruments Incorporated POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 1 PRODUCT PREVIEW V OH SN74AVCH16244 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS SCES150E - DECEMBER 1998 - REVISED FEBRUARY 2000 description (continued) To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level. This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The SN74AVCH16244 is characterized for operation from -40C to 85C. terminal assignments DGG OR DGV PACKAGE (TOP VIEW) 1OE 1Y1 1Y2 GND 1Y3 1Y4 VCC 2Y1 2Y2 GND 2Y3 2Y4 3Y1 3Y2 GND 3Y3 3Y4 VCC 4Y1 4Y2 GND 4Y3 4Y4 4OE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 2OE 1A1 1A2 GND 1A3 1A4 VCC 2A1 2A2 GND 2A3 2A4 3A1 3A2 GND 3A3 3A4 VCC 4A1 4A2 GND 4A3 4A4 3OE PRODUCT PREVIEW FUNCTION TABLE (each 4-bit buffer) INPUTS OE L L H A L H X OUTPUT Y L H Z 2 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 SN74AVCH16244 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS SCES150E - DECEMBER 1998 - REVISED FEBRUARY 2000 logic symbol 1OE 2OE 3OE 4OE 1A1 1A2 1A3 1A4 2A1 2A2 2A3 2A4 3A1 3A2 3A3 3A4 4A1 4A2 4A3 4A4 24 47 46 44 43 41 40 38 37 36 35 33 32 30 29 27 26 1 4 1 3 1 2 1 48 25 EN1 EN2 EN3 EN4 1 1 2 3 5 6 8 9 11 12 13 14 16 17 19 20 22 23 1Y1 1Y2 1Y3 1Y4 2Y1 2Y2 2Y3 2Y4 3Y2 3Y3 3Y4 4Y1 4Y2 4Y3 4Y4 This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 3 PRODUCT PREVIEW 3Y1 SN74AVCH16244 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS SCES150E - DECEMBER 1998 - REVISED FEBRUARY 2000 logic diagram (positive logic) 1OE 1 3OE 2 25 1A1 47 1Y1 3A1 36 13 3Y1 1A2 46 3 1Y2 3A2 35 14 3Y2 1A3 44 5 1Y3 3A3 33 16 3Y3 1A4 43 6 1Y4 3A4 32 17 3Y4 2OE 48 4OE 8 24 2A1 41 2Y1 4A1 30 19 4Y1 PRODUCT PREVIEW 2A2 40 9 2Y2 4A2 29 20 4Y2 2A3 38 11 2Y3 4A3 27 22 4Y3 2A4 37 12 2Y4 4A4 26 23 4Y4 absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 V to 4.6 V Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 V to 4.6 V Voltage range applied to any output in the high-impedance or power-off state, VO (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 V to 4.6 V Voltage range applied to any output in the high or low state, VO (see Notes 1 and 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 V to VCC + 0.5 V Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -50 mA Output clamp current, IOK (VO < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -50 mA Continuous output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA Continuous current through each VCC or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mA Package thermal impedance, JA (see Note 3): DGG package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70C/W DGV package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58C/W Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -65C to 150C Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed. 2. The output positive-voltage rating may be exceeded up to 4.6 V maximum if the output current rating is observed. 3. The package thermal impedance is calculated in accordance with JESD 51. 4 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 SN74AVCH16244 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS SCES150E - DECEMBER 1998 - REVISED FEBRUARY 2000 recommended operating conditions (see Note 4) MIN VCC Supply voltage Operating Data retention only VCC = 1.2 V VCC = 1.4 V to 1.6 V VIH High-level input voltage VCC = 1.65 V to 1.95 V VCC = 2.3 V to 2.7 V VCC = 3 V to 3.6 V VCC = 1.2 V VCC = 1.4 V to 1.6 V VIL Low-level input voltage VCC = 1.65 V to 1.95 V VCC = 2.3 V to 2.7 V VCC = 3 V to 3.6 V 0 Active state 3-state VCC = 1.4 V to 1.6 V VCC = 1.65 V to 1.95 V VCC = 2.3 V to 2.7 V VCC = 3 V to 3.6 V VCC = 1.4 V to 1.6 V VCC = 1.65 V to 1.95 V VCC = 2.3 V to 2.7 V VCC = 3 V to 3.6 V 0 0 1.4 1.2 VCC 0.65 x VCC 0.65 x VCC 1.7 2 GND 0.35 x VCC 0.35 x VCC 0.7 0.8 3.6 VCC 3.6 -2 -4 -8 -12 2 4 8 12 mA mA V V V V MAX 3.6 UNIT V VI VO Input voltage Output voltage IOHS Static high-level output current high level IOLS Static low-level output current low level Input transition rise or fall rate VCC = 1.4 V to 3.6 V 5 ns/V TA Operating free-air temperature -40 85 C Dynamic drive capability is equivalent to standard outputs with IOH and IOL of 24 mA at 2.5-V VCC. See Figure 1 for VOL vs IOL and VOH vs IOH characteristics. Refer to the TI application reports, AVC Logic Family Technology and Applications, literature number SCEA006, and Dynamic Output Control (DOCTM) Circuitry Technology and Applications, literature number SCEA009. NOTE 4: All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. t/v POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 5 PRODUCT PREVIEW SN74AVCH16244 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS SCES150E - DECEMBER 1998 - REVISED FEBRUARY 2000 electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS IOHS = -100 A IOHS = -2 mA, VOH IOHS = -4 mA, IOHS = -8 mA, IOHS = -12 mA, IOLS = 100 A VOL IOLS = 2 mA, IOLS = 4 mA, IOLS = 8 mA, IOLS = 12 mA, II IBHL Control inputs VI = VCC or GND VI = 0.57 V VI = 0.7 V VI = 0.8 V VI = 1.07 V VI = 1.7 V VI = 2 V IBHLO VI = 0 to VCC VCC 1.4 V to 3.6 V 1.4 V 1.65 V 2.3 V 3V 1.4 V to 3.6 V VIL = 0.49 V VIL = 0.57 V VIL = 0.7 V VIL = 0.8 V 1.4 V 1.65 V 2.3 V 3V 3.6 V 1.65 V 2.3 V 3V 1.65 V 2.3 V 3V 1.95 V 2.7 V 3.6 V 1.95 V IBHHO# Ioff IOZ ICC Control inputs Ci Data inputs Co Out uts Outputs VO = VCC or GND VI = VCC or GND VI = 0 to VCC VI or VO = 3.6 V VO = VCC or GND VI = VCC or GND, IO = 0 2.7 V 3.6 V 0 3.6 V 3.6 V 2.5 V 3.3 V 2.5 V 3.3 V 2.5 V 3.3 V pF F pF 25 45 75 -25 -45 -75 200 300 500 -200 -300 -500 10 10 40 A A A A A A A MIN TYP MAX UNIT VCC-0.2 1.05 1.2 1.75 2.3 0.2 0.4 0.45 0.55 0.7 2.5 A V V VIH = 0.91 V VIH = 1.07 V VIH = 1.7 V VIH = 2 V PRODUCT PREVIEW IBHH Typical values are measured at TA = 25C. The bus-hold circuit can sink at least the minimum low sustaining current at VIL max. IBHL should be measured after lowering VIN to GND and then raising it to VIL max. The bus-hold circuit can source at least the minimum high sustaining current at VIH min. IBHH should be measured after raising VIN to VCC and then lowering it to VIH min. An external driver must source at least IBHLO to switch this node from low to high. # An external driver must sink at least IBHHO to switch this node from high to low. 6 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 SN74AVCH16244 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS SCES150E - DECEMBER 1998 - REVISED FEBRUARY 2000 switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 2 through 5) PARAMETER tpd ten tdis FROM (INPUT) A OE OE TO (OUTPUT) Y Y Y VCC = 1.2 V TYP VCC = 1.5 V 0.1 V MIN MAX VCC = 1.8 V 0.15 V MIN MAX VCC = 2.5 V 0.2 V MIN MAX VCC = 3.3 V 0.3 V MIN MAX ns ns ns UNIT operating characteristics, TA = 25C PARAMETER Cpd d Power dissipation capacitance Outputs enabled Outputs disabled TEST CONDITIONS CL = 0 0, f = 10 MHz VCC = 1.8 V TYP VCC = 2.5 V TYP VCC = 3.3 V TYP UNIT pF POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 7 PRODUCT PREVIEW SN74AVCH16244 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS SCES150E - DECEMBER 1998 - REVISED FEBRUARY 2000 PARAMETER MEASUREMENT INFORMATION VCC = 1.2 V AND 1.5 V 0.1 V 2 x VCC From Output Under Test CL = 15 pF (see Note A) 2 k S1 Open GND 2 k TEST tpd tPLZ/tPZL tPHZ/tPZH S1 Open 2 x VCC GND LOAD CIRCUIT tw Timing Input tsu VCC VCC/2 0V th VCC VCC/2 VCC/2 0V VOLTAGE WAVEFORMS SETUP AND HOLD TIMES Output Control (low-level enabling) tPZL VCC Input VCC/2 tPLH VCC/2 0V tPHL VOH Output VCC/2 VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES VCC/2 VOL Output Waveform 2 S1 at GND (see Note B) Output Waveform 1 S1 at 2 x VCC (see Note B) tPZH VCC Input VCC/2 VOLTAGE WAVEFORMS PULSE DURATION VCC/2 0V PRODUCT PREVIEW Data Input VCC VCC/2 VCC/2 0V tPLZ VCC VCC/2 VOL + 0.1 V VOL tPHZ VOH VOH - 0.1 V 0V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES VCC/2 NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr 2 ns, tf 2 ns. D. The outputs are measured one at a time with one transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPLH and tPHL are the same as tpd. Figure 2. Load Circuit and Voltage Waveforms 8 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 SN74AVCH16244 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS SCES150E - DECEMBER 1998 - REVISED FEBRUARY 2000 PARAMETER MEASUREMENT INFORMATION VCC = 1.8 V 0.15 V 2 x VCC From Output Under Test CL = 30 pF (see Note A) 1 k S1 Open GND 1 k TEST tpd tPLZ/tPZL tPHZ/tPZH S1 Open 2 x VCC GND LOAD CIRCUIT tw Timing Input tsu Data Input VCC/2 VCC VCC/2 0V th VCC VCC/2 0V VOLTAGE WAVEFORMS SETUP AND HOLD TIMES Output Control (low-level enabling) tPZL VCC Input VCC/2 tPLH VCC/2 0V tPHL VOH Output VCC/2 VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES VCC/2 VOL Output Waveform 2 S1 at GND (see Note B) Output Waveform 1 S1 at 2 x VCC (see Note B) tPZH VCC Input VCC/2 VOLTAGE WAVEFORMS PULSE DURATION VCC/2 0V VCC/2 VCC/2 0V tPLZ VCC VCC/2 VOL + 0.15 V VOL tPHZ VOH VOH - 0.15 V 0V VCC/2 VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr 2 ns, tf 2 ns. D. The outputs are measured one at a time with one transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPLH and tPHL are the same as tpd. Figure 3. Load Circuit and Voltage Waveforms POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 9 PRODUCT PREVIEW VCC SN74AVCH16244 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS SCES150E - DECEMBER 1998 - REVISED FEBRUARY 2000 PARAMETER MEASUREMENT INFORMATION VCC = 2.5 V 0.2 V 500 S1 2 x VCC Open GND 500 TEST tpd tPLZ/tPZL tPHZ/tPZH S1 Open 2 x VCC GND From Output Under Test CL = 30 pF (see Note A) LOAD CIRCUIT tw Timing Input tsu VCC VCC/2 0V th VCC VCC/2 VCC/2 0V VOLTAGE WAVEFORMS SETUP AND HOLD TIMES Output Control (low-level enabling) tPZL VCC Input VCC/2 tPLH VCC/2 0V tPHL VOH Output VCC/2 VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES VCC/2 VOL Output Waveform 2 S1 at GND (see Note B) Output Waveform 1 S1 at 2 x VCC (see Note B) tPZH VCC Input VCC/2 VOLTAGE WAVEFORMS PULSE DURATION VCC/2 0V PRODUCT PREVIEW Data Input VCC VCC/2 VCC/2 0V tPLZ VCC VCC/2 VOL + 0.15 V VOL tPHZ VOH VOH - 0.15 V 0V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES VCC/2 NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr 2 ns, tf 2 ns. D. The outputs are measured one at a time with one transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPLH and tPHL are the same as tpd. Figure 4. Load Circuit and Voltage Waveforms 10 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 SN74AVCH16244 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS SCES150E - DECEMBER 1998 - REVISED FEBRUARY 2000 PARAMETER MEASUREMENT INFORMATION VCC = 3.3 V 0.3 V 2 x VCC From Output Under Test CL = 30 pF (see Note A) 500 S1 Open GND 500 TEST tpd tPLZ/tPZL tPHZ/tPZH S1 Open 2 x VCC GND LOAD CIRCUIT tw VCC Timing Input tsu Data Input VCC/2 VCC VCC/2 0V th VCC VCC/2 0V VOLTAGE WAVEFORMS SETUP AND HOLD TIMES Input VCC/2 VCC/2 0V VOLTAGE WAVEFORMS PULSE DURATION Output Control (low-level enabling) tPZL VCC VCC/2 VCC/2 0V tPLZ VCC VCC/2 VOL + 0.3 V VOL tPHZ VOH VOH - 0.3 V 0V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES VCC Input VCC/2 VCC/2 0V tPLH Output VCC/2 VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES tPHL VOH VCC/2 VOL Output Waveform 1 S1 at 2 x VCC (see Note B) tPZH Output Waveform 2 S1 at GND (see Note B) VCC/2 NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr 2 ns, tf 2 ns. D. The outputs are measured one at a time with one transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPLH and tPHL are the same as tpd. Figure 5. Load Circuit and Voltage Waveforms POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 11 PRODUCT PREVIEW IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof. Copyright (c) 2000, Texas Instruments Incorporated |
Price & Availability of SCES150E
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |