![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
Data Sheet No. PD60223 rev.A IR21303C 3-PHASE BRIDGE DRIVER Features * Floating channel designed for bootstrap operation * * * * * * * * Fully operational to +600V Tolerant to negative transient voltage dV/dt immune Gate drive supply range from 11.1 to 20V Undervoltage lockout for all channels Over-current shutdown turns off all six drivers Independent half-bridge drivers Matched propagation delay for all channels 2.5V logic compatible Outputs out of phase with inputs Cross-conduction prevention logic Product Summary VOFFSET IO+/VOUT ton/off (typ.) Deadtime (typ.) 600V max. 200 mA / 420 mA 11.1 - 20V 675 & 425 ns 600 ns Description The IR21303C is a high voltage, high speed power MOSFET and IGBT driver with three independent high and low side referenced output channels. Proprietary HVIC technology enables ruggedized monolithic construction. Logic inputs are compatible with CMOS or LSTTL outputs, down to 2.5V logic. A ground-referenced operational amplifier provides analog feedback of bridge current via an external current sense resistor. A current trip function which terminates all six outputs is also derived from this resistor. An open drain FAULT signal indicates if an over-current or undervoltage shutdown has occurred. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use at high frequencies. The floating channels can be used to drive N-channel power MOSFETs or IGBTs in the high side configuration which operate up to 600 volts. Typical Connection (Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. www.irf.com 1 IR21303C Absolute Maximum Ratings Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to VS0. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions. Additional information is shown in Figures 50 through 53. Symbol V B1,2,3 V S1,2,3 V HO1,2,3 VCC VSS V LO1,2,3 VIN Definition High Side Floating Supply Voltage High Side Floating Offset Voltage High Side Floating Output Voltage Low Side and Logic Fixed Supply Voltage Logic Ground Low Side Output Voltage Logic Input Voltage (HIN1,2,3 , LIN1,2,3 & ITRIP) Min. Max. Units VFLT VCAO VCAdVS/dt TJ FAULT Output Voltage Operational Amplifier Output Voltage Operational Amplifier Inverting Input Voltage Allowable Offset Supply Voltage Transient Junction Temperature -0.3 625 VB1,2,3 - 25 VB1,2,3 + 0.3 VS1,2,3 - 0.3 VB1,2,3 + 0.3 -0.3 25 VCC - 25 VCC + 0.3 -0.3 VCC + 0.3 VSS - 0.3 (VSS + 15) or (VCC + 0.3) whichever is lower VSS - 0.3 VCC + 0.3 VSS - 0.3 VCC + 0.3 VSS - 0.3 VCC + 0.3 -- 50 -- 150 V V/ns C Recommended Operating Conditions The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute voltages referenced to VS0. The VS offset rating is tested with all supplies biased at 15V differential. Typical ratings at other bias conditions are shown in Figure 54. Symbol V B1,2,3 V S1,2,3 V HO1,2,3 VCC VSS VLO1,2,3 VIN VFLT VCAO VCATA Definition High Side Floating Supply Voltage High Side Floating Offset Voltage High Side Floating Output Voltage Low Side and Logic Fixed Supply Voltage Logic Ground Low Side Output Voltage Logic Input Voltage (HIN1,2,3 , LIN1,2,3 & ITRIP) FAULT Output Voltage Operational Amplifier Output Voltage Operational Amplifier Inverting Input Voltage Ambient Temperature Min. Max. Units VS1,2,3 + 13.3 VS1,2,3 + 20 Note 1 600 V S1,2,3 V B1,2,3 13.3 20 -5 5 0 VCC VSS VSS + 5 VSS VCC VSS VSS + 5 VSS VSS + 5 -40 125 V C Note 1: Logic operational for VS of (VS0 - 5V) to (VS0 + 600V). Logic state held for VS of (VS0 - 5V) to (VS0 - VBS). (Please refer to the Design Tip DT97-3 for more details). Note 2: All input pins, CA- and CAO pins are internally clamped with a 5.2V zener diode. 2 www.irf.com IR21303C Dynamic Electrical Characteristics VBIAS (VCC, VBS1,2,3) = 15V, VS0,1,2,3 = VSS, CL = 1000 pF and TA = 25C unless otherwise specified. The dynamic electrical characteristics are defined in Figures 3 through 5. Symbol ton toff tr tf titrip tbl tflt tflt,in t fltclr DT SR+ SR- Definition Turn-On Propagation Delay Turn-Off Propagation Delay Turn-On Rise Time Turn-Off Fall Time ITRIP to Output Shutdown Prop. Delay ITRIP Blanking Time ITRIP to FAULT Indication Delay Input Filter Time (All Six Inputs) LIN1,2,3 & HIN1,2,3 to FAULT Clear Time Deadtime Operational Amplifier Slew Rate (+) Operational Amplifier Slew Rate (-) Figure Min. Typ. Max. Units Test Conditions 11 12 13 14 15 -- 16 -- 17 -- 18 19 450 300 -- -- 400 -- 335 -- 6.0 300 4.4 2.4 675 425 80 35 660 400 590 310 9.0 600 6.2 3.2 850 550 125 55 920 -- 845 -- 12.0 900 -- -- VIN = 0 & 5V VS1,2,3 = 0 to 600V VIN, VITRIP = 0 & 5V VITRIP = 1V VIN, VITRIP = 0 & 5V VIN = 0 & 5V VIN, VITRIP = 0 & 5V VIN = 0 & 5V ns ns V/s NOTE: For high side PWM, HIN pulse width must be 1.5sec Static Electrical Characteristics VBIAS (VCC, VBS1,2,3) = 15V, VS0,1,2,3 = VSS and TA = 25C unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and are applicable to all six logic input leads: HIN1,2,3 & LIN1,2,3 . The VO and IO parameters are referenced to VS0,1,2,3 and are applicable to the respective output leads: HO1,2,3 or LO1,2,3. Symbol VIH V IL VIT,TH+ VOH VOL ILK I QBS IQCC IIN+ IINIITRIP+ IITRIPVBSUV+ VBSUVVCCUV+ VCCUVRon,FLT Definition Logic "0" Input Voltage (OUT = LO) Logic "1" Input Voltage (OUT = HI) ITRIP Input Positive Going Threshold High Level Output Voltage, VBIAS - VO Low Level Output Voltage, VO Offset Supply Leakage Current Quiescent VBS Supply Current Quiescent VCC Supply Current Logic "1" Input Bias Current (OUT = HI) Logic "0" Input Bias Current (OUT = LO) "High" ITRIP Bias Current "Low" ITRIP Bias Current VBS Supply Undervoltage Positive Going Threshold VBS Supply Undervoltage Negative Going Threshold VCC Supply Undervoltage Positive Going Threshold VCC Supply Undervoltage Negative Going Threshold FAULT Low On-Resistance Figure Min. Typ. Max. Units Test Conditions 20 21 -- 22 23 24 25 26 27 28 29 30 -- -- -- -- 31 2.2 -- 436.8 -- -- -- -- -- -- -- -- -- 10.8 9 10.8 9.0 -- -- -- 480 -- -- -- 15 3.0 450 225 75 -- 12 10 12 10 55 -- 0.8 529.2 100 100 50 30 4.0 650 400 150 100 13.2 11 13.2 11 75 V V mV A mA A nA VIN = 0V, IO = 0A VIN = 5V, IO = 0A VB = VS = 600V VIN = 0V or 5V VIN = 0V or 5V VIN = 0V VIN = 5V ITRIP = 5V ITRIP = 0V www.irf.com 3 IR21303C Static Electrical Characteristics -- Continued VBIAS (VCC, VBS1,2,3) = 15V, VS0,1,2,3 = VSS and TA = 25C unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and are applicable to all six logic input leads: HIN1,2,3 & LIN1,2,3 . The VO and IO parameters are referenced to VS0,1,2,3 and are applicable to the respective output leads: HO1,2,3 or LO1,2,3. Symbol IO+ IOVOS ICACMRR PSRR VOH,AMP VOL,AMP ISRC,AMP I SINK,AMP IO+,AMP IO-,AMP Definition Output High Short Circuit Pulsed Current Output Low Short Circuit Pulsed Current Operational Amplifer Input Offset Voltage CA- Input Bais Current Op. Amp. Common Mode Rejection Ratio Op. Amp. Power Supply Rejection Ratio Op. Amp. High Level Output Voltage Op. Amp. Low Level Output Voltage Op. Amp. Output Source Current Op. Amp. Output Sink Current Operational Amplifier Output High Short Circuit Current Operational Amplifier Output Low Short Circuit Current Figure Min. Typ. Max. Units Test Conditions 32 33 -- 34 35 36 37 38 39 40 41 42 200 420 -14 -- 60 55 5.0 -- 2.3 1.0 -- -- 250 500 -- -- 80 75 5.2 -- 4.0 2.1 4.5 3.2 -- -- 14 4.0 -- -- 5.4 20 -- -- mA 6.5 5.2 mA mV nA dB V mV VO = 0V, VIN = 0V PW 10 s VO = 15V, VIN = 5V PW 10 s VS0 = VCA- = 0.2V VCA- = 2.5V VS0=VCA-=0.1V & 5V VS0 = VCA- = 0.2V VCC = 14V & 20V VCA- = 0V, VS0 = 1V VCA- = 1V, VS0 = 0V VCA- = 0V, VS0 = 1V VCAO = 4V VCA- = 1V, VS0 = 0V VCAO = 2V VCA- = 0V, VS0 = 5V VCAO = 0V VCA- = 5V, VS0 = 0V VCAO = 5V Lead Definitions Symbol HIN1,2,3 LIN1,2,3 FAULT VCC ITRIP CAO CAVSS VB1,2,3 HO1,2,3 VS1,2,3 LO1,2,3 VS0 4 Description Logic inputs for high side gate driver outputs (HO1,2,3), out of phase Logic inputs for low side gate driver output (LO1,2,3), out of phase Indicates over-current or undervoltage lockout (low side) has occurred, negative logic Low side and logic fixed supply Input for over-current shutdown Output of current amplifier Negative input of current amplifier Logic ground High side floating supplies High side gate drive outputs High side floating supply returns Low side gate drive outputs Low side return and positive input of current amplifier www.irf.com IR21303C Pad Assignments Pin # 1 2 3 4 5 6 7 8 9 10 11 12 13 Vcc1 HIN 1 HIN 2 HIN 3 LIN 1 LIN 2 LIN 3 FAULT ITRIP CAO CAVSS VS0 Pin # 14 15 16 18 19 20 22 23 24 26 27 28 LO 3 LO 2 LO 1 VS 3 HO 3 VB 3 VS 2 HO 2 VB 2 VS 1 HO 1 VB 1 www.irf.com 5 IR21303C Functional Block Diagram CLEAR 6 www.irf.com IR21303C HIN1,2,3 LIN1,2,3 ITRIP FAULT <50 V/ns HO1,2,3 LO1,2,3 Figure 1. Input/Output Timing Diagram Figure 2. Floating Supply Voltage Transient Test Circuit HIN1,2,3 HIN1,2,3 LIN1,2,3 50% 50% 50% 50% LIN1,2,3 ton tr 90% 50% 50% toff 90% tf LO1,2,3 HO1,2,3 DT DT HO1,2,3 LO1,2,3 10% 10% Figure 3. Deadtime Waveform Definitions Figure 4. Input/Output Switching Time Waveform Definitions www.irf.com 7 IR21303C 50% LIN1,2,3 50% ITRIP FAULT 50% 50% LO1,2,3 50% tflt titrip tfltclr Figure 5. Overcurrent Shutdown Switching Time Waveform Definitions HIN/LIN on off high on off on off HO/LO low Figure 5.5 Input Filter Function VCC + VSS CAO VS0 CA- VSS Figure 6. Diagnostic Feedback Operational Amplifier Circuit 8 U t in,fil t in,fil www.irf.com IR21303C 3V 0V 15V VCC CAVS0 + CAO VSS 50 pF 15V VS0 CA+ VSS + VCC CAO 20k 1k T1 3V V 0V 10% 90% T2 0.2V SR+ = V T1 SR- = V T2 VOS = VCAO 21 - 0.2V Figure 7. Operational Amplifier Slew Rate Measurement Figure 8. Operational Amplifier Input Offset Voltage Measurement VCC 15V VCC CAVS0 + VSS 0.2V VS0 CA- + VSS CAO CAO + 20k 1k Measure VCAO1 at VS0 = 0.1V VCAO2 at VS0 = 5V CMRR = -20*LOG (VCAO1-0.1V) - (VCAO2-5V) 4.9V (dB) Measure VCAO1 at VCC = 10V VCAO2 at VCC = 20V PSRR = -20*LOG VCAO1 - VCAO2 (10V) (21) Figure 9. Operational Amplifier Common Mode Rejection Ratio Measurements Figure 10. Operational Amplifier Power Supply Rejection Ratio Measurements www.irf.com 9 IR21303C 1.50 1.50 1.20 Turn-On Delay Time (s) Max. 1.20 Turn-On Delay Time (s) 0.90 Typ. 0.90 Max. Typ. 0.60 Min. 0.60 Min. 0.30 0.30 0.00 -50 -25 0 25 50 75 100 125 Temperature (C) 0.00 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 11A. Turn-On Time vs. Temperature Figure 11B. Turn-On Time vs. Supply Voltage 1.50 Max 1.20 Turn-On Time (s) 1.00 0.80 Turn-Off Delay Time (s) Typ. 0.90 0.60 0.30 0.00 0 1 2 3 Input Voltage (V) 0.60 Max. 0.40 Typ. Min. 0.20 0.00 4 5 6 -50 -25 0 25 50 75 100 125 Temperature (C) Figure 11C. Turn-On Time vs. Voltage 1.00 Figure 12A. Turn-Off Time vs. Temperature 1.50 1.20 Turn-Off Time (s) 0.80 Turn-Off Delay Time (s) 0.60 Max. 0.90 Max 0.60 Typ 0.30 0.00 Min. Typ. 0.40 Min. 0.20 0.00 10 12 14 16 18 20 VBIAS Supply Voltage (V) 0 1 2 3 4 5 6 Input Voltage (V) Figure 12B. Turn-Off Time vs. Supply Voltage Figure 12C. Turn-Off Time vs. Input Voltage 10 www.irf.com IR21303C 250 250 200 Turn-On Rise Time (ns) Turn-On Rise Time (ns) 200 Max. 150 150 100 Max. 100 Typ. Typ. 50 50 0 -50 -25 0 25 50 75 100 125 Temperature (C) 0 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 13A. Turn-On Rise Time vs. Temperature 125 Figure 13B. Turn-On Rise Time vs. Voltage 125 100 Turn-Off Fall Time (ns) Turn-Off Fall Time (ns) 100 75 75 Max. 50 Max. Typ. 50 Typ. 25 25 0 -50 -25 0 25 50 75 100 125 Temperature (C) 0 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 14A. Turn-Off Fall Time vs. Temperature Figure 14B. Turn-Off Fall Time vs. Voltage 1.50 ITRIP to Output Shutdown Delay Time (s) ITRIP to Output Shutdown Delay Time (s) 1.50 1.20 Max. 1.20 Max. 0.90 Typ. 0.90 Typ. 0.60 Min. 0.60 Min. 0.30 0.30 0.00 -50 -25 0 25 50 75 100 125 Temperature (C) 0.00 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 15A. ITRIP to Output Shutdown Time vs. Temperature Figure 15B. ITRIP to Output Shutdown Time vs. Voltage www.irf.com 11 IR21303C 1.50 ITRIP to FAULT Indication Delay Time (s) ITRIP to FAULT Indication Delay Time (s) 1.50 1.20 Max. 1.20 0.90 Typ. 0.90 Max. 0.60 Min. 0.60 Typ. Min. 0.30 0.30 0.00 -50 -25 0 25 50 75 100 125 Temperature (C) 0.00 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 16A. ITRIP to FAULT Indication Time vs. Temperature 25.0 Figure 16B. ITRIP to FAULT Indication Time vs. Voltage 25.0 LIN1,2,3 to FAULT Clear Time (s) LIN1,2,3 to FAULT Clear Time (s) 20.0 20.0 15.0 Max. 15.0 Max. 10.0 Typ. Min. 10.0 Typ. Min. 5.0 5.0 0.0 -50 -25 0 25 50 75 100 125 Temperature (C) 0.0 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 17A. LIN1,2,3 & HIN1,2,3 to FAULT Clear Time vs. Temperature 10.0 Figure 17B. LIN1,2,3 , HIN1,2,3 to FAULT Clear Time vs. Voltage 10.0 8.0 Amplifier Slew Rate + (V/s) Typ. 8.0 Amplifier Slew Rate + (V/s) Typ. 6.0 Min. 6.0 Min. 4.0 4.0 2.0 2.0 0.0 -50 -25 0 25 50 75 100 125 Temperature (C) 0.0 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 18A. Amplifier Slew Rate (+) vs. Temperature Figure 18B. Amplifier Slew Rate (+) vs. Voltage 12 www.irf.com IR21303C 5.00 5.00 4.00 Amplifier Slew Rate - (V/s) Amplifier Slew Rate - (V/s) Typ. 4.00 Typ. 3.00 Min. 3.00 Min. 2.00 2.00 1.00 1.00 0.00 -50 -25 0 25 50 75 100 125 Temperature (C) 0.00 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 19A. Amplifier Slew Rate (-) vs. Temperature 5.00 Figure 19B. Amplifier Slew Rate (-) vs. Voltage 5.00 4.00 Logic "0" Input Threshold (V) Logic "0" Input Threshold (V) 4.00 3.00 Min. 3.00 Min. 2.00 2.00 1.00 1.00 0.00 -50 -25 0 25 50 75 100 125 Temperature (C) 0.00 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 20A. Logic "0" Input Threshold vs. Temperature 5.00 Figure 20B. Logic "0" Input Threshold vs. Voltage 5.00 4.00 Logic "1" Input Threshold (V) Logic "1" Input Threshold (V) Max. 4.00 3.00 3.00 2.00 2.00 1.00 1.00 Max. 0.00 -50 -25 0 25 50 75 100 125 Temperature (C) 0.00 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 21A. Logic "1" Input Threshold vs. Temperature Figure 21B. Logic "1" Input Threshold vs. Voltage www.irf.com 13 IR21303C 1.00 1.00 0.80 High Level Output Voltage (V) High Level Output Voltage (V) Max. 0.80 0.60 0.60 0.40 0.40 0.20 0.20 Max. 0.00 -50 -25 0 25 50 75 100 125 Temperature (C) 0.00 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 22A. High Level Output vs. Temperature 1.00 Figure 22B. High Level Output vs. Voltage 1.00 0.80 Low Level Output Voltage (V) Low Level Output Voltage (V) Max. 0.80 0.60 0.60 0.40 0.40 0.20 0.20 Max. 0.00 -50 -25 0 25 50 75 100 125 Temperature (C) 0.00 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 23A. Low Level Output vs. Temperature Figure 23B. Low Level Output vs. Voltage 500 500 Offset Supply Leakage Current (A) Offset Supply Leakage Current (A) 400 400 300 300 200 200 100 Max. 100 Max. 0 -50 -25 0 25 50 75 100 125 Temperature (C) 0 0 100 200 300 400 500 600 VB Boost Voltage (V) Figure 24A. Offset Supply Leakage Current vs. Temperature Figure 24B. Offset Supply Leakage Current vs. Voltage 14 www.irf.com IR21303C 100 100 80 VBS Supply Current (A) VBS Supply Current (A) Max. 80 60 60 40 40 20 Typ. 20 Max. 0 -50 -25 0 25 50 75 100 125 Temperature (C) 0 Typ. 10 12 14 16 18 20 VBS Floating Supply Voltage (V) Figure 25A. VBS Supply Current vs. Temperature 10.0 Figure 25B. VBS Supply Current vs. Voltage 10.0 8.0 VCC Supply Current (mA) VCC Supply Current (mA) 8.0 6.0 6.0 4.0 Max. Typ. 4.0 Max. 2.0 2.0 Typ. 0.0 -50 -25 0 25 50 75 100 125 Temperature (C) 0.0 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 26A. VCC Supply Current vs. Temperature Figure 26B. VCC Supply Current vs. Voltage 1.25 1.25 Logic "1" Input Bias Current (mA) 0.75 Logic "1" Input Bias Current (mA) 1.00 1.00 0.75 0.50 Max. Typ. 0.50 Max. Typ. 0.25 0.25 0.00 -50 -25 0 25 50 75 100 125 Temperature (C) 0.00 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 27A. Logic "1" Input Current vs. Temperature Figure 27A. Logic "1" Input Current vs. Voltage www.irf.com 15 IR21303C 1.25 1.25 Logic "0" Input Bias Current (mA) 0.75 Logic "0" Input Bias Current (mA) 1.00 1.00 0.75 0.50 Max. 0.50 0.25 Typ. 0.25 Max. Typ. 0.00 -50 -25 0 25 50 75 100 125 Temperature (C) 0.00 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 28A. Logic "0" Input Current vs. Temperature Figure 28B. Logic "0" Input Current vs. Voltage 500 500 "High" ITRIP Bias Current (A) 400 "High" ITRIP Bias Current (A) 400 300 300 200 Max. 200 Max. 100 Typ. 100 Typ. 0 -50 -25 0 25 50 75 100 125 Temperature (C) 0 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 29A. "High" ITRIP Current vs. Temperature 250 Figure 29B. "High" ITRIP Current vs. Voltage 500 200 "Low" ITRIP Bias Current (A) "Low" ITRIP Bias Current (nA) 400 150 300 100 Max. 200 Max. 50 100 0 -50 -25 0 25 50 75 100 125 Temperature (C) 0 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 30A. "Low" ITRIP Current vs. Temperature Figure 30B. "Low" ITRIP Current vs. Voltage 16 www.irf.com IR21303C 250 250 FAULT- Low On Resistance (ohms) 150 FAULT- Low On Resistance (ohms) 200 200 150 100 Max. Typ. 100 Max. Typ. 50 50 0 -50 -25 0 25 50 75 100 125 Temperature (C) 0 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 31A. FAULT Low On Resistance vs. Temperature 500 Figure 31B. FAULT Low On Resistance vs. Voltage 500 400 Output Source Current (mA) Output Source Current (mA) 400 300 Typ. Min. 300 200 200 Typ. 100 100 Min. 0 -50 -25 0 25 50 75 100 125 Temperature (C) 0 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 32A. Output Source Current vs. Temperature 750 Figure 32B. Output Source Current vs. Voltage 750 625 Output Sink Current (mA) 500 375 Typ. 600 Output Sink Current (mA) Typ. Min. 450 300 250 Min. 150 125 0 -50 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (C) VBIAS Supply Voltage (V) 0 Figure 33A. Output Sink Current vs. Temperature Figure 33B. Output Sink Current vs. Voltage www.irf.com 17 IR21303C 10.0 10.0 8.0 CA- Input Bias Current (nA) CA- Input Bias Current (nA) 8.0 6.0 Max. 6.0 Max. 4.0 4.0 2.0 2.0 0.0 -50 -25 0 25 50 75 100 125 Temperature (C) 0.0 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 34A. CA- Input Current vs. Temperature Figure 34B. CA- Input Current vs. Voltage 100 100 Typ. 80 Amplifier CMRR (dB) Typ. 80 Amplifier CMRR (dB) 60 Min. 60 Min. 40 40 20 20 0 -50 -25 0 25 50 75 100 125 Temperature (C) 0 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 35A. Amplifier CMRR vs. Temperature 100 100 Figure 35B. Amplifier CMRR vs. Voltage 80 Typ. 80 Amplifier PSRR (dB) Typ. Amplifier PSRR (dB) 60 Min. 60 Min. 40 40 20 20 0 -50 -25 0 25 50 75 100 125 Temperature (C) 0 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 36A. Amplifier PSRR vs. Temperature Figure 36B. Amplifier PSRR vs. Voltage 18 www.irf.com IR21303C 6.00 6.00 Amplifier High Level Output Voltage (V) 5.70 Amplifier High Level Output Voltage (V) 5.70 5.40 Max. Typ. 5.40 Max. Typ. 5.10 Min. 5.10 Min. 4.80 4.80 4.50 -50 -25 0 25 50 75 100 125 Temperature (C) 4.50 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 37A. Amplifier High Level Output vs. Temperature 100 Amplifier Low Level Output Voltage (mV) Figure 37B. Amplifier High Level Output vs. Voltage 100 Amplifier Low Level Output Voltage (mV) 80 80 60 60 40 Max. 40 Max. 20 20 0 -50 -25 0 25 50 75 100 125 Temperature (C) 0 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 38A. Amplifier Low Level Output vs. Temperature 10.0 Figure 38B. Amplifier Low Level Output vs. Voltage 10.0 Amplifier Output Source Current (mA) Amplifier Output Source Current (mA) 8.0 8.0 6.0 Typ. 6.0 4.0 Min. 4.0 Typ. 2.0 2.0 Min. 0.0 -50 -25 0 25 50 75 100 125 Temperature (C) 0.0 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 39A. Amplifier Output Source Current vs. Temperature Figure 39B. Amplifier Output Source Current vs. Voltage www.irf.com 19 IR21303C 5.00 5.00 Amplifier Output Sink Current (mA) Amplifier Output Sink Current (mA) 4.00 4.00 3.00 Typ. 3.00 2.00 Min. 2.00 Typ. 1.00 1.00 Min. 0.00 -50 -25 0 25 50 75 100 125 Temperature (C) 0.00 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 40A. Amplifier Output Sink Current vs. Temperature 15.0 Figure 40B. Amplifier Output Sink Current vs. Voltage 15.0 Output High Short Circuit Current (mA) 12.0 Output High Short Circuit Current (mA) 12.0 9.0 Max. 9.0 6.0 Typ. 6.0 Max. 3.0 3.0 Typ. 0.0 -50 -25 0 25 50 75 100 125 Temperature (C) 0.0 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 41A. Amplifier Output High Short Circuit Current vs. Temperature 15.0 Figure 41B. Amplifier Output High Short Circuit Current vs. Voltage 15.0 Output Low Short Circuit Current (mA) Output Low Short Circuit Current (mA) 12.0 12.0 9.0 9.0 6.0 Max. 6.0 Max. Typ. 3.0 3.0 Typ. 0.0 -50 -25 0 25 50 75 100 125 Temperature (C) 0.0 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 42A. Amplifier Output Low Short Circuit Current vs. Temperature Figure 42B. Amplifier Output Low Short Circuit Current vs. Voltage 20 www.irf.com IR21303C 0.0 -3.0 VS Offset Supply Voltage (V) Typ. -6.0 -9.0 -12.0 -15.0 10 12 14 16 18 20 VBS Floating Supply Voltage (V) Figure 4-3. Maximum VS Negative Offset vs. VBS Supply Voltage WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 This product has been designed and qualified for the industrial market. Qualification Standards can be found on IR's Web Site http://www.irf.com Data and specifications subject to change without notice. 10/5/2004 www.irf.com 21 |
Price & Availability of IR21303C
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |