![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
PD-95321 IRGIB6B60KDPBF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features * Low VCE (on) Non Punch Through IGBT Technology. * Low Diode VF. * 10s Short Circuit Capability. * Square RBSOA. * Ultrasoft Diode Reverse Recovery Characteristics. * Positive VCE (on) Temperature Coefficient. * Lead-Free. C VCES = 600V IC = 6.0A, TC=90C G E tsc > 10s, TJ=175C n-channel VCE(on) typ. = 1.8V Benefits * Benchmark Efficiency for Motor Control. * Rugged Transient Performance. * Low EMI. * Excellent Current Sharing in Parallel Operation. Absolute Maximum Ratings Parameter VCES IC @ TC = 25C IC @ TC = 100C ICM ILM IF @ TC = 25C IF @ TC = 100C IFM VISOL VGE PD @ TC = 25C Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulse Collector Current (Ref.Fig.C.T.5) Clamped Inductive Load current Diode Continuous Forward Current Diode Continuous Forward Current Diode Maximum Forward Current RMS Isolation Voltage, Terminal to Case, t = 1 min Gate-to-Emitter Voltage Maximum Power Dissipation TO-220 Full-Pak Max. 600 11 7.0 22 22 9.0 6.0 18 2500 20 38 19 -55 to +175 C 300 (0.063 in. (1.6mm) from case) 10 lbf.in (1.1N.m) W V A Units V PD @ TC = 100C Maximum Power Dissipation Operating Junction and TJ TSTG Storage Temperature Range Soldering Temperature for 10 sec. Mounting Torque, 6-32 or M3 Screw Thermal / Mechanical Characteristics Parameter RJC RJC RCS RJA Wt Junction-to-Case- IGBT Junction-to-Case- Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight Min. --- --- --- --- --- Typ. --- --- 0.50 --- 2.0 Max. 3.9 6.0 --- 62 --- Units C/W g www.irf.com 1 05/25/04 IRGIB6B60KDPBF Electrical Characteristics @ TJ = 25C (unless otherwise specified) Parameter Min. Typ. Max. Units -- 0.30 1.80 2.20 2.30 4.5 -10 3.0 1.0 200 720 1.25 1.20 1.15 -- Conditions Ref.Fig. V(BR)CES Collector-to-Emitter Breakdown Voltage 600 V(BR)CES/TJ Temperature Coeff. of Breakdown Voltage -- VCE(on) Collector-to-Emitter Voltage 1.50 -- -- VGE(th) Gate Threshold Voltage 3.5 VGE(th)/TJ Threshold Voltage temp. coefficient -- gfe Forward Transconductance -- ICES Zero Gate Voltage Collector Current -- -- -- VFM Diode Forward Voltage Drop -- -- -- IGES Gate-to-Emitter Leakage Current -- -- V VGE = 0V, IC = 500A -- V/C VGE = 0V, IC = 1mA (25C-150C) 2.20 V IC = 5A, VGE = 15V, TJ = 25C IC = 5A, VGE = 15V, TJ = 150C 2.50 IC = 5A, VGE = 15V, TJ = 175C 2.60 5.5 V VCE = VGE, IC = 250A -- mV/C VCE = VGE, IC = 1mA (25C-150C) -- S VCE = 50V, IC = 5.0A, PW = 80s 150 A VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 150C 500 VGE = 0V, VCE = 600V, TJ = 175C 1100 1.45 V IF = 5.0A, VGE = 0V IF = 5.0A, VGE = 0V, TJ = 150C 1.40 IF = 5.0A, VGE = 0V, TJ = 175C 1.35 100 nA VGE = 20V, VCE = 0V 5,6,7 9,10,11 9,10,11 12 8 Switching Characteristics @ TJ = 25C (unless otherwise specified) Parameter Qg Qge Qgc Eon Eoff Etot td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf LE Cies Coes Cres RBSOA SCSOA ISC (PEAK) Erec trr Irr Qrr Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area Short Circuit Safe Operating Area Peak Short Circuit Collector Current Reverse Recovery Energy of the Diode Diode Reverse Recovery Time Peak Reverse Recovery Current Diode Reverse Recovery Charge Min. Typ. Max. Units -- 18.2 27.3 -- 1.9 2.85 -- 9.2 13.8 -- 110 210 -- 135 245 -- 245 455 -- 25 34 -- 17 26 -- 215 230 -- 13.2 22 -- 150 260 -- 190 300 -- 340 560 -- 28 37 -- 17 26 -- 240 255 -- 18 27 -- 7.5 -- -- 290 435 -- 34 51 -- 10 15 FULL SQUARE 10 -- -- -- -- -- -- 50 90 70 10 350 -- -- 175 91 13 455 nC Conditions IC = 5.0A VCC = 400V VGE = 15V IC = 5.0A, VCC = 400V VGE = 15V, RG = 100, L = 1.4mH Ls= 150nH, TJ = 25C IC = 5.0A, VCC = 400V VGE = 15V, RG = 100, L = 1.4mH Ls= 150nH, TJ = 25C IC = 5.0A, VCC = 400V VGE = 15V, RG = 100, L = 1.4mH Ls= 150nH, TJ = 150C IC = 5.0A, VCC = 400V VGE = 15V, RG = 100, L = 1.4mH Ls= 150nH, TJ = 150C Measured 5 mm from package VGE = 0V VCC = 30V f = 1.0MHz TJ = 150C, IC = 18A, Vp = 600V VCC=500V,VGE = +15V to 0V,RG = 100 Ref.Fig. 23 CT1 CT4 J ns CT4 CT4 13,15 WF1,WF2 14,16 CT4 WF1 WF2 J ns nH pF 22 4 CT2 CT3 WF4 WF4 s A J ns A nC TJ = 150C, Vp = 600V, RG = 100 VCC=360V,VGE = +15V to 0V TJ = 150C VCC = 400V, IF = 5.0A, L = 1.4mH VGE = 15V, RG = 100, Ls= 150nH di/dt = 400A/s 17,18,19 20,21 CT4,WF3 Vcc =80% (VCES), VGE = 20V, L =100H, RG = 50. Energy losses include "tail" and diode reverse recovery. 2 www.irf.com IRGIB6B60KDPBF 12 10 8 6 4 2 0 0 20 40 60 80 100 120 140 160 180 T C (C) 40 35 30 25 Ptot (W) IC (A) 20 15 10 5 0 0 20 40 60 80 100 120 140 160 180 T C (C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature 100 Fig. 2 - Power Dissipation vs. Case Temperature 100 IC A) 10 10 10 s IC (A) 1 100 s 1ms 1 0.1 10 100 DC 1000 VCE (V) 0.01 1 10 100 VCE (V) 1000 10000 Fig. 3 - Forward SOA TC = 25C; TJ 175C Fig. 4 - Reverse Bias SOA TJ = 175C; VGE =15V www.irf.com 3 IRGIB6B60KDPBF 20 18 16 14 ICE (A) 20 10 8 6 4 2 0 0 2 VCE (V) 4 6 ICE (A) 12 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 18 16 14 12 10 8 6 4 2 0 0 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 2 VCE (V) 4 6 Fig. 5 - Typ. IGBT Output Characteristics TJ = -40C; tp = 80s Fig. 6 - Typ. IGBT Output Characteristics TJ = 25C; tp = 80s 30 25 20 18 16 14 ICE (A) 12 10 8 6 4 2 0 0 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 20 IF (A) 15 10 5 0 0.0 2 VCE (V) 4 6 Fig. 7 - Typ. IGBT Output Characteristics TJ = 150C; tp = 80s Fig. 8 - Typ. Diode Forward Characteristics tp = 80s 4 www.irf.com IRGIB6B60KDPBF 20 18 16 14 VCE (V) VCE (V) 20 18 16 14 ICE = 3.0A ICE = 5.0A ICE = 10A 12 10 8 6 4 2 0 5 10 VGE (V) 15 20 5 10 VGE (V) 15 20 ICE = 3.0A ICE = 5.0A ICE = 10A 12 10 8 6 4 2 0 Fig. 9 - Typical VCE vs. VGE TJ = -40C Fig. 10 - Typical VCE vs. VGE TJ = 25C 20 18 16 14 VCE (V) ICE (A) 40 35 30 T J = 25C T J = 150C 12 10 8 6 4 2 0 5 10 VGE (V) ICE = 3.0A ICE = 5.0A ICE = 10A 25 20 15 10 5 0 T J = 150C T J = 25C 0 5 10 VGE (V) 15 20 15 20 Fig. 11 - Typical VCE vs. VGE TJ = 150C Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10s www.irf.com 5 IRGIB6B60KDPBF 700 600 EON 500 1000 tdOFF Swiching Time (ns) Energy (J) 100 400 EOFF 300 200 100 0 0 5 10 IC (A) 15 20 tF tdON 10 tR 1 0 5 10 15 20 IC (A) Fig. 13 - Typ. Energy Loss vs. IC TJ = 150C; L=1.4mH; VCE= 400V RG= 100; VGE= 15V Fig. 14 - Typ. Switching Time vs. IC TJ = 150C; L=1.4mH; VCE= 400V RG= 100; VGE= 15V 250 1000 EOFF 200 tdOFF Swiching Time (ns) 100 Energy (J) 150 EON tdON tR tF 100 10 50 0 0 50 100 150 200 1 0 50 100 150 200 R G () RG () Fig. 15 - Typ. Energy Loss vs. RG TJ = 150C; L=1.4mH; VCE= 400V ICE= 5.0A; VGE= 15V Fig. 16 - Typ. Switching Time vs. RG TJ = 150C; L=1.4mH; VCE= 400V ICE= 5.0A; VGE= 15V 6 www.irf.com IRGIB6B60KDPBF 25 20 RG = 22 20 18 16 RG = 47 14 IRR (A) RG = 100 10 IRR (A) 20 15 12 10 8 6 4 2 RG = 150 5 0 0 5 10 15 0 0 50 100 150 200 IF (A) RG () Fig. 17 - Typical Diode IRR vs. IF TJ = 150C Fig. 18 - Typical Diode IRR vs. RG TJ = 150C; IF = 5.0A 20 18 16 14 1200 1000 800 Q RR (nC) 22 47 100 10A IRR (A) 12 10 8 6 4 2 0 0 200 400 600 800 1000 600 400 200 0 0 150 5.0A 3.0A 200 400 600 800 1000 diF /dt (A/s) diF /dt (A/s) Fig. 19- Typical Diode IRR vs. diF/dt VCC= 400V; VGE= 15V; ICE= 5.0A; TJ = 150C Fig. 20 - Typical Diode QRR VCC= 400V; VGE= 15V;TJ = 150C www.irf.com 7 IRGIB6B60KDPBF 300 22 250 Energy (J) 200 47 150 100 100 150 50 0 5 10 15 IF (A) Fig. 21 - Typical Diode ERR vs. IF TJ = 150C 1000 16 Cies 14 300V 12 400V Capacitance (pF) 100 10 Coes Cres 10 VGE (V) 8 6 4 2 0 1 1 10 100 0 5 10 15 20 VCE (V) Q G , Total Gate Charge (nC) Fig. 22- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz Fig. 23 - Typical Gate Charge vs. VGE ICE = 5.0A; L = 600H 8 www.irf.com IRGIB6B60KDPBF 10 Thermal Response ( Z thJC ) D = 0.50 1 0.20 0.10 0.05 R1 R1 J 1 2 R2 R2 R3 R3 3 C 3 0.1 0.02 0.01 J Ri (C/W) i (sec) 1.157 0.000607 1.134 1.608 0.107781 1.9249 1 2 Ci= i/Ri Ci= i/Ri 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) 10 D = 0.50 Thermal Response ( Z thJC ) 1 0.20 0.10 0.05 J R1 R1 J 1 2 R2 R2 R3 R3 3 C 3 0.1 0.02 0.01 1 2 Ri (C/W) i (sec) 2.530 0.001 1.354 0.068689 2.114 2.758 Ci= i/Ri Ci= i/Ri 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 9 IRGIB6B60KDPBF L L DUT 0 VCC 80 V + - DUT 480V 1K Rg Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit diode clamp / DUT Driver DC L 360V - 5V DUT / DRIVER Rg VCC DUT Fig.C.T.3 - S.C.SOA Circuit Fig.C.T.4 - Switching Loss Circuit R= VCC ICM DUT Rg VCC Fig.C.T.5 - Resistive Load Circuit 10 www.irf.com IRGIB6B60KDPBF 450 400 350 300 250 VCE (V) tf 4 5% V CE 5% ICE 90% ICE 9 8 7 6 5 VCE (V) 500 25 400 20 300 TEST CURRENT 15 ICE (A) 200 150 100 50 0 -50 -0.20 Eof f Loss ICE (A) 200 tr 90% test current 10 3 2 1 0 -1 0.80 100 5 10% test current 5% V CE 0 Eon Loss 16.10 16.20 time (s) 16.30 0 0.30 time(s) -100 16.00 -5 16.40 Fig. WF1- Typ. Turn-off Loss Waveform @ TJ = 150C using Fig. CT.4 50 0 QRR -50 -100 -150 VF (V) -200 -250 -300 -350 -400 -450 -0.06 Peak IRR 10% Peak IRR Fig. WF2- Typ. Turn-on Loss Waveform @ TJ = 150C using Fig. CT.4 500 50 8 6 t RR 4 2 0 VCE (V) 400 V CE 300 ICE 40 30 ICE (A) -2 -4 -6 -8 -10 -12 0.04 0.14 0.24 time (S) IF (A) 200 20 100 10 0 -5.00 0.00 5.00 time (S) 10.00 0 15.00 Fig. WF3- Typ. Diode Recovery Waveform @ TJ = 150C using Fig. CT.4 Fig. WF4- Typ. S.C Waveform @ TJ = 150C using Fig. CT.3 www.irf.com 11 IRGIB6B60KDPBF TO-220 Full-Pak Package Outline Dimensions are shown in millimeters (inches) 10.60 (.417) 10.40 (.409) o 3.40 (.133) 3.10 (.123) -A3.70 (.145) 3.20 (.126) 4.80 (.189) 4.60 (.181) 2.80 (.110) 2.60 (.102) LEAD ASSIGNMENTS 1 - GATE 2 - DRAIN 3 - SOURCE 7.10 (.280) 6.70 (.263) 16.00 (.630) 15.80 (.622) 1.15 (.045) MIN. 1 2 3 NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982 2 CONTROLLING DIMENSION: INCH. 3.30 (.130) 3.10 (.122) -B13.70 (.540) 13.50 (.530) C D A 3X 1.40 (.055) 1.05 (.042) 0.90 (.035) 3X 0.70 (.028) 0.25 (.010) 2.54 (.100) 2X M AM B 3X 0.48 (.019) 0.44 (.017) B 2.85 (.112) 2.65 (.104) MINIMUM CREEPAGE DISTANCE BETWEEN A-B-C-D = 4.80 (.189) TO-220 Full-Pak Part Marking Information EXAM PLE: T W L A IN N p TO-220 Full-Pak package is not recommended for Surface Mount Application Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.05/04 12 www.irf.com |
Price & Availability of IRGIB6B60KDPBF
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |