![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
XC6225 Series 30mA High Speed LDO Regulator ETR0342-002 GENERAL DESCRIPTION The XC6225 series is a high accuracy, low noise, and low dropout CMOS LDO regulator. The series includes a reference voltage source, an error amplifier, a driver transistor, a current limiter, and a phase compensation circuit. The CE function enables the entire circuit to be turned off by a low level input signal to the CE pin. In this stand-by state, the XC6225B series can discharge the electric charge stored at the output capacitor through the internal auto-discharge switch, and as a result the VOUT pin quickly returns to the VSS level. The output stabilization capacitor (CL) is also compatible with low ESR ceramic capacitors. Output voltage is selectable in 0.05V increments within a range of 0.8V~5.0V. The current limit fold-back circuit works as a short circuit protection as well as the output current limiter. The series achieves a fast response with only 25 A of low power consumption. The current limit is set to 50mA (TYP.) so that the device is optimized to protect the circuit from over-current. It is ideally suited for applications requiring 30 mA or less. A small USP-4 package makes high density mounting possible. APPLICATIONS Cellular phones Cordless phones, Wireless communication equipment Portable games Cameras, VCRs Portable AV equipment PDAs FEATURES Output Current Dropout Voltage Operating Voltage Range Output Voltage Range Accuracy : 30mA <50mA (TYP.) Limit> : 70mV@ IOUT=30mA, VOUT=3.2V : 2.5V ~ 6.0V : 0.8V~5.0V (0.05V increments) : +2% (VOUT>1.5V) +0.03V (VOUT 1.45V) : 25 A (TYP.) : Less than 0.1 A : 70dB @ 1kHz : -40 ~+85 Low Power Consumption Stand-by Current High Ripple Rejection Operating Temperature Range Output Capacitor : 1.0 F ceramic capacitor CL High-Speed Auto-Discharge (XC6225B) Low Output Noise Packages : USP-4, SOT-25 SSOT-24 (under development) TYPICAL APPLICATION CIRCUIT 1/15 XC6225 Series PIN CONFIGURATION (under development) *The heat sink pad of the USP-4 is recommended to be soldered to enhance the strength. Please refer to the reference mount pattern and metal mask pattern. This pad should be electrically opened or connected to the VSS (No.2) pin. PIN ASSIGNMENT PIN NUMBER USP-4 4 1 2 3 SOT-25 1 5 2 3 4 SSOT-24 4 3 2 1 PIN NAME VIN VOUT VSS CE NC FUNCTIONS Power Input Output Ground ON/OFF Control No Connection *SSOT-24 is under development. 2/15 XC6225 Series PRODUCT CLASSIFICATION Ordering Information XC6225-(*1) DESIGNATOR DESCRIPTION Type of Regulator Output Voltage SYMBOL A B 0850 2 Output Voltage Accuracy A Packages Taping Type (*2) GR-G MR-G NR-G DESCRIPTION CE High Active, Without CL discharge function CE High Active, With CL discharge function e.g. 3.0V =3, =0 nd Output voltage is { x.x0V } (the 2 decimal place is "0") 2% (VOUT(T)1.5V), Within 0.03V (VOUT(T)1.40V) nd Output voltage is { x.x5V } (the 2 decimal place is "5") 2% (VOUT1.55V), Within 0.03V (VOUT1.45V) - USP-4 (Halogen & Antimony free) SOT-25 (Halogen & Antimony free) SSOT-24 (Halogen & Antimony free) under development (*1) (*2) The "-G" suffix indicates that the products are Halogen and Antimony free as well as being fully RoHS compliant. The device orientation is fixed in its embossed tape pocket. For reverse orientation, please contact your local Torex sales office or representative. (Standard orientation: R- , Reverse orientation: L- ) 3/15 XC6225 Series BLOCK DIAGRAMS XC6225A Series *Diodes inside the circuit are an ESD protection diode and a parasitic diode. XC6225B Series ABSOLUTE MAXIMUM RATINGS PARAMETER Input Voltage Output Current Output Voltage CE Input Voltage USP-4 Power Dissipation SOT-25 SSOT-24 Operating Temperature Range Storage Temperature Range (*1) SYMBOL VIN IOUT VOUT VCE Pd Topr Tstg RATINGS VSS-0.3+6.5 400 (*1) VSS-0.3VIN+0.3 VSS-0.3+6.5 120 250 150 -40+85 -55+125 Ta=25 UNITS V mA V V mW IOUT Pd / (VIN-VOUT) *SSOT-24 is under development. 4/15 XC6225 Series ELECTRICAL CHARACTERISTICS XC6225A/B Series PARAMETER SYMBOL CONDITIONS VOUT(T)1.50V VCE=VIN, IOUT=10mA VOUT(T)1.45V VCE=VIN, IOUT=10mA VCE=VIN VIN= VOUT(T)+1.0V 1.5VVOUT(T)5.0V VCE=VIN VIN=2.5V 0.8VVOUT(T)1.45V VCE=VIN 0.1mAIOUT30mA IOUT=30mA, VCE=VIN VIN=VOUT+1.0V, IOUT=0A VIN=6.0V, VCE=VSS VOUT(T)+0.5VVIN6.0V VOUT(T)2.0V, VCE=VIN, IOUT=10mA 2.5VVIN6.0V VOUT(T)1.95V VCE=VIN, IOUT=10mA MIN. x0.98 *3 TYP. MAX. x1.02 *3 UNITS Ta=25 CIRCUIT Output Voltage VOUT(E) (*2) VOUT(T) *4 V +0.03 *3 -0.03 *3 Output Current IOUTMAX 30 50 - mA Load Regulation Dropout Voltage (*5) VOUT Vdif ISS ISTBY - 5 12 mV mV A A DROPOUT VOLTAGE CHART 25 0.01 50 0.1 Supply Current Stand-by Current Line Regulation VOUT/ (VINVOUT) - 0.01 0.20 %/V Input Voltage Output Voltage Temperature Characteristics VIN VOUT/ (TaVOUT) VCE=VIN, IOUT=30mA -40Ta85 2.5 - 100 6.0 - V ppm/ 5/15 XC6225 Series ELECTRICAL CHARACTERISTICS (Continued) XC6225A/B Series (Continued) PARAMETER SYMBOL CONDITIONS VIN=5.75VDC+0.5Vp-pAC 5.0VVOUT(T)4.8V VCE=VIN, IOUT=30mA, f=1kHz VIN=VOUT(T)+1.0VDC+0.5Vp-pAC 4.75VVOUT(T)4.05V VCE=VIN, IOUT=30mA, f=1kHz VIN=VOUT(T)+1.0VDC+0.5Vp-pAC 4.0VVOUT(T)1.75V VCE=VIN, IOUT=30mA, f=1kHz VIN=2.75VDC+0.5Vp-pAC 1.7VVOUT(T)0.8V VCE=VIN, IOUT=30mA, f=1kHz VIN=6.0V, VCE=VIN 5.0VVOUT(T)0.8V VIN=VOUT(T)+1.0V, VCE=VIN 5.0VVOUT(T)1.5V VIN=2.5V 1.45VVOUT(T)0.8V VIN=VOUT(T)+0.1V 5.0VVOUT(T)2.4V VIN=2.5V 2.35VVOUT(T)1.55V VCE=VIN VOUT is short-circuited at the VSS level MIN. TYP. MAX. UNITS Ta=25 CIRCUIT - 60 - Ripple Rejection Rate PSRR dB - 70 - Limit Current1(*9) ILIM1 30 50 70 Limit Current2(*9, *10) ILIM 2 30 50 70 mA Limit Current3(*9, *10) ILIM 3 - 50 70 Short Current CE High Level Voltage CE Low Level Voltage CE High Level Current CE Low Level Current CL Auto-Discharge Resistance (*8) ISHORT VCEH VCEL ICEH ICEL RDCHG 1.2 - 15 780 6.0 0.3 0.1 0.1 - mA V V A A VCE=VIN VCE=VSS VIN=6.0V, VOUT=4.0V, VCE= VSS -0.1 -0.1 - NOTE: * 1: Unless otherwise stated regarding input voltage conditions, 1.5VVOUT(T)5.0V is VIN=VOUT(T) 1.0V, and 0.8VVOUT(T)1.45V is VIN=2.5V. * 2: VOUT (E) = Effective output voltage (Refer to the voltage chart) (I.e. the output voltage when stabilized "VOUT (T) 1.0V" is provided at the VIN pin while maintaining a certain IOUT value.) * 3: The output voltage VOUT (E) is shown in the voltage chart. * 4: VOUT (T) = Nominal output voltage (*7) (*6) * 5: Vdif ={VIN1 -VOUT1 } * 6: VOUT1=A voltage equal to 98% of the output voltage when an amply stabilized {VOUT (T) +1.0V} is input. * 7: VIN1= The input voltage when VOUT1 appears at the VOUT pin while input voltage is gradually decreased. * 8: For the XC6225B series only. The XC6225A series discharges by using the two resistors R1 and R2 shown in the block diagram. *9: Limit current is defined as the output current when VOUT(E) x 0.95 is impressed at the VOUT pin. *10: The device may not satisfy the specification values when it is used with the input voltages lower than the conditions of ILIM2(1.45VVOUT(T)0.8V) and ILIM3. 6/15 XC6225 Series OUTPUT VOLTAGE CHART Voltage Table1 NOMINAL OUTPUT VOLTAGE OUTPUT 2% (V) VOLTAGE (V) VOUT(E) VOUT(T) 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90 2.95 MIN. 0.7700 0.8200 0.8700 0.9200 0.9700 1.0200 1.0700 1.1200 1.1700 1.2200 1.2700 1.3200 1.3700 1.4200 1.4700 1.5190 1.5680 1.6170 1.6660 1.7150 1.7640 1.8130 1.8620 1.9110 1.9600 2.0090 2.0580 2.1070 2.1560 2.2050 2.2540 2.3030 2.3520 2.4010 2.4500 2.4990 2.5480 2.5970 2.6460 2.6950 2.7440 2.7930 2.8420 2.8910 MAX. 0.8300 0.8800 0.9300 0.9800 1.0300 1.0800 1.1300 1.1800 1.2300 1.2800 1.3300 1.3800 1.4300 1.4800 1.5300 1.5810 1.6320 1.6830 1.7340 1.7850 1.8360 1.8870 1.9380 1.9890 2.0400 2.0910 2.1420 2.1930 2.2440 2.2950 2.3460 2.3970 2.4480 2.4990 2.5500 2.6010 2.6520 2.7030 2.7540 2.8050 2.8560 2.9070 2.9580 3.0090 DROPOUT VOLTAGE Vdif (mV) Vdif TYP. MAX. 325 235 160 115 1700 1650 1600 1550 1500 1450 1400 1350 1300 1250 1200 1150 1100 1050 1000 950 900 850 800 750 700 650 600 550 500 450 400 350 300 250 200 150 85 50 40 120 70 7/15 XC6225 Series OUTPUT VOLTAGE CHART (Continued) Voltage Table2 NOMINAL OUTPUT VOLTAGE (V) VOUT(T) 3.00 3.05 3.10 3.15 3.20 3.25 3.30 3.35 3.40 3.45 3.50 3.55 3.60 3.65 3.70 3.75 3.80 3.85 3.90 3.95 4.00 4.05 4.10 4.15 4.20 4.25 4.30 4.35 4.40 4.45 4.50 4.55 4.60 4.65 4.70 4.75 4.80 4.85 4.90 4.95 5.00 OUTPUT VOLTAGE 2% (V) VOUT(E) MIN. MAX. 2.9400 2.9890 3.0380 3.0870 3.1360 3.1850 3.2340 3.2830 3.3320 3.3810 3.4300 3.4790 3.5280 3.5770 3.6260 3.6750 3.7240 3.7730 3.8220 3.8710 3.9200 3.9690 4.0180 4.0670 4.1160 4.1650 4.2140 4.2630 4.3120 4.3610 4.4100 4.4590 4.5080 4.5570 4.6060 4.6550 4.7040 4.7530 4.8020 4.8510 4.9000 3.0600 3.1110 3.1620 3.2130 3.2640 3.3150 3.3660 3.4170 3.4680 3.5190 3.5700 3.6210 3.6720 3.7230 3.7740 3.8250 3.8760 3.9270 3.9780 4.0290 4.0800 4.1310 4.1820 4.2330 4.2840 4.3350 4.3860 4.4370 4.4880 4.5390 4.5900 4.6410 4.6920 4.7430 4.7940 4.8450 4.8960 4.9470 4.9980 5.0490 5.1000 DROPOUT VOLTAGE Vdif (mV) Vdif TYP. MAX. 70 120 95 170 8/15 XC6225 Series OPERATIONAL EXPLANATION The voltage divided by resistors R1 & R2 is compared with the internal reference voltage by the error amplifier. The P-channel MOSFET connected to the VOUT pin, is then driven by the subsequent output signal. The output voltage at the VOUT pin is controlled and stabilized by a system of negative feedback. The current limit circuit and short-circuit protection circuit operate in relation to the level of output current. Further, the IC's entire circuitry is turned off by the input signal to the CE pin. BLOCK DIAGRAM CE ON/OFF Control VIN CE CE/ Error Amp Current Limit + each circuit R1 Rdischg VOUT CE/ R2 Voltage Reference VSS The XC6225 needs an output capacitor CL for phase compensation. Values required for the phase compensation are shown in the chart below. If a loss of the capacitance happens, the stable phase compensation may not be obtained. Please ensure to use a capacitor which does not depend on bias or temperature too much. For a stable power input, please connect an input capacitor CIN of 1.0 F between the VIN pin and the VSS pin. OUTPUT VOLTAGE 0.8V1.15V 1.2V1.35V 1.4V4.0V 4.05V5.0V OUTPUT CAPACITOR CL=4.7F CL=2.2F CL=1.0F CL=2.2F 9/15 XC6225 Series OPERATIONAL EXPLANATION (Continued) NOTES ON USE 1. Please use this IC within the stated absolute maximum ratings. The IC is liable to malfunction should the ratings be exceeded. 2. Where wiring impedance is high, operations may become unstable due to noise and/or phase lag depending on output current. Please wire the input capacitor (CIN) and the output capacitor (CL) as close to the IC as possible. 10/15 XC6225 Series TEST CIRCUITS Circuit: Output Voltage, Output Current, Dropout Voltage, Line Regulation, Load Regulation, Current Limit, Short Current, CL Discharge Resistance Circuit: Supply Current, Stand-by Current 2 Circuit: Ripple Rejection Rate 3 11/15 XC6225 Series TEST CIRCUITS (Continued) Circuit:4CE"H"L"CE"H"L" CE "High" "Low" Level Voltage, CE "High" "Low" Level Current 12/15 XC6225 Series PACKAGING INFORMATION USP-4 (unit: mm) SOT-25 (unit: mm) +0.2 1.6 -0.1 2.80.2 1.10.1 SSOT-24 (unit: mm) (under development) 1.3MAX 0.2MIN 13/15 XC6225 Series PACKAGING INFORMATION (Continued) USP-4 Reference Pattern Layout USP-4 Reference Metal Mask Design 14/15 XC6225 Series 1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date. 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this datasheet. 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet. 4. The products in this datasheet are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user. (e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.) 5. Please use the products listed in this datasheet within the specified ranges. Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives. 6. We assume no responsibility for damage or loss due to abnormal use. 7. All rights reserved. No part of this datasheet may be copied or reproduced without the prior permission of TOREX SEMICONDUCTOR LTD. 15/15 |
Price & Availability of XC6225A08ANR-G
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |