![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
irg4ibc30ud insulated gate bipolar transistor with ultrafast soft recovery diode features features features features features e g n-channel c v ces = 600v v ce(on) typ. = 1.95v @v ge = 15v, i c = 12a ultrafast copack igbt 7/17/2000 pd91753a parameter typ. max. units r jc junction-to-case - igbt ??? 2.8 r jc junction-to-case - diode ??? 4.1 c/w r ja junction-to-ambient, typical socket mount ??? 65 wt weight 2.0 (0.07) ??? g (oz) thermal resistance to-220 fullpak www.irf.com 1 parameter max. units v ces collector-to-emitter voltage 600 v i c @ t c = 25 c continuous collector current 17 i c @ t c = 100 c continuous collector current 8.9 i cm pulsed collector current 92 a i lm clamped inductive load current 92 i f @ t c = 100 c diode continuous forward current 8.5 i fm diode maximum forward current 92 visol rms isolation voltage, terminal to case 2500 v v ge gate-to-emitter voltage 20 p d @ t c = 25 c maximum power dissipation 45 p d @ t c = 100 c maximum power dissipation 18 t j operating junction and -55 to +150 t stg storage temperature range c soldering temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) mounting torque, 6-32 or m3 screw. 10 lbf in (1.1 n m) absolute maximum ratings w 2.5kv, 60s insulation voltage 4.8 mm creapage distance to heatsink ultrafast: optimized for high operating frequencies 8-40 khz in hard switching, >200 khz in resonant mode igbt co-packaged with hexfred tm ultrafast, ultrasoft recovery antiparallel diodes tighter parameter distribution industry standard isolated to-220 fullpak tm outline benefits simplified assembly highest efficiency and power density hexfred tm antiparallel diode minimizes switching losses and emi
irg4ibc30ud 2 www.irf.com parameter min. typ. max. units conditions q g total gate charge (turn-on) ??? 50 75 i c = 12a qge gate - emitter charge (turn-on) ??? 8.1 12 nc v cc = 400v see fig. 8 q gc gate - collector charge (turn-on) ??? 18 27 v ge = 15v t d(on) turn-on delay time ??? 40 ??? t j = 25 c t r rise time ??? 21 ??? ns i c = 12a, v cc = 480v t d(off) turn-off delay time ??? 91 140 v ge = 15v, r g = 23 ? t f fall time ??? 80 130 energy losses include "tail" and e on turn-on switching loss ??? 0.38 ??? diode reverse recovery. e off turn-off switching loss ??? 0.16 ??? mj see fig. 9, 10, 11, 18 e ts total switching loss ??? 0.54 0.9 t d(on) turn-on delay time ??? 40 ??? t j = 150 c, see fig. 9, 10, 11, 18 t r rise time ??? 22 ??? ns i c = 12a, v cc = 480v t d(off) turn-off delay time ??? 120 ??? v ge = 15v, r g = 23 ? t f fall time ??? 180 ??? energy losses include "tail" and e ts total switching loss ??? 0.89 ??? mj diode reverse recovery. l e internal emitter inductance ??? 7.5 ??? nh measured 5mm from package c ies input capacitance ??? 1100 ??? v ge = 0v c oes output capacitance ??? 73 ??? pf v cc = 30v see fig. 7 c res reverse transfer capacitance ??? 14 ??? ? = 1.0mhz t rr diode reverse recovery time ??? 42 60 ns t j = 25 c see fig. ??? 80 120 t j = 125 c 14 i f = 12a i rr diode peak reverse recovery current ??? 3.5 6.0 a t j = 25 c see fig. ??? 5.6 10 t j = 125 c 15 v r = 200v q rr diode reverse recovery charge ??? 80 180 nc t j = 25 c see fig. ??? 220 600 t j = 125 c 16 di/dt 200a/s di (rec)m /dt diode peak rate of fall of recovery ??? 180 ??? a/s t j = 25 c see fig. during t b ??? 120 ??? t j = 125 c 17 parameter min. typ. max. units conditions v (br)ces collector-to-emitter breakdown voltage ? 600 ??? ??? vv ge = 0v, i c = 250a ? v (br)ces / ? t j temperature coeff. of breakdown voltage ??? 0.63 ??? v/ cv ge = 0v, i c = 1.0ma v ce(on) collector-to-emitter saturation voltage ??? 1.95 2.1 i c = 12a v ge = 15v ??? 2.52 ??? vi c = 23a see fig. 2, 5 ??? 2.09 ??? i c = 12a, t j = 150 c v ge(th) gate threshold voltage 3.0 ??? 6.0 v ce = v ge , i c = 250a ? v ge(th) / ? t j temperature coeff. of threshold voltage ??? -11 ??? mv/ cv ce = v ge , i c = 250a g fe forward transconductance 3.1 8.6 ??? sv ce = 100v, i c = 12a i ces zero gate voltage collector current ??? ??? 250 a v ge = 0v, v ce = 600v ??? ??? 2500 v ge = 0v, v ce = 600v, t j = 150 c v fm diode forward voltage drop ??? 1.4 1.7 v i c = 12a see fig. 13 ??? 1.3 1.6 i c = 12a, t j = 150 c i ges gate-to-emitter leakage current ??? ??? 100 na v ge = 20v switching characteristics @ t j = 25c (unless otherwise specified) electrical characteristics @ t j = 25c (unless otherwise specified) irg4ibc30ud www.irf.com 3 fig. 1 - typical load current vs. frequency (load current = i rms of fundamental) fig. 2 - typical output characteristics fig. 3 - typical transfer characteristics 0.1 1 10 100 0.1 1 10 ce c i , collector-to-emitter current (a) v , collector-to-em itter volta g e (v) t = 150 c t = 25 c j j v = 1 5 v 20 s pulse w idth ge a 0.1 1 10 100 5 6 7 8 9 10 11 12 c i , collector-to-em itter current (a) ge t = 25 c t = 150 c j j v , g a te -to-e m itte r vo lta g e (v) a v = 10 v 5 s pulse w idth cc 0.1 1 10 100 0 2 4 6 8 10 12 f, frequency (khz) load current (a) for both: duty cycle: 50% t = 125 c t = 9 0 c gate drive as specified sink j power dissipation = w 60% of rated voltage i ideal diodes square wave: 13 irg4ibc30ud 4 www.irf.com fig. 5 - typical collector-to-emitter voltage vs. junction temperature fig. 4 - maximum collector current vs. case temperature fig. 6 - maximum igbt effective transient thermal impedance, junction-to-case 1.5 2.0 2.5 3.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 ce v , collector-to-em itter voltage (v) v = 1 5 v 80 s pulse w idth ge a t , junction temperature ( c) j i = 2 4 a i = 12a i = 6 .0 a c c c 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 1 10 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response) 25 50 75 100 125 150 0 4 8 12 16 20 t , case temperature ( c) maximum dc collector current(a) c irg4ibc30ud www.irf.com 5 fig. 7 - typical capacitance vs. collector-to-emitter voltage fig. 8 - typical gate charge vs. gate-to-emitter voltage fig. 9 - typical switching losses vs. gate resistance fig. 10 - typical switching losses vs. junction temperature 0 400 800 1200 1600 2000 1 10 100 ce c, capacitance (pf) v , c ollector-to-em itter volta g e (v) a v = 0v, f = 1mhz c = c + c , c shorte d c = c c = c + c ge ies ge gc ce res gc oes ce gc c ies c re s c oes 0 4 8 12 16 20 0 10 20304050 ge v , g ate-to-em itter voltage (v ) g q , t otal g ate c ha r g e (nc) a v = 400v i = 1 2 a ce c total switchig losses (mj) 0.1 1 10 -60 -40 -20 0 20 40 60 80 100 120 140 160 a t , junction temperature ( c ) j r = 23 ? v = 15v v = 480v i = 24a i = 12a i = 6.0a g ge cc c c c total switchig losses (mj) 0.50 0.52 0.54 0.56 0.58 0.60 0 102030 405060 g a r , gate resistance ( ? ) v = 480v v = 15v t = 25 c i = 12a cc ge j c irg4ibc30ud 6 www.irf.com 0.1 1 10 100 1000 1 10 100 1000 v = 20v t = 125 c ge j o safe operating area v , collector-to-emitter volta g e (v) i , collector current (a) ce c fig. 11 - typical switching losses vs. collector-to-emitter current fig. 12 - turn-off soa fig. 13 - maximum forward voltage drop vs. instantaneous forward current 1 10 100 0.4 0.8 1.2 1.6 2.0 2.4 fm f instantaneous forward current - i (a) forward volta g e drop - v ( v ) t = 150 c t = 125 c t = 25 c j j j 0.0 0.4 0.8 1.2 1.6 2.0 0102030 c i , collector-to-emitter current ( a ) a r = 23 ? t = 150 c v = 480v v = 15v g j cc ge total switchig losses (mj) irg4ibc30ud www.irf.com 7 fig. 14 - typical reverse recovery vs. di f /dt fig. 15 - typical recovery current vs. di f /dt fig. 16 - typical stored charge vs. di f /dt fig. 17 - typical di (rec)m /dt vs. di f /dt 0 200 400 600 100 1000 f di /dt - ( a/ s ) rr q - (nc) i = 6.0a i = 1 2a i = 24a v = 200v t = 125 c t = 25 c r j j f f f 10 100 1000 10000 100 1000 f d i /d t - ( a/ s ) di(rec)m/dt - (a/s) i = 12a i = 24a i = 6.0a f f f v = 200v t = 125 c t = 25 c r j j 0 40 80 120 160 100 1000 f di /dt - ( a/ s ) t - (ns) rr i = 24a i = 1 2a i = 6.0a f f f v = 200v t = 125 c t = 25 c r j j 1 10 100 100 1000 f di /dt - ( a/ s ) i - (a) ir rm i = 6.0a i = 12a i = 24a f f f v = 200v t = 125 c t = 25 c r j j irg4ibc30ud 8 www.irf.com fig. 18b - test waveforms for circuit of fig. 18a, defining e off , t d(off) , t f vce ie dt t2 t1 5% vce ic ipk vcc 10% ic vce t1 t2 dut voltage and current gate voltage d.u.t. +vg 10% +vg 90% ic tr td(on) diode reverse recovery energy tx eon = erec = t4 t3 vd id dt t4 t3 diode recovery w aveforms ic vpk 10% vcc irr 10% irr vcc trr qrr = trr tx id dt same type device as d.u.t. d.u.t. 430f 80% of vce fig. 18a - test circuit for measurement of i lm , e on , e off(diode) , t rr , q rr , i rr , t d(on) , t r , t d(off) , t f fig. 18c - test waveforms for circuit of fig. 18a, defining e on , t d(on) , t r fig. 18d - test waveforms for circuit of fig. 18a, defining e rec , t rr , q rr , i rr t=5s d(on) t t f t r 90% t d(off) 10% 90% 10% 5% c i c e on e off ts on off e = (e +e ) v v ge irg4ibc30ud www.irf.com 9 vg gate signal device under test current d.u.t. voltage in d.u.t. current in d1 t0 t1 t2 d.u.t. v * c 50v l 1000v 6000f 100v figure 19. clamped inductive load test circuit figure 20. pulsed collector current test circuit r l = 480v 4 x i c @25 c 0 - 480v figure 18e. macro waveforms for figure 18a's test circuit irg4ibc30ud 10 www.irf.com repetitive rating: v ge =20v; pulse width limited by maximum junction temperature (figure 20) v cc =80%(v ces ), v ge =20v, l=10h, r g = 23 ? (figure 19) pulse width 80s; duty factor 0.1%. pulse width 5.0s, single shot. t = 60s, f = 60hz lead assignments 1 - g a te 2 - d r a in 3 - s o u r c e notes: 1 dimensioning & tolerancing p e r a n s i y 1 4.5 m , 19 82 2 controlling dimension: inch. d c a b minimum creepage distance betw een a-b-c-d = 4.80 ( .1 89 ) 3x 2.85 ( .11 2 ) 2.65 ( .10 4 ) 2.80 ( .110 ) 2.60 ( .102 ) 4.80 ( .189 ) 4.60 ( .181 ) 7.10 ( .2 8 0 ) 6.70 ( .2 6 3 ) 3.40 ( .1 3 3 ) 3.10 ( .1 2 3 ) ? - a - 3.70 ( .1 4 5 ) 3.20 ( .1 2 6 ) 1.15 ( .04 5 ) m in . 3.30 ( .1 30 ) 3.10 ( .1 22 ) - b - 0.90 ( .0 35 ) 0.70 ( .0 28 ) 3x 0.25 ( .010 ) m a m b 2.54 ( .100 ) 2x 3x 13.70 ( .5 40 ) 13.50 ( .5 30 ) 16.00 ( .6 30 ) 15.80 ( .6 22 ) 1 2 3 10.60 ( .41 7 ) 10.40 ( .40 9 ) 1.40 ( .055 ) 1.05 ( .042 ) 0.48 ( .019 ) 0.44 ( .017 ) lead assigments 1- gate 2- collector 3- emitter ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 ir european regional centre: 439/445 godstone rd, whyteleafe, surrey cr3 obl, uk tel: ++ 44 (0)20 8645 8000 ir canada: 15 lincoln court, brampton, ontario l6t3z2, tel: (905) 453 2200 ir germany: saalburgstrasse 157, 61350 bad homburg tel: ++ 49 (0) 6172 96590 ir italy: via liguria 49, 10071 borgaro, torino tel: ++ 39 011 451 0111 ir japan: k&h bldg., 2f, 30-4 nishi-ikebukuro 3-chome, toshima-ku, tokyo 171 tel: 81 (0)3 3983 0086 ir southeast asia: 1 kim seng promenade, great world city west tower, 13-11, singapore 237994 tel: ++ 65 (0)838 4630 ir taiwan: 16 fl. suite d. 207, sec. 2, tun haw south road, taipei, 10673 tel: 886-(0)2 2377 9936 data and specifications subject to change without notice. 7/00 |
Price & Availability of IRG41BC30UD
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |