s p e c i f i c a t i o n s c h a r a c t e r i s t i c c u r v e s i n p u t c u r r e n t v s . i n p u t v o l t a g e i n p u t c u r r e n t ( m a ) i n p u t v o l t a g e ( v ) 3 0 2 5 2 0 1 5 1 0 50 5 1 0 1 5 2 0 2 5 3 0 m a x i m u m l o a d c u r r e n t v s . a m b i e n t t e m p e r a t u r e i n p u t v o l t a g e ( v ) a m b i e n t t e m p e r a t u r e ( c ) 3 . 0 2 . 5 2 . 0 1 . 5 1 . 0 0 . 5 0 - 2 0 0 2 0 4 0 6 0 8 0 1 0 0 p i c k u p v o l t a g e d r o p o u t v o l t a g e ma xi mu m loa d cur re nt vs . am bi en t t em pe ra tu re l o a d c u r r e n t ( a a c r m s ) a m b i e n t t e m p e r a t u r e ( c ) 5 6 4 3 2 1 0 - 2 0 0 2 0 4 0 6 0 8 0 1 0 0 !? k b 4 0 c 0 6 a m o d e l n o . c o n t r o l v o l t a g e r a n g e m u s t t u r n o f f v o l t a g e i n p u t i m p e d a n c e m a x l o a d c u r r e n t l o a d v o l t a g e r a n g e m i n b l o c k i n g v o l t a g e m a x o f f - s t a t e l e a k a g e m a x 1 - c y c l e p e a k s u r g e f r e q u e n c y r a n g e k b 4 0 c 0 2 a k b 4 0 c 0 3 a k b 4 0 c 0 5 a k b 4 0 c 0 4 a k b 4 0 c 0 6 a 2 0 a 3 0 a 5 0 a 4 0 a 6 0 a l e s s 5 m a l e s s 5 m a l e s s 5 m a l e s s 5 m a l e s s 5 m a 2 4 - 4 8 0 v a c 2 4 - 4 8 0 v a c 2 4 - 4 8 0 v a c 2 4 - 4 8 0 v a c 2 4 - 4 8 0 v a c 2 a 3 a 5 a 4 a 6 a 3 t o 3 2 v d c m a x 1 . 0 v d c 1 . 5 k o h m 3 t o 3 2 v d c m a x 1 . 0 v d c 1 . 5 k o h m 3 t o 3 2 v d c m a x 1 . 0 v d c 1 . 5 k o h m 3 t o 3 2 v d c m a x 1 . 0 v d c 1 . 5 k o h m 3 t o 3 2 v d c m a x 1 . 0 v d c 1 . 5 k o h m 1 2 0 0 v a c 1 2 0 0 v a c 1 2 0 0 v a c 1 2 0 0 v a c 1 2 0 0 v a c 4 7 -7 0 h z 4 7 -7 0 h z 4 7 -7 0 h z 4 7 -7 0 h z 4 7 -7 0 h z m o d e l n o . c a p a c i t a n c e i n - o u t w e i g h t ( g ) m a x o n - s t a t e v o l t a g e d r o p i s o l a t e i m p e d e n c e d i e l e c t r i c s t r e n g t h i n p u t - o u t p u t t u r n o n t i m e t u r n o f f t i m e d i e l e c t r i c s t r e n g t h i n p u t , o u t p u t - c a s e m a x o f f s t a t e d v / d t k b 4 0 c 0 2 a k b 4 0 c 0 3 a k b 4 0 c 0 5 a k b 4 0 c 0 4 a k b 4 0 c 0 6 a l e s s 1 5 p f l e s s 1 5 p f l e s s 1 5 p f l e s s 1 5 p f l e s s 1 5 p f 1 2 g 1 2 g 1 2 g 1 2 g 1 2 g 2 . 0 v a c 2 . 0 v a c 2 . 0 v a c 2 . 0 v a c 2 . 0 v a c 2 5 0 0 v a c r m s 2 5 0 0 v a c r m s 2 5 0 0 v a c r m s 2 5 0 0 v a c r m s 2 5 0 0 v a c r m s l e s s 1 / 2 a c c y c l e l e s s 1 / 2 a c c y c l e l e s s 1 / 2 a c c y c l e l e s s 1 / 2 a c c y c l e l e s s 1 / 2 a c c y c l e l e s s 2 m s e c l e s s 2 m s e c l e s s 2 m s e c l e s s 2 m s e c l e s s 2 m s e c 5 0 0 v / ? s e c 5 0 0 v / ? s e c 5 0 0 v / ? s e c 5 0 0 v / ? s e c 5 0 0 v / ? s e c 1 0 o h m 1 0 o h m 1 0 o h m 1 0 o h m 1 0 o h m 9 9 9 9 9 p e a k s u r g e c u r r e n t v s d u r a t i o n p e a k s u r g e c u r r e n t ( a ) d u r a t i o n ( s e c ) 7 0 6 0 5 5 4 0 3 0 2 0 1 0 0 0 . 0 1 0 . 1 1 1 0 (1 )k b 4 0 c 0 6 a ( 2 ) k b 4 0 c 0 5 a ( 3 ) k b 4 0 c 0 4 a ( 4 ) k b 4 0 c 0 3 a ( 5 ) k b 4 0 c 0 2 a ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) a tte n tio n : 4 - 1 . 0 1 0 . 1 6 1 2 . 7 5 . 0 8 k b s e r i e s o u t l i n e d i m e n s i o n s ( u n i t : m m ) !? !? 8 1 2 3 . 0 1 1 4 4 - 1 .0 5 . 0 0 . 5 1 0 . 1 6 1 2 . 7 5 . 0 8 ky o tt o k b 4 0 c 0 4 a a c s o l i d s ta t e r e l ay k y t e c h e l e c t r o n i c s , lt d . ~ 4 2 3 1 o u t i n 2 4 ~ 4 8 0 v a c /4 a 3 ?^ 3 2 v d c + - 3 4 . 4 1 r k b 4 0 c 0 4 a k b 4 0 c 0 3 a k b 4 0 c 0 5 a k b 4 0 c 0 2 a i n o r d e r t o b e i n c o m p l i a n c e w i t h t h e e m c d i r e c t i v e a n a d d i t i o n a l c o m m o n m o d e c h o k e a n d x 2 c a p a c i t o r a t t h e o u t p u t i s r e q u r i e d i f t h e s s r i s o p e r a t e d a s s i n g l e c o m p o n e n t . i n c a s e t h e s s r i s i n c o r p o r a t e d i n a n a p p l i a n c e t h e e x i s t i n g e m i f i l t e r m a y p r o v i d e t h e r e q u i r e d e m i s u p p e s i o n . t h e e m i f i l t e r m u s t b e p l a c e d a s c l o s e a s p o s s i b l e t o t h e o u t p u t t e m m i n a t s . s e e a l s o a b o v e . a c s o l i d s t a t e r e l a y k b s e r i e s z e r o t u r n o n t y p e r a n d o m t u r n o n t y p e k b 4 0 c 0 2 a k b 4 0 c 0 3 a k b 4 0 c 0 4 a k b 4 0 r 0 2 a k b 4 0 r 0 3 a k b 4 0 r 0 4 a k b 4 0 c 0 5 a k b 4 0 c 0 6 a k b 4 0 r 0 5 a k b 4 0 r 0 6 a e q u i v a l e n t c i r c u i t i n 2 1 3 4 o u t - + 1 . i n p u t c i r c u i t 2 . z e r o - c r o s s c i r c u i t 3 . o u t p u t c i r c u i t 4 . p r o t e c t e d c i r c u i t c 1 x 2 0 . 2 2 u f / 4 8 0 v
|