Part Number Hot Search : 
MAX23 A143Z FR152 2907A 10A12 P10N6 NX6414EH UPD75104
Product Description
Full Text Search
 

To Download IRG6S320UPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  www.irf.com 1 09/11/09 IRG6S320UPBF description this igbt is specifically designed for applications in plasma display panels. this device utilizes advanced trench igbt technology to achieve low v ce(on) and low e pulse tm rating per silicon area which improve panel efficiency. additional features are 150c operating junction temperature and high repetitive peak current capability. these features combine to make this igbt a highly efficient, robust and reliable device for pdp applications. features  advanced trench igbt technology  optimized for sustain and energy recovery circuits in pdp applications  low v ce(on) and energy per pulse (e pulse tm ) for improved panel efficiency  high repetitive peak current capability  lead free package  
 e c g n-channel gc e gate collector emitter pd -96218a v ce min 330 v v ce(on) typ. @ i c = 24a 1.45 v i rp max @ t c = 25c 160 a t j max 150 c key parameters e c g d 2 pak IRG6S320UPBF absolute maximum ratings parameter units v ge gate-to-emitter voltage v i c @ t c = 25c continuous collector current, v ge @ 15v i c @ t c = 100c continuous collector, v ge @ 15v a i rp @ t c = 25c repetitive peak current p d @t c = 25c power dissipation w p d @t c = 100c power dissipation linear derating factor w/c t j operating junction and t stg storage temperature range c soldering temperature for 10 seconds thermal resistance parameter typ. max. units r jc junction-to-case  ??? 1.1 c/w max. 25 160 50  30 300 -40 to + 150 114 45 0.91

2 www.irf.com    half sine wave with duty cycle <= 0.05, ton=2sec.  r is measured at t j of approximately 90c.   pulse width 400s; duty cycle 2%. electrical characteristics @ t j = 25c (unless otherwise specified) parameter min. typ. max. units bv ces collector-to-emitter breakdown voltage 330 ??? ??? v v (br)ecs emitter-to-collector breakdown voltage 30 ??? ??? v ? v ces / ? t j breakdown voltage temp. coefficient ??? 0.30 ??? v/c ??? 1.20 ??? ??? 1.45 1.65 1.95 ??? v ??? 2.20 ??? ??? 2.26 ??? v ge(th) gate threshold voltage 2.6 ??? 5.0 v ? v ge(th) / ? t j gate threshold voltage coefficient ??? -10 ??? mv/c i ces collector-to-emitter leakage current ??? 1.0 10 ??? 5.0 ??? 20 100 ??? 75 ??? i ges gate-to-emitter forward leakage ??? ??? 100 na gate-to-emitter reverse leakage ??? ??? -100 g fe forward transconductance ??? 28 ??? s q g total gate charge ??? 46 ??? nc q gc gate-to-collector charge ??? 7.7 ??? t d(on) turn-on delay time ??? 24 ??? i c = 12a, v cc = 196v t r rise time ??? 20 ??? ns r g = 10 ? , l=210h, l s = 150nh t d(off) turn-off delay time ??? 89 ??? t j = 25c t f fall time ??? 70 ??? t d(on) turn-on delay time ??? 23 ??? i c = 12a, v cc = 196v t r rise time ??? 52 ??? ns r g = 10 ? , l=200h, l s = 150nh t d(off) turn-off delay time ??? 130 ??? t j = 150c t f fall time ??? 140 ??? t st shoot through blocking time 100 ??? ??? ns e pulse energy per pulse j human body model machine model c ies input capacitance ??? 1160 ??? c oes output capacitance ??? 61 ??? pf c res reverse transfer capacitance ??? 38 ??? l c internal collector inductance ??? 5.0 ??? between lead, nh 6mm (0.25in.) l e internal emitter inductance ??? 13 ??? from package esd class 2 (per jedec standard jesd22-a114) class b (per eia/jedec standard eia/jesd22-a115) v ce = 30v v ge = 0v conditions v ge = 0v, i ce = 500a reference to 25c, i ce = 1ma v ge = 15v, i ce = 60a v ge = 15v, i ce = 12a v ge = 15v, i ce = 24a v ge = 0v, i ce = 1 a ? = 1.0mhz, see fig.13 and center of die contact l = 220nh, c= 0.10f, v ge = 15v l = 220nh, c= 0.10f, v ge = 15v v cc = 240v, r g = 5.1 ?, t j = 100c v ce = v ge , i ce = 250a v ce = 330v, v ge = 0v v ce = 330v, v ge = 0v, t j = 150c v ge = 30v v ge = -30v v ce = 330v, v ge = 0v, t j = 100c a ??? 280 ??? v ce = 25v, i ce = 12a v ce = 200v, i c = 12a, v ge = 15v v cc = 240v, r g = 5.1 ?, t j = 25c ??? 240 ??? v cc = 240v, v ge = 15v, r g = 5.1 ? v ce = 330v, v ge = 0v, t j = 125c static collector-to-emitter voltage v ce(on) v ge = 15v, i ce = 48a, t j = 150c v ge = 15v, i ce = 48a   packaging limitation for this device is 42a.

www.irf.com 3 fig 1. typical output characteristics @ 25c fig 3. typical output characteristics @ 125c fig 4. typical output characteristics @ 150c fig 2. typical output characteristics @ 75c fig 5. typical transfer characteristics fig 6. v ce(on) vs. gate voltage 0 5 10 15 20 v ge , voltage gate-to-emitter (v) 0 5 10 15 20 25 v c e , v o l t a g e c o l l e c t o r - t o - e m i t t e r ( v ) t j = 25c t j = 150c i c = 12a 0 1 2 3 4 5 6 7 8 9 10 v ce (v) 0 20 40 60 80 100 120 140 160 180 200 i c e ( a ) v ge = 18v v ge = 15v v ge = 12v v ge = 10v v ge = 8.0v v ge = 6.0v 0 1 2 3 4 5 6 7 8 9 10 v ce (v) 0 20 40 60 80 100 120 140 160 180 200 i c e ( a ) v ge = 18v v ge = 15v v ge = 12v v ge = 10v v ge = 8.0v v ge = 6.0v 0 1 2 3 4 5 6 7 8 9 10 v ce (v) 0 20 40 60 80 100 120 140 160 180 200 i c e ( a ) v ge = 18v v ge = 15v v ge = 12v v ge = 10v v ge = 8.0v v ge = 6.0v 0 1 2 3 4 5 6 7 8 9 10 v ce (v) 0 20 40 60 80 100 120 140 160 180 200 i c e ( a ) v ge = 18v v ge = 15v v ge = 12v v ge = 10v v ge = 8.0v v ge = 6.0v 2468101214 v ge , gate-to-emitter voltage (v) 0 20 40 60 80 100 120 140 160 i c e , c o l l e c t o r - t o - e m i t t e r c u r r e n t ( a ) t j = 25c t j = 150c

4 www.irf.com fig 7. maximum collector current vs. case temperature fig 8. typical repetitive peak current vs. case temperature fig 10. typical e pulse vs. collector-to-supply voltage fig 9. typical e pulse vs. collector current fig 11. e pulse vs. temperature fig 12. forrward bias safe operating area 100 120 140 160 180 200 220 i c , peak collector current (a) 0 500 1000 1500 2000 2500 3000 e n e r g y p e r p u l s e ( j ) v cc = 240v l = 220nh c = variable 100c 25c 25 50 75 100 125 150 t j , temperature (oc) 0 500 1000 1500 2000 2500 3000 3500 4000 e n e r g y p e r p u l s e ( j ) v cc = 240v l = 220nh t = 1s half sine c= 0.4f c= 0.1f c= 0.2f 25 50 75 100 125 150 t c , case temperature (c) 0 5 10 15 20 25 30 35 40 45 50 55 i c , c o l l e c t o r c u r r e n t ( a ) 25 50 75 100 125 150 case temperature (c) 0 20 40 60 80 100 120 140 160 r e p e t i t i v e p e a k c u r r e n t ( a ) pw= 2s duty cycle <= 0.05 half sine wave 1 10 100 1000 v ce (v) 0.1 1 10 100 1000 i c ( a ) 10sec 100sec tc = 25c tj = 150c single pulse 1msec 180 190 200 210 220 230 240 v cc, collector-to-supply voltage (v) 500 1000 1500 2000 2500 3000 e n e r g y p e r p u l s e ( j ) l = 220nh c = 0.4f 100c 25c

www.irf.com 5 fig 13. typical capacitance vs. collector-to-emitter voltage fig 14. typical gate charge vs. gate-to-emitter voltage fig 15. maximum effective transient thermal impedance, junction-to-case 0 50 100 150 200 v ce , collector-toemitter-voltage(v) 10 100 1000 10000 c a p a c i t a n c e ( p f ) cies coes cres v gs = 0v, f = 1 mhz c ies = c ge + c gd , c ce shorted c res = c gc c oes = c ce + c gc 0 1020304050 q g , total gate charge (nc) 0 2 4 6 8 10 12 14 16 v g e , g a t e - t o - e m i t t e r v o l t a g e ( v ) i c = 12a v ces = 240v v ces = 150v v ces = 60v 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 10 t 1 , rectangular pulse duration (sec) 0.0001 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) c / w 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 ci i / ri ci= i / ri c 4 4 r 4 r 4 ri (c/w) i (sec) 0.04220 0.000027 0.30593 0.000129 0.50336 0.001257 0.25017 0.007858

6 www.irf.com fig 16a. t st and e pulse test circuit fig 16b. t st test waveforms fig 16c. e pulse test waveforms 1k vcc dut 0 l fig. 17 - gate charge circuit (turn-off) driver dut l c vcc rg rg b a ipulse energy v ce i c current pulse a pulse b t st

www.irf.com 7   
    
   
      
     
   
    
            !       
            note: for the most current drawing please refer to ir website at http://www.irf.com/package/

8 www.irf.com data and specifications subject to change without notice. this product has been designed for the industrial market. qualification standards can be found on ir?s web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 09/2009 note: for the most current drawing please refer to ir website at http://www.irf.com/package/    
    dimensions are shown in millimeters (inches) 3 4 4 trr feed direction 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) trl feed direction 10.90 (.429) 10.70 (.421) 16.10 (.634) 15.90 (.626) 1.75 (.069) 1.25 (.049) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 4.72 (.136) 4.52 (.178) 24.30 (.957) 23.90 (.941) 0.368 (.0145) 0.342 (.0135) 1.60 (.063) 1.50 (.059) 13.50 (.532) 12.80 (.504) 330.00 (14.173) max. 27.40 (1.079) 23.90 (.941) 60.00 (2.362) min. 30.40 (1.197) max. 26.40 (1.039) 24.40 (.961) notes : 1. comforms to eia-418. 2. controlling dimension: millimeter. 3. dimension measured @ hub. 4. includes flange distortion @ outer edge.


▲Up To Search▲   

 
Price & Availability of IRG6S320UPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X