Part Number Hot Search : 
P4KE30 25V5X 58000 UF2AF TDA15 CY7C10 SSM3K 2SK13
Product Description
Full Text Search
 

To Download XC61FN2512LR Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  7pmubhf%fufdupst %fmbz$jsdvju#vjmu*o
4fsjft 157 2 the xc61f series are highly accurate, low power consumption voltage detectors, manufactured using cmos and laser trimming technologies. a delay circuit is built-in to each detector. detect voltage is extremely accurate with minimal temperature drift. both cmos and n-channel open drain output configurations are available. since the delay circuit is built-in, peripherals are unecessary and high density mounting is possible. (fofsbm%ftdsjqujpo highly accurate : detect voltage 2% low power consumption : typ 1.0 a [ v in =2.0v ] detect voltage range : 1.6v ~ 6.0v in 0.1v increments operating voltage range : 0.7v ~ 10.0v detect voltage temperature characteristics : typ 100ppm/? built-in delay circuit : 1ms ~ 50ms, 50ms ~ 200ms, 80ms ~ 400ms output configuration : n-channel open drain or cmos ultra small packages : sot-23 (150mw) mini-mold : sot-89 (500mw) mini-power mold : to-92 (300mw) * no parts are available with an accuracy of 1% microprocessor reset circuitry memory battery back-up circuits power-on reset circuits power failure detection system battery life and charge voltage monitors delay circuitry 'fbuvsft "qqmjdbujpot cmos mini mold package highly accurate : 2% built-in delay circuit (1ms ~ 50ms) (50ms ~ 200ms) (80ms ~ 400ms) low power consumption : 1.0 a (v in = 2.0v) 5zqjdbm"qqmjdbujpo$jsdvjut $.04pvuqvu /diboofmpqfoesbjopvuqvu 3 l ? 7 */ 7 065 7 44 7 */ 7 065 7 44 7 */ 7 */           -    5%-:  ntfd
"ncjfou5fnq5b ?
5zqjdbm1fsgpsnbodf $ibsbdufsjtujd ".#*&/55&.1&3"563&wt 53"/4*&/5%&-":5*.& 4@9$'     ?? 
9$' 4fjsft 158 2 1jo$pogjhvsbujpo 1jo"ttjhonfou   405 5017*&8
405 5017*&8
    7 065 7 */ 7 44 7 44 7 065 7 */ pin sot-23 sot-89 name 32 v in supply voltage input 23 v ss ground 11 2 3 1v out output function to-92 (t) 1 2 3 to-92 (l) pin number  50 55zqf
5017*&8 7 065 y 7 */ y 7 44  50 -5zqf
5017*&8 7 */  7 44  7 065 4@9$'     ?? 
9$' 4fsjft 159 2 1spevdu$mbttjgjdbujpo ordering information xc61f x x x x x x x yyyyyaaaaaaa y bccde fg output configuration : package type : c = cmos m = sot-23 n = n-ch open drain p = sot-89 t = to-92 (regular) l = to-92 (custom pin configuration) detect voltage (v df ) : 25 = 2.5v 38 = 3.8v output delay : device orientation : 1 = 50ms to 200ms r = embossed tape ( right ) 4 = 80ms to 400ms l = embossed tape ( left ) h: paper tape (to-92) b: bag (to-92) 5 = 1ms to 50ms detect accuracy : 2 = within 2.0% e f description designator description designator a b c d 1bdlbhjoh*ogpsnbujpo sot-23 ? ?   ? ? njo ?         4@9$'     ?? 
9$' 4fjsft 160 2 to-92 ? njo ? ?  ?            sot-89 ?  ?  njo nby ?  ? ? ? ? ?      4@9$'     ?? 
9$' 4fsjft 161 2 .bsljoh sot-23, sot-89 405 5017*&8
405 5017*&8
q w er q w e r q represents the integer of the detect voltage and the output configuration cmos output (xc61fc series) n-channel open drain (xc61fn series) voltage (v) cmos n-ch cmos n-ch cmos n-ch cmos n-ch cmos n-ch cmos n-ch cmos n-ch w represents the decimal number of the detect voltage e indicates the presence of delay time r represents the assembly lot no. based on internal standards 6 80 to 400ms 7 1 to 50ms h designator configuration a b voltage (v) k l s mc d e f 0. w 1. w 0. w 1. w configuration designator 2. w 2. w 3. w 4. w n p 3. w 4. w 5. w 6. w 5. w 6. w r designator 0 1 q .4 3 4 2 q .0 q .1 q .2 designator 5 6 7 8 9 voltage (v) q .7 q .3 q .8 q .9 voltage (v) q .5 q .6 designator 50 to 200ms5 delay time to-92 2 3 4 5 6 7 1 50-5zqf 5017*&8
$ - 2 3 4 5 6 7 1 5055zqf 5017*&8
$ q  3fqsftfoutuifpvuqvu  dpogjhvsbujpo %&4*(/"503 065165$0/'*(63"5*0/ $ $.04 / /di w  3f w   % r  *oejdbuft%fmbz5jnf %&4*(/"503 %&-":5*.&  nt?nt  nt?nt  nt?nt %&4*(/"503 %&5&$570-5"(&"$$63"$:  xjuijo 2% t  3fqsftfoutuif%fufdu7pmubhf"ddvsbdz w  3fqsftfoutuif%fufdu7pmubhf w     e %&4*(/"503 70-5"(&7   y  3fqsftfoutbmfbtutjhojgjdbouejhjupg  uifqspevdfezfbsy %&4*(/"503 130%6$&%:&"3     u  %fopuftuifqspevdujpompuovncfs  up "up;sfqfbufe (*+028fydfqufe
4@9$'     ?? 
9$' 4fjsft 162 2 #mpdl%jbhsbn &mfdusjdbm$ibsbdufsjtujdt 7sfg %fmbz$jsdvju 7sfg %fmbz$jsdvju 
$.04pvuqvu 
/diboofmpqfoesbjopvuqvu 7 065 7 */ 7 44 7 065 7 */ 7 44 
? 07 g  5b? symbol ratings units v in 12 v i out 50 ma v out v ss -0.3 ? v in +0.3 v ss -0.3 ? 9 v continuous total sot-23 pd 150 mw power dissipation sot-89 500 topr -30 ? +80 o c tstg -40 ? +125 o c output voltage parameter output current input voltage storage temperature operating ambient temperature cmos n-ch open drain to-92 300 "ctpmvuf.byjnvn3bujoht 5b1? 7 %' 5
ftubcmjtifeefufduwpmubhfwbmvf 3fmfbtf7pmubhf7 %3 7 %'  7 ):4 /puf5ifqpxfsdpotvnqujpoevsjohqpxfstubsuuppvuqvucfjohtubcmf sfmfbtfpqfsbujpo
jt "hsfbufsuibojujtbgufsuibuqfsjpe  dpnqmfujpopgsfmfbtfpqfsbujpo
cfdbvtfpgefmbzdjsdvjuuispvhidvssfou 5sbotjfou%fmbz5jnfntupntntupntwfstjpotbsfbmtpbwbjmbcmf parameter symbol conditions min typ max units circuit detect voltage v df v df (t) v df (t) v df (t) v x 0.98 x 1.02 hysteresis range v hys v df v df v df v x 0.02 x 0.05 x 0.08 v in =1.5v 0.9 2.6 =2.0v 1.0 3.0 supply current i ss =3.0v 1.3 3.4 a 2 1 1 =4.0v 1.6 3.8 =5.0v 2.0 4.2 operating voltage v in v df =1.6v to 6.0v 0.7 10.0 v 1 n-ch v ds =0.5v v in =1.0v 2.2 =2.0v 7.7 3 =3.0v 10.1 output current i out =4.0v 11.5 ma =5.0v 13.0 p-ch v ds =2.1v v in =8.0v -10.0 4 ( cmos output ) detect voltage ? v df 100 ppm/ c - temperature characteristics ? topr ? v df transient delay time tdly * v in changes from 50 200 ms 5 (v dr v out inversion) 0.6v to 10v 4@9$'     ?? 
9$' 4fsjft 163 2 'vodujpobm%ftdsjqujpo functional description ( cmos output ) ew q r t y y ????????? q when a voltage higher than the release voltage (v dr ) is applied to the voltage input pin (v in ), the voltage will gradually fall. when a voltage higher than the detect voltage (v df ) is applied to v in , output (v out ) will be equal to the input at v in . note that high impedeance exists at v out with the n-channel open drain configuration. if the pin is pulled up, v out will be equal to the pull up voltage. w when v in falls below v df , v out will be equal to the ground voltage (v ss ) level (detect state). note that this also applies to n-channel open drain configurations. e when v in falls to a level below that of the minimum operating voltage (v min ) output will become unstable. because the output pin is generally pulled up with n-channel open drain configurations, output will be equal to pull up voltage. r when v in rises above the v ss level (excepting levels lower than minimum operating voltage), v out will be equal to v ss until v in reaches the v dr level. t although v in will rise to a level higher than v dr , v out maintains ground voltage level via the delay circuit. y following transient delay time, v in will be output at v out . note that high impedeance exists with the n-channel open drain configuration and that voltage will be dependent on pull up. notes : 1. the difference between v dr and v df represents the hysteresis range. 2. propagation delay time (tdly) represents the time it takes for v in to appear at v out once the said voltage has exceeded the v dr level. input voltage (v in ) minimum operating voltage ( v min ) detect release voltage (v dr ) detect voltage (v df ) output voltage (v out ) ground voltage (v ss ) ground voltage (v ss ) propagation delay time (t dly) timing chart 4@9$'     ?? 
9$' 4fjsft 164 2 %jsfdujpotgpsvtf notes on use 7 */ 7 065 7 44 3 */ 9$'/4fsjft $ */ 7 */ 7 065 7 44 3 */ 9$'$4fsjft $ */  ?? 1. oscillation (1) oscillation as a result of output current with the cmos output configuration : (2) oscillation as a result of through current : %jbhsbn8ifovtjohbojoqvusftjtups 1. please use this ic within the stated maximum ratings. the ic is liable to malfunction should the ratings be exceeded. 2. when a resistor is connected between the v in pin and the input with cmos output configurations, oscillation may occur as a result of voltage drops at r in if load current (i out ) exists. it is therefore recommend that no resistor be added. ( refer to n.b. 1 - (1) below ) 3. when a resistor is connected between the v in pin and the input with cmos output configurations, irrespective of n-ch output configurations, oscillation may occur as a result of through current at the time of voltage release even if load current (i out ) does not exist. ( refer to n.b. 1 - (2) below ) 4. with a resistor connected between the v in pin and the input, detect and release voltage will rise as a result of the ic's supply current flowing through the v in pin. 5. if a resistor (r in ) must be used, then please use with as small a level of input impedance as possible in order to control the occurences of oscillation as described above. further, please ensure that r in is less than 10k ? boeuibu$ */ jtnpsfuibo ' %jbhsbn
*otvdidbtft efufduboe sfmfbtfwpmubhftxjmmsjtfevfupwpmubhfespqtbu3 in cspvhiubcpvuczuif*$ttvqqmzdvssfou  %fqfoejohpodjsdvjutpqfsbujpo usbotjfouefmbzujnfpguijt*$dbocfxjefmzdibohfeevfupvqqfsmjnjutpsmpxfsmjnjut pgpqfsbujpobmbncjfouufnqbsbuvsf when the voltage applied at in rises, release operations commence and the detector's output voltage increases. load current (i out ) will flow through r l . because a voltage drop ( r in x i out ) is produced at the r in resistor, located between the input (in) and the v in pin, the load current will flow via the ic's v in pin. the voltage drop will also lead to a fall in the voltage level at the v in pin. when the v in pin voltage level falls below the detect voltage level, detect operations will commence. following detect operations, load current flow will cease and since voltage drop at r in will disappear, the voltage level at the v in pin will rise and release operations will begin over again. oscillation may occur with this " release - detect - release " repetition. further, this condition will also appear via means of a similar mechanism during detect operations. since the xc61f series are cmos ic s , through current will flow when the ic's internal circuit switching operates ( during release and detect operations ). consequently, oscillation is liable to occur during release voltage operations as a result of output current which is influenced by this through current ( diagram 3 ). since hysteresis exists during detect operations, oscillation is unlikely to occur. n.b. 4@9$'     ?? 
9$' 4fsjft 165 2 7pmubhfespq 3 - * 065 7 */ 7 065 7 44 3 */ 3 */ 9* 065 9$'$4fsjft 7pmubhfespq 7 */ 7 065 7 44 3 */ 3 */ 9* 065 9$'/4fsjft * 44 9$'$4fsjft jodmveftuispvhidvssfou
%jbhsbn0tdjmmbujpojosfmbujpouppvuqvudvssfou %jbhsbn0tdjmmbujpojosfmbujpoupuispvhidvssfou 4@9$'     ?? 
9$' 4fjsft 166 2 5zqjdbm1fsgpsnbodf$ibsbdufsjtujdt                 7 %3 7 %'                 7 %3 7 %'       ? ? 5b? - #   - #  - #         ? 5b? ? - #        ? 5b? ? - #                    7 %3 7 %'          )b?  ?  ?       )b?  ?  ?        5b?  ?  ? - #  - #   - #  - #  7 */ 7 065 l
7 */ 7 065 l
7 */ 7 065 l
           7 5b? 7 */ 7               7 */ 7 7 5b?              7 */ 7 5b? 7 - #   - #   - #  "ncjfou5fnq5b ?
(1) supply current vs. input voltage (2) detect voltage, release voltage vs. ambient temperature 4vqqmz$vssfou* 44  "
*oqvu7pmubhf7 */  7
%fufdu 3fmfbtf7pmubhf7 %' 7 %3  7
%fufdu 3fmfbtf7pmubhf7 %' 7 %3  7
4vqqmz$vssfou* 44  "
*oqvu7pmubhf7 */  7
4vqqmz$vssfou* 44  "
*oqvu7pmubhf7 */  7
"ncjfou5fnq5b ?
(3) output voltage vs. input voltage %fufdu 3fmfbtf7pmubhf7 %' 7 %3  7
0vuqvu 7pmubhf 7 065  7
0vuqvu 7pmubhf 7 065  7
0vuqvu 7pmubhf 7 065  7
*oqvu7pmubhf7 */  7
*oqvu7pmubhf7 */  7
*oqvu7pmubhf7 */  7
7 %4  7
7 %4  7
7 %4  7
0vuqvu$vssfou* 065  n"
0vuqvu $vssfou * 065  "
0vuqvu $vssfou * 065  n"
"ncjfou5fnq5b ?
(4) n-channel driver output current vs. v ds 4@9$'     ?? 
9$' 4fsjft 167 2              7 */ 7 7 5b?                7 5b? 7 7 7 */ 7               7 */ 7 7 5b? - #  - #  - #              5b? ? ?              ? ? 5b?               5b? ? ?                  -   7 5b? 7 7                  7 5b? 7 7 -   - #  - #  - #   7 %4 7 7 %4 7 7 %4 7                                  -   -   -    7 %4 7 7 %4 7 7 %4 7
7 %4 7
7 %4  7
0vuqvu$vssfou* 065  "
0vuqvu $vssfou * 065  n"
0vuqvu $vssfou * 065  "
0vuqvu$vssfou* 065  n"
0vuqvu$vssfou* 065  n"
*oqvu7pmubhf7 */  7
0vuqvu$vssfou* 065  n"
*oqvu7pmubhf7 */ 7
*oqvu7pmubhf7 */ 7
0vuqvu$vssfou* 065  n"
0vuqvu$vssfou* 065  n"
5%-:  ntfd
5%-:  ntfd
"ncjfou5fnq5b ?
"ncjfou5fnq5b ?
5%-:  ntfd
"ncjfou5fnq5b ?
(5) n-channel driver output current vs. input voltage (6) p-channel driver output current vs. input voltage (7) ambient temperature vs. transient delay time *oqvu7pmubhf7 */  7
*oqvu7pmubhf7 */  7
(4) n-channel driver output current vs. v ds 4@9$'     ?? 
9$' 4fjsft 168 2              *oqvu7pmubhf7 */  7
5%-: ntfd
- $  5b ? (8) input vs. transient delay time 4@9$'     ?? 


▲Up To Search▲   

 
Price & Availability of XC61FN2512LR

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X