Part Number Hot Search : 
SR1040C MB89850 2N4114 EPA3490G BUZ12A FT245R SRT1000 GR500
Product Description
Full Text Search
 

To Download S-812C43BPI-C4XTFGG Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  rev.4.2 _00 high operating voltage cmos voltage regulator s-812c series seiko instruments inc. 1 the s-812c series is a high-withstand voltage regulator ic which is developed by using the cmos technology. this ic is su itable for applications which require withstand because its maximum voltage fo r operation is as high as 16 v, also for portable device having the low current consumption because this ic not only has the low current consumption but also a power-off circuit. this ic operates stably due to the internal phase compensation circuit so that users are able to use ceramic capacitor as the output capacitor. ? features ? low current consumption: current at operation: typ. 1.0 a, max. 1.8 a (product with 3.0 v) ? output voltage: 2.0 to 6.0 v, selectable in 0.1 v step. ? output voltage accuracy: 2.0% ? output current: 50 ma capable (3.0 v output product, v in =5 v) *1 75 ma capable (5.0 v output product, v in =7 v) *1 ? dropout voltage: typ. 120 mv (v out = 5.0 v, i out = 10 ma) ? built-in power-off circuit: selectable if power-off function is available or not. active high or low in the regulator is selectable. ? short-circuit protection: selectable with/without short-circuit protection. short-circuited current 40 ma typ .: in the product with protection. ? operation voltage: 16 v max. ? lead-free product *1. attention should be paid to the power dissi pation of the package when the load is large. ? applications ? power source for home elec tric/electronic appliances ? power source for battery-powered devices ? power source for communication devices ? packages drawing code package name package tape reel zigzag land snt-6a(h) pi006-a pi006-a pi006-a ? pi006-a sot-23-5 mp005-a mp005-a mp005-a ? ? sot-89-3 up003-a up003-a up003-a ? ? sot-89-5 up005-a up005-a up005-a ? ? to-92 (bulk) ys003-b ? ? ? ? to-92 (tape and reel) yf003-a yf003-a yf003-a ? ? to-92 (tape and ammo) yf003-a yz003-c ? yz003-c ?
high operating voltage cmos voltage regulator s-812c series rev.4.2 _00 seiko instruments inc. 2 ? block diagrams 1. s-812cxxa series (no short-circuit protection and power-off function) vss vout vin *1 reference voltage *1. parasitic diode figure 1 2. s-812cxxb series (short-circuit protection and power-off function) vss vout on/off vin *1 short-circuit protection reference voltage *1. parasitic diode figure 2
high operating voltage cmos voltage regulator rev.4.2 _00 s-812c series seiko instruments inc. 3 3. s-812cxxe series (short-circuit pr otection and no power-off function) vss vout vin *1 reference voltage short-circuit protection *1. parasitic diode figure 3
high operating voltage cmos voltage regulator s-812c series rev.4.2 _00 seiko instruments inc. 4 ? product name structure users can select the produ ct type, output voltage, and package type for the s-812c series. refer to ? 1. product name ? regarding the contents of product name, ? 2. product name list ? regarding details of product name. 1. product name 1. 1 s-812cxxa series 1. 1. 1 package sot-23-5, sot-89-3 s-812c xx a xx - xxx t2 g ic direction in tape specifications *1 product name (abbreviation) package name (abbreviation) *2 mc :sot-23-5 ua :sot-89-3 short-circuit protection and power-off function a : no output voltage 20 to 60 (e.g. when the output voltage is 2.0 v, it is expressed 20) *1. refer to the tape specifications. *2. refer to the ? 2. product name list ?. 1. 1. 2 package to-92 s-812c xx a y - x - g product name (abbreviation) b : bulk t : tape and reel z : tape and ammo package name (abbreviation) *1 y : to-92 short-circuit protection and power-off function a : no output voltage 20 to 60 (e.g. when the output voltage is 2.0 v, it is expressed 20) *1. refer to the ? 2. product name list ?.
high operating voltage cmos voltage regulator rev.4.2 _00 s-812c series seiko instruments inc. 5 1. 2 s-812cxxb series s-812c xx b xx - xxx xx g ic direction in tape specifications *1 tf :snt-6a(h) t2 :sot-23-5, sot-89-5 product name (abbreviation) package name (abbreviation) *2 pi :snt-6a(h) mc :sot-23-5 uc :sot-89-5 short-circuit protection and power-off function b : yes on/off pin positive logic (operates by ?h?) output voltage 20 to 60 (e.g. when the output voltage is 2.0v, it is expressed 20) *1. refer to the tape specifications. *2. refer to the ? 2. product name list ?. 1. 3 s-812cxxe series s-812c xx e ua - xxx t2 g ic direction in tape specifications *1 product name (abbreviation) package name (abbreviation) *2 ua :sot-89-3 short-circuit protection and no power-off function output voltage 20 to 60 (e.g. when the output voltage is 2.0 v, it is expressed 20) *1. refer to the tape specifications. *2. refer to the ? 2. product name list ?.
high operating voltage cmos voltage regulator s-812c series rev.4.2 _00 seiko instruments inc. 6 2. product name list 2. 1 s-812cxxa series (no short-circ uit protection, power-off function) table 1 output voltage sot-23-5 sot-89-3 sot-89-5 to-92 *1 2.0 v 2.0 % s-812c20amc-c2at2g s-812c20aua-c2at2g ? s-812c20ay-x-g 2.1 v 2.0 % s-812c21amc-c2bt2g s-812c21aua-c2bt2g ? s-812c21ay-x-g 2.2 v 2.0 % s-812c22amc-c2ct2g s-812c22aua-c2ct2g ? s-812c22ay-x-g 2.3 v 2.0 % s-812c23amc-c2dt2g s-812c23aua-c2dt2g ? s-812c23ay-x-g 2.4 v 2.0 % s-812c24amc-c2et2g s-812c24aua-c2et2g ? s-812c24ay-x-g 2.5 v 2.0 % s-812c25amc-c2ft2g s-812c25aua-c2ft2g ? s-812c25ay-x-g 2.6 v 2.0 % s-812c26amc-c2gt2g s-812c26aua-c2gt2g ? s-812c26ay-x-g 2.7 v 2.0 % s-812c27amc-c2ht2g s-812c27aua-c2ht2g ? s-812c27ay-x-g 2.8 v 2.0 % s-812c28amc-c2it2g s-812c28aua-c2it2g ? s-812c28ay-x-g 2.9 v 2.0 % s-812c29amc-c2jt2g s-812c29aua-c2jt2g ? s-812c29ay-x-g 3.0 v 2.0 % s-812c30amc-c2kt2g s-812c30aua-c2kt2g ? s-812c30ay-x-g 3.1 v 2.0 % s-812c31amc-c2lt2g s-812c31aua-c2lt2g ? s-812c31ay-x-g 3.2 v 2.0 % s-812c32amc-c2mt2g s-812c32aua-c2mt2g ? s-812c32ay-x-g 3.3 v 2.0 % s-812c33amc-c2nt2g s-812c33aua-c2nt2g ? s-812c33ay-x-g 3.4 v 2.0 % s-812c34amc-c2ot2g s-812c34aua-c2ot2g ? s-812c34ay-x-g 3.5 v 2.0 % s-812c35amc-c2pt2g s-812c35aua-c2pt2g ? s-812c35ay-x-g 3.6 v 2.0 % s-812c36amc-c2qt2g s-812c36aua-c2qt2g ? s-812c36ay-x-g 3.7 v 2.0 % s-812c37amc-c2rt2g s-812c37aua-c2rt2g ? s-812c37ay-x-g 3.8 v 2.0 % s-812c38amc-c2st2g s-812c38aua-c2st2g ? s-812c38ay-x-g 3.9 v 2.0 % s-812c39amc-c2tt2g s-812c39aua-c2tt2g ? s-812c39ay-x-g 4.0 v 2.0 % s-812c40amc-c2ut2g s-812c40aua-c2ut2g ? s-812c40ay-x-g 4.1 v 2.0 % s-812c41amc-c2vt2g s-812c41aua-c2vt2g ? s-812c41ay-x-g 4.2 v 2.0 % s-812c42amc-c2wt2g s-812c42aua-c2wt2g ? s-812c42ay-x-g 4.3 v 2.0 % s-812c43amc-c2xt2g s-812c43aua-c2xt2g ? s-812c43ay-x-g 4.4 v 2.0 % s-812c44amc-c2yt2g s-812c44aua-c2yt2g ? s-812c44ay-x-g 4.5 v 2.0 % s-812c45amc-c2zt2g s-812c45aua-c2zt2g ? s-812c45ay-x-g 4.6 v 2.0 % s-812c46amc-c3at2g s-812c46aua-c3at2g ? s-812c46ay-x-g 4.7 v 2.0 % s-812c47amc-c3bt2g s-812c47aua-c3bt2g ? s-812c47ay-x-g 4.8 v 2.0 % s-812c48amc-c3ct2g s-812c48aua-c3ct2g ? s-812c48ay-x-g 4.9 v 2.0 % s-812c49amc-c3dt2g s-812c49aua-c3dt2g ? s-812c49ay-x-g 5.0 v 2.0 % s-812c50amc-c3et2g s-812c50aua-c3et2g ? s-812c50ay-x-g 5.1 v 2.0 % s-812c51amc-c3ft2g s-812c51aua-c3ft2g ? s-812c51ay-x-g 5.2 v 2.0 % s-812c52amc-c3gt2g s-812c52aua-c3gt2g ? s-812c52ay-x-g 5.3 v 2.0 % s-812c53amc-c3ht2g s-812c53aua-c3ht2g ? s-812c53ay-x-g 5.4 v 2.0 % s-812c54amc-c3it2g s-812c54aua-c3it2g ? s-812c54ay-x-g 5.5 v 2.0 % s-812c55amc-c3jt2g s-812c55aua-c3jt2g ? s-812c55ay-x-g 5.6 v 2.0 % s-812c56amc-c3kt2g s-812c56aua-c3kt2g ? s-812c56ay-x-g 5.7 v 2.0 % s-812c57amc-c3lt2g s-812c57aua-c3lt2g ? s-812c57ay-x-g 5.8 v 2.0 % s-812c58amc-c3mt2g s-812c58aua-c3mt2g ? s-812c58ay-x-g 5.9 v 2.0 % s-812c59amc-c3nt2g s-812c59aua-c3nt2g ? s-812c59ay-x-g 6.0 v 2.0 % s-812c60amc-c3ot2g s-812c60aua-c3ot2g ? s-812c60ay-x-g *1 . x changes according to the packing form in to-92. b: bulk, t: tape and reel, z: tape and ammo. remark please contact our sales office for products with an output voltage value other than those specified above.
high operating voltage cmos voltage regulator rev.4.2 _00 s-812c series seiko instruments inc. 7 2. 2 s-812cxxb series (short-circuit protection and power-off function) table 2 output voltage snt-6a(h) sot-23-5 sot-89-5 2.0 v 2.0 % s-812c20bpi-c4atfg s-812c20bmc-c4at2g ? 2.1 v 2.0 % s-812c21bpi-c4btfg s-812c21bmc-c4bt2g ? 2.2 v 2.0 % s-812c22bpi-c4ctfg s-812c22bmc-c4ct2g ? 2.3 v 2.0 % s-812c23bpi-c4dtfg s-812c23bmc-c4dt2g ? 2.4 v 2.0 % s-812c24bpi-c4etfg s-812c24bmc-c4et2g ? 2.5 v 2.0 % s-812c25bpi-c4ftfg s-812c25bmc-c4ft2g ? 2.6 v 2.0 % s-812c26bpi-c4gtfg s-812c26bmc-c4gt2g ? 2.7 v 2.0 % s-812c27bpi-c4htfg s-812c27bmc-c4ht2g ? 2.8 v 2.0 % s-812c28bpi-c4itfg s-812c28bmc-c4it2g ? 2.9 v 2.0 % s-812c29bpi-c4jtfg s-812c29bmc-c4jt2g ? 3.0 v 2.0 % s-812c30bpi-c4ktfg s-812c30bmc-c4kt2g ? 3.1 v 2.0 % s-812c31bpi-c4ltfg s-812c31bmc-c4lt2g ? 3.2 v 2.0 % s-812c32bpi-c4mtfg s-812c32bmc-c4mt2g ? 3.3 v 2.0 % s-812c33bpi-c4ntfg s-812c33bmc-c4nt2g s-812c33buc-c4nt2g 3.4 v 2.0 % s-812c34bpi-c4otfg s-812c34bmc-c4ot2g ? 3.5 v 2.0 % s-812c35bpi-c4ptfg s-812c35bmc-c4pt2g ? 3.6 v 2.0 % s-812c36bpi-c4qtfg s-812c36bmc-c4qt2g ? 3.7 v 2.0 % s-812c37bpi-c4rtfg s-812c37bmc-c4rt2g ? 3.8 v 2.0 % s-812c38bpi-c4stfg s-812c38bmc-c4st2g ? 3.9 v 2.0 % s-812c39bpi-c4ttfg s-812c39bmc-c4tt2g ? 4.0 v 2.0 % s-812c40bpi-c4utfg s-812c40bmc-c4ut2g ? 4.1 v 2.0 % s-812c41bpi-c4vtfg s-812c41bmc-c4vt2g ? 4.2 v 2.0 % s-812c42bpi-c4wtfg s-812c42bmc-c4wt2g ? 4.3 v 2.0 % s-812c43bpi-c4xtfg s-812c43bmc-c4xt2g ? 4.4 v 2.0 % s-812c44bpi-c4ytfg s-812c44bmc-c4yt2g ? 4.5 v 2.0 % s-812c45bpi-c4ztfg s-812c45bmc-c4zt2g ? 4.6 v 2.0 % s-812c46bpi-c5atfg s-812c46bmc-c5at2g ? 4.7 v 2.0 % s-812c47bpi-c5btfg s-812c47bmc-c5bt2g ? 4.8 v 2.0 % s-812c48bpi-c5ctfg s-812c48bmc-c5ct2g ? 4.9 v 2.0 % s-812c49bpi-c5dtfg s-812c49bmc-c5dt2g ? 5.0 v 2.0 % s-812c50bpi-c5etfg s-812c50bmc-c5et2g s-812c50buc-c5et2g 5.1 v 2.0 % s-812c51bpi-c5ftfg s-812c51bmc-c5ft2g ? 5.2 v 2.0 % s-812c52bpi-c5gtfg s-812c52bmc-c5gt2g ? 5.3 v 2.0 % s-812c53bpi-c5htfg s-812c53bmc-c5ht2g ? 5.4 v 2.0 % s-812c54bpi-c5itfg s-812c54bmc-c5it2g ? 5.5 v 2.0 % s-812c55bpi-c5jtfg s-812c55bmc-c5jt2g ? 5.6 v 2.0 % s-812c56bpi-c5ktfg s-812c56bmc-c5kt2g ? 5.7 v 2.0 % s-812c57bpi-c5ltfg s-812c57bmc-c5lt2g ? 5.8 v 2.0 % s-812c58bpi-c5mtfg s-812c58bmc-c5mt2g ? 5.9 v 2.0 % s-812c59bpi-c5ntfg s-812c59bmc-c5nt2g ? 6.0 v 2.0 % s-812c60bpi-c5otfg s-812c60bmc-c5ot2g ? remark please contact our sales office for products with an output voltage value other than those specified above.
high operating voltage cmos voltage regulator s-812c series rev.4.2 _00 seiko instruments inc. 8 2. 3 s-812cxxe series (short-circuit protection, no power-off function) table 3 output voltage sot-23-5 sot-89-3 sot-89-5 to-92 *1 3.3 v 2.0 % ? s-812c33eua-c5pt2g ? ? 3.6 v 2.0 % ? s-812c36eua-c5rt2g ? ? 4.0 v 2.0 % ? s-812c40eua-c5qt2g ? ? *1 . x changes according to the packing form in to-92. b: bulk, t: tape and reel, z: tape and ammo. remark please contact our sales office for products with an output voltage value other than those specified above.
high operating voltage cmos voltage regulator rev.4.2 _00 s-812c series seiko instruments inc. 9 ? pin configurations table 4 pin no. symbol description 1 nc *1 no connection 2 vin input voltage pin 3 vout output voltage pin 4 vss gnd pin 5 vin input voltage pin 6 on/off power-off pin snt-6a(h) top view 1 2 3 4 6 5 figure 4 *1. the nc pin is electrically open. the nc pin can be connected to vin or vss. table 5 pin no. symbol description 1 vss gnd pin 2 vin input voltage pin 3 vout output voltage pin 4 nc *1 no connection on/off power-off pin (b type) 5 nc *1 no connection (a type, e type) sot-23-5 top view 5  4  3  2  1  figure 5 *1 . the nc pin is electrically open. the nc pin can be connected to vin or vss. table 6 pin no. symbol description 1 vss gnd pin 2 vin input voltage pin 3 vout output voltage pin sot-89-3 top view 3  2  1  figure 6 table 7 pin no. symbol description 1 vout output voltage pin 2 vin input voltage pin 3 vss gnd pin on/off power-off pin (b type) 4 nc *1 no connection (a type, e type) 5 nc *1 no connection sot-89-5 top view 1 3 2 4 5 *1 . the nc pin is electrically open. the nc pin can be connected to vin or vss. figure 7
high operating voltage cmos voltage regulator s-812c series rev.4.2 _00 seiko instruments inc. 10 table 8 pin no. symbol description 1 vss gnd pin 2 vin input voltage pin 3 vout output voltage pin to-92 bottom view 1 3 2 figure 8 ? absolute maximum ratings table 9 (ta = 25 c unless otherwise specified) item symbol absolute maximum rating units v in v ss ? 0.3 to v ss + 18 v input voltage v on/off v ss ? 0.3 to v in + 0.3 v output voltage v out v ss ? 0.3 to v in + 0.3 v snt-6a(h) 500 *1 mw 250 (when not mounted on board) mw sot-23-5 600 *1 mw 500 (when not mounted on board) mw sot-89-3 1000 *1 mw 500 (when not mounted on board) mw sot-89-5 1000 *1 mw 400 (when not mounted on board) mw power dissipation to-92 p d 800 *1 mw operating temperature range t opr ? 40 to + 85 c storage temperature t stg ? 40 to + 125 c *1. when mounted on board [mounted board] (1) board size : 114.3 mm 76.2 mm t1.6 mm (2) board name : jedec standard51-7 caution the absolute maximum ratings are rated values exceeding which the product could suffer physical damage. these values must therefore not be exceeded under any conditions. 0 50 100 150 1200 800 0 power dissipation ( p d ) [mw] a mbient temperature (ta) [ c] sot-89-5 sot-89-3 400 snt-6a(h) 1000 200 600 to-92 sot-23-5 figure 9 power dissipation of the package (when mounted on board)
high operating voltage cmos voltage regulator rev.4.2 _00 s-812c series seiko instruments inc. 11 ? electrical characteristics table 10 (ta = 25 c unless otherwise specified) parameter symbol conditions min. typ. max. units test circuits output voltage *1 v out(e) v in = v out(s) +2 v, i out = 10ma v out(s) 0.98 v out(s) v out(s) 1.02 v 1 2.0v v out(s) 2.9v 30 ? ? ma 3 3.0v v out(s) 3.9v 50 ? ? ma 3 4.0v v out(s) 4.9v 65 ? ? ma 3 output current *2 i out v out(s) +2v v in 16v 5.0v v out(s) 6.0v 75 ? ? ma 3 2.0v v out(s) 2.4v ? 0.46 0.95 v 1 2.5v v out(s) 2.9v ? 0.32 0.68 v 1 3.0v v out(s) 3.4v ? 0.23 0.41 v 1 3.5v v out(s) 3.9v ? 0.19 0.35 v 1 4.0v v out(s) 4.4v ? 0.16 0.30 v 1 4.5v v out(s) 4.9v ? 0.14 0.27 v 1 5.0v v out(s) 5.4v ? 0.12 0.25 v 1 dropout voltage *3 v drop i out = 10ma 5.5v v out(s) 6.0v ? 0.11 0.23 v 1 line regulation 1 ? v out1 1 v out(s) + 1 v v in 16 v, i out = 1ma ? 5 20 mv 1 line regulation 2 ? v out2 1 v out(s) + 1 v v in 16 v, i out = 1 a ? 5 20 mv 1 2.0v v out(s) 2.9v, 1 a i out 20ma ? 6 30 mv 1 3.0v v out(s) 3.9v, 1 a i out 30ma ? 10 45 mv 1 4.0v v out(s) 4.9v, 1 a i out 40ma ? 13 65 mv 1 load regulation ? v out3 1 v in = v out(s) + 2v 5.0v v out(s) 6.0v, 1 a i out 50ma ? 17 80 mv 1 output voltage temperature coefficient *4 out out v ta ? v ? ? v in = v out(s) + 1 v, i out = 10ma, -40 c ta 85 c ? 100 ? ppm/ c 1 2.0v v out(s) 2.7v ? 0.9 1.6 a 2 2.8v v out(s) 3.7v ? 1.0 1.8 a 2 3.8v v out(s) 5.1v ? 1.2 2.1 a 2 current consumption i ss v in = v out(s) +2, no load 5.2v v out(s) 6.0v ? 1.5 2.5 a 2 input voltage v in ? ? ? 16 v 1 applied to products with power-off function current consumption at power-off i ss2 v in = v out(s) + 2v, v on/off = 0v, no load ? 0.1 0.5 a 2 power-off pin input voltage for high level v sh v in = v out(s) + 2v, r l = 1k ? , determined by v out output level 2.0 ? ? v 4 power-off pin input voltage for low level v sl v in = v out(s) + 2v, r l = 1k ? , determined by v out output level ? ? 0.4 v 4 power-off pin input current at high level i sh v in = 7v, v on/off = 7v -0.1 ? 0.1 a 4 power-off pin input current at low level i sl v in = v out(s) + 2v, v on/off = 0v -0.1 ? 0.1 a 4 applied to products with short-circuit protection short-circuit current i os v in = v out(s) + 2 v, v out = 0 v ? 40 ? ma 3
high operating voltage cmos voltage regulator s-812c series rev.4.2 _00 seiko instruments inc. 12 *1. v out(s) : specified output voltage v out(e) : effective output voltage i.e., the output voltage when fixing i out ( = 10 ma) and inputting v out(s) + 2.0 v. *2. output current at which output voltage becomes 95 % of v out(e) after gradually increasing output current. *3. v drop = v in1 ? (v out(e) 0.98), where v in1 is the input voltage at which output voltage reaches 98 % of v out(e) after gradually decreasing input voltage. *4. the ratio of temperature change in output voltage [m v/c] is calculated using the following equation. [] [] [] 1000 c ppm/ v ta v v v c mv/ ta v out out out (s) out ? ? = ? ? ? 3 * 2 * 1 * *1. the ratio of temperature change in output voltage *2. specified output voltage *3. output voltage temperature coefficient
high operating voltage cmos voltage regulator rev.4.2 _00 s-812c series seiko instruments inc. 13 ? test circuits 1. vss vout (on/off) *1 set to power on vin v a figure 10 2. vss vout (on/off) *1 vin a set to v in or gnd figure 11 3. set to power on vss vout (on/off) *1 vin v a figure 12 4. vss vout (on/off) *1 vin v a r l figure 13 *1. in case of product with power-off function. ? standard circuit vss vout (on/off) *3 vin c in *1 c l *2 input output gnd single gnd * 1. c in is a capacitor for stabilizing the input. * 2. in addition to tantalum capacitor, ceramic capacitor can be used for c l . * 3. control this on/off pin in t he product with power-off function. figure 14 caution the above connection diagram and cons tant will not guarantee successful operation. perform through evaluation using the actual application to set the constant.
high operating voltage cmos voltage regulator s-812c series rev.4.2 _00 seiko instruments inc. 14 ? technical terms 1. output capacitors (c l ) generally in voltage regulator, output capacitor is used to stabilize regulation and to improve the characteristics of transient response. the s-812c series operates stably without output capacitor c l . thus the output capacitor c l is used only for improvement of the transient response. in the applications that users will use the s-812c series, and they are not cautious about the transient response, it is possible to omit an output capacitor. if using an output capacitor for this ic, users are able to use devices such as ceramic capacitor which has small esr (equivalent series resistance). 2. output voltage (v out ) the accuracy of the output voltage 2.0% is assured under the specif ied conditions for input voltage, which differs depending upon the product items, output current, and temperature. caution if the above conditions change, the output voltage value may vary and go out of the accuracy range of the output voltage. see the electrical characteristics and characteristics data for details. 3. line regulations 1 and 2 ( ? v out1 , ? v out2 ) indicate the dependency of the output voltage against the input voltage. that is, the value shows how much the output voltage changes due to a change in the input voltage after fixing output current constant. 4. load regulation ( ? v out3 ) indicates the dependency of the output voltage against the output current. that is, the value shows how much the output voltage changes due to a change in the output current after fixing output current constant. 5. dropout voltage (v drop ) indicates the difference between the output voltage and the input voltage v in1 , which is the input voltage (v in ) when; decreasing input voltage v in gradually until the output voltage has dropped to the value of 98% of output voltage v out(e) , which is at v in = v out(s) + 1.0 v. v drop = v in1 ? (v out(e) 0.98)
high operating voltage cmos voltage regulator rev.4.2 _00 s-812c series seiko instruments inc. 15 6. temperature coefficient of output voltage ? ? ? ? ? ? ? out out v ? ta ? v the shadowed area in figure 15 is the range where v out varies in the operating temperature range when the temperature coefficient of the output voltage is 100 ppm/ c. the ratio of temperature change in output voltage [mv/ c] is calculated from the following equation. [] [] [] 1000 c ppm/ v ta v v v c mv/ ta v out out out (s) out ? ? = ? ? ? 3 * 2 * 1 * *1. the ratio of temperature change in output voltage *2. specified output voltage *3. output voltage temperature coefficient -40 25 +0.30mv/ c v out [v] v out(e) *1 85 ta [ c] -0.30mv/ c *1. v out(e) is a measured value of output voltage at 25 c. figure 15 ex. s-812c30a typ.
high operating voltage cmos voltage regulator s-812c series rev.4.2 _00 seiko instruments inc. 16 ? operation 1. basic operation figure 16 shows the block diagram of the s-812c series. the error amplifier compares the reference voltage (v ref ) with v fb , which is the output voltage resistance- divided by feedback resistors r s and r f . it supplies the gate voltage necessary to maintain the constant output voltage which is not influenced by the input voltage and temperature change, to the output transistor. reference voltage circuit vout *1 vss vin r s r f error amplifier current supply v ref ? + *1. parasitic diode figure 16 2. output transistor in the s-812c series, a low on-resistance p-channel mos fet is used as the output transistor. be sure that v out does not exceed v in + 0.3 v to prevent the voltage regulator from being damaged due to inverse current which flows, because of a parasitic diode between the vin and vout pin.
high operating voltage cmos voltage regulator rev.4.2 _00 s-812c series seiko instruments inc. 17 3. power-off function (on/off pin) this function starts and stops the regulator. when the on/off pin is set to power-off level, the ent ire internal circuit stops operating, and the built-in p-channel mos fet output transistor between the vin and vout pin is turned off, in order to reduce the current consumption significantly. the vout pin is set to the v ss level by the internal dividing resistor of several m ? between the vout and vss pin. the on/off pin is configured as shown in figure 17 since the on/off pin is neither pulled down nor pulled up internally, do not use it in the floati ng state. note that if applying the voltage of v in + 0.3 v or more, the current flows to v in via a parasitic diode in the ic. when not using the power-off pin in the product with the power-off function, connect the on/off pin to the vin pin (in positive logic), or to the vss pin (in negative logic). the output voltage may increase by stopping re gulation when a lower current (less than 100 a) is applied. if the output voltage increased during power-off, pu ll the vout pin down to the vss pin and set the on/off pin to the power-down level. table 11 logic type on/off pin internal circuits vout pin voltage current consumption b ?l?: power off stop v ss level i ss2 b ?h?: power on operation set value i ss vin on/off vss figure 17 4. short-circuit protection circuit in the s-812c series, users are able to select whether to set the short circuit protection, which protects the output capacitor from short-circuiting the vout and vss pin. the short circuit protection circuit co ntrols the output current against voltage v out , as seen in ? ? characteristics (typical data) 1 ?, and limits the output current at approx. 40 ma even if the vout and vss pins are short-circuited. however, this short circuit protection circuit does not work as for thermal protection. pay attention to the conditions of input voltage and load current so tha t, under the usage condition including short circuit, the loss of the ic will not exceed power dissipation of the package. even if pins are not short-circuited, this protection ci rcuit works to limit the current to the specified value, in order to protect the output capacitor, when the output current and the potential difference between input and output voltages increase. in the product without the short circ uit protection circuit, the s-812c seri es allows the relatively larger current because this protection circuit is detached.
high operating voltage cmos voltage regulator s-812c series rev.4.2 _00 seiko instruments inc. 18 ? selection of external components 1. output capacitor (c l ) the s-812c series has an internal phase compensation circuit which stabilizes the operation regardless of the change of output load. therefore it is possi ble for users to have a stable operation without an output capacitor (c l ). however, the values of output overshoot and undershoot, which are the characteristics of transient response, vary depending on the output capacitor. in selecting the value of output capacitor, refer to the data on c l dependency in ? ? reference data 1. transient response characteristics ?. set esr 10 ? or less when using a tantalum capacitor or an aluminum electrolytic capacitor. pay attention at low temperature, that aluminum electrol ytic capacitor especially may oscillate because esr increases. evaluate sufficiently including t he temperature characteristics in use. ? application circuit 1. output current boost circuit as shown in figure 18, the output current can be boosted by externally attaching a pnp transistor. between the input voltage v in and the vin pin (for power supply) in the s-812c series, if setting the base-emitter voltage vbe which fully switches the pnp transistor on, s-812c series controls the base current in a pnp transistor so that the output voltage v out reaches the level of voltage which is set by the s-812c series. since the output current boosting circuit in figure 18 does not have the good characteristics of transient response, under the usage condition, confirm if output fluctuation due to power-on, and fluctuations of power supply and load affect on the operation or not before use. note that the short-circuit protection circuit in the s-812c series does not work as short-circuit protection for this boost circuit. r 1 tr1 gnd vout on/off vin vss v in v out c l s-812c series c in  figure 18
high operating voltage cmos voltage regulator rev.4.2 _00 s-812c series seiko instruments inc. 19 2. constant current circuit this circuit can be used as a constant current circuit if making the composition seen in figure 19 and 20 . constant current i o is calculated from the following equation: i o = (v out(e) r l ) + i ss (v out(e) = effective output voltage) note that by using a circuit in figure 19 , it is impossible to set the better driving ability to the constant amperage (i o ) than the s-812c series basically has. to gain the driving ability which exceeds the s-812c series, there?s a way to combine a constant current circuit and a current boosting circuit, as seen in figure 20 . the maximum input voltage for a constant current circuit is 16 v + the voltage for device (v o ). it is not recommended to add a capacitor between th e vin (power supply) and vss pin or the vout (output) and vss pin because the rush current flows at power-on. gnd r l vout vin v in v out v o i o c in on/off vss s-812c series device figure 19 constant current circuit i o on/off r 1 gnd r l vout v in v out c in vss s-812c series tr1 v o device vin figure 20 constant current boost circuit 3. output voltage adjustment circuit (only for s-812cxxa series (no short-circuit protection, power-off function)) by using the composition seen in figure 21 , users are able to increase the output voltage. the value of output voltage v out1 is calculated from the following equation: v out1 = v out(e) (r 1 + r 2 ) r 1 + r 2 i ss (v out(e) = effective output voltage) set the value of resistors r1 and r2 so that the s- 812c series is not affected by current consumption i ss . capacitor c 1 reduces output fluctuation due to power-on, pow er fluctuation and load fluctuation. set the value according to the actual evaluation. it is not recommended to add a capacitor between th e vin (power supply) and vss pin or the vout (output) and vss pin because it causes output fluc tuation and output oscillation due to power-on. gnd v out1 r 2 r 1 vout vin v in c l c 1 c in vss s-812c series figure 21
high operating voltage cmos voltage regulator s-812c series rev.4.2 _00 seiko instruments inc. 20 ? precautions ? wiring patterns for the vin, vout and gnd pins sh ould be designed so that the impedance is low. when mounting an output capacitor between the vout and vss pins (c l ) and a capacitor for stabilizing the input between vin and vss pins (c in ), the distance from the capacitors to these pins should be as short as possible. ? note that output voltage may be increa sed at low load current of less than 1 a. ? at low load current less than 100 a output voltage may increase when the regulating operation is halted by the on/off pin. ? to prevent oscillation, it is recommended to us e the external parts under the following conditions. equivalent series resistance (esr): 10 ? or less (in case of using output capacitor) input series resistance (r in ): 10 ? or less ? a voltage regulator may oscillate when power source impedance is high and input capacitor is low or not connected. ? pay attention to the operating conditions for input/out put voltage and load current so that the power loss in the ic does not exceed the power dissipation of the package. ? do not apply an electrostatic discharge to this ic that exceeds the performance ratings of the built-in electrostatic protection circuit. ? sii claims no responsibility for any and all disputes aris ing out of or in connection with any infringement of the products including this ic upon patents owned by a third party.
high operating voltage cmos voltage regulator rev.4.2 _00 s-812c series seiko instruments inc. 21 ? characteristics (typical data) 1. output voltage vs output current (when load current increases) 0.0 0.5 1.0 1.5 2.0 2.5 0 50 100 150 i out (ma) v out (v) v in =2.5v 3v 5v 4v 7v s-812c20b (ta=25c) short- circuit protection 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0 50 100 150 200 i out (ma) v out (v) v in =3.5v 4v 6v 5v 8v s-812c30b (ta=25c) short-circuit protection 0.0 1.0 2.0 3.0 4.0 5.0 6.0 0 100 200 300 i out (ma) v out (v) v in =5.5v 6v 8v 7v 10v s-812c50b (ta=25c) short-circuit protection v out (v) no short-circuit protection s-812c20a (ta=25 oc) 0.0 0.5 1.0 1.5 2.0 2.5 0 100 200 300 i out (ma) 7v 5v 4v 3v 2.5v v in =2.3v v out (v) s-812c30a (ta=25oc) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0 100 200 300 400 i out (ma) 8v 6v 5v 4v 3.5v v in =3.3v no short-circuit protection v out (v) s-812c50a (ta=25 oc) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 0 100 200 300 400 i out (ma) 10v 8v 7v 6v 5.5v v in =5.3v no short-circuit protection
high operating voltage cmos voltage regulator s-812c series rev.4.2 _00 seiko instruments inc. 22 2. maximum output current vs input voltage i outmax (ma) 0 20 40 60 80 100 120 140 0481216 v in (v) ta=-40c s-812c20b short-circuit protection 25c 85c i outmax (ma) 0 50 100 150 200 0481216 v in (v) ta=-40c s-812c30b short-circuit protection 25c 85c i outmax (ma) 0 50 100 150 200 250 300 0481216 v in (v) ta=-40c s-812c50b short-circuit protection 25c 85c i outmax (ma) s-812c20a 0 20 40 60 80 100 120 140 0481216 v in ( v ) 85 o c ta=-40 o c 25 o c no short-circuit protection i outmax (ma) s-812c30a 0 50 100 150 200 0481216 v in ( v ) 85oc ta= ? 40oc 25oc no short-circuit protection i outmax (ma) no short-circuit protection s-812c50a 0 50 100 150 200 250 300 0481216 v in (v) 85oc ta=-40 o c 25 o c
high operating voltage cmos voltage regulator rev.4.2 _00 s-812c series seiko instruments inc. 23 3. maximum output current vs. input voltage s-812c20b (ta=25c) 2.10 2.05 2.00 1.95 1.90 1.5 2 2.5 3 3.5 4 v out (v) -50 ma -20 ma -10 ma -1 ma i out =-1 a v in (v) s-812c30b (ta=25c) 3.15 3.10 3.05 2.95 2.85 2.5 33.5 4 4.5 5 v out (v) -50 ma -20 ma -10 ma -1 ma i out =-1 a v in (v) 3.00 2.90 s-812c50b (ta=25c) 5.25 5.15 5.05 4.95 4.5 5 5.5 6 6.5 7 v out (v) -50 ma -20 ma -1 ma i out =-1 a v in (v) 4.85 4.75 -10 ma 4. dropout voltage vs output current 0 500 1000 1500 2000 0 10 20 30 40 50 i out ( ma ) v dro p ( mv ) ta=-40c s-812c20b 25c 85c 0 200 400 600 800 1000 1200 1400 1600 0 10 20 30 40 50 i out ( ma ) v dro p ( mv ) ta=-40c s-812c30b 25c 85c 0 100 200 300 400 500 600 700 800 900 1000 0 10 20 30 40 50 i out ( ma ) v dro p ( mv ) ta=-40c s-812c50b 25c 85c
high operating voltage cmos voltage regulator s-812c series rev.4.2 _00 seiko instruments inc. 24 5. output voltage vs ambient temperature -50 2.02 ta (c) v out (v) 2.04 2.00 1.98 1.96 0 50 100 s-812c20b -50 3.03 ta (c) v out (v) 3.06 3.00 2.97 2.94 050 100 s-812c30b -50 5.05 ta (c) v out (v) 5.10 5.00 4.95 4.90 0 50 100 s-812c50b 6. line regulation 1 vs ambient temperature 7. line regulation 2 vs ambient temperature -50 15 ta (c) ? v out1 (mv) 20 10 5 0 0 50 100 s-812c50b s-812c20b s-812c30b -50 15 ta (c) ? v out2 (mv) 20 10 5 0 050 100 s-812c50b s-812c20b s-812c30b 8. load regulation vs ambient temperature -50 60 ta (c) ? v out3 (mv) 80 40 20 0 0 50 100 s-812c50b s-812c30b s-812c20b
high operating voltage cmos voltage regulator rev.4.2 _00 s-812c series seiko instruments inc. 25 9. current consumption vs input voltage 0.0 0.5 1.0 1.5 2.0 2.5 0481216 v in (v) i ss ( a) s-812c20b 25c 85c ta=-40c 0.0 0.5 1.0 1.5 2.0 2.5 0 4 8 12 16 v in (v) i ss ( a) s-812c30b 25c 85c ta=-40c 0.0 0.5 1.0 1.5 2.0 2.5 0481216 v in (v) i ss ( a) s-812c50b 25c 85c ta=-40c 10. power-off pin input threshold vs input voltage 0.0 0.5 1.0 1.5 2.0 2.5 0 4 8 12 16 v in (v) v sh / v sl (v) ta =? 40c 25c 85c ta =? 40c 25c 85c
high operating voltage cmos voltage regulator s-812c series rev.4.2 _00 seiko instruments inc. 26 ? reference data 1. transient response characteristics (typical data: ta = 25 c) overshoot input voltage o utput voltage or load current undershoot 1-1. power-on : s-812c30b (c l =10 f; ceramic capacitor) time ( 100 s/div ) v out (0.5 v/div) 0 v 5 v 0 v 3 v v in , v on/off = 0 5 v, i out = 10 ma, c l = 10 f load dependency of overshoot at power-on c l dependency of overshoot at power-on 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0 0.02 0.04 0.06 0.08 0.1 i out (a) overshoot (v) s-812c50b s-812c30b v in , v on/off = 0 v out(s) + 2 v, c l = 10 f 0.0 0.2 0.4 0.6 0.8 0 10 20 30 40 50 c l ( f ) overshoot (v) s-812c50b v in , v on/off = 0 v out(s) + 2 v, i out = 10 ma s-812c30b v dd dependency of overshoot at power-on ?t a? dependency of overshoot at power-on 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0 5 10 15 20 v dd (v) overshoot (v) s-812c50b v in , v on/off = 0 v dd , i out = 10 ma, c l = 10 f s-812c30b 0.00 0.01 0.02 0.03 0.04 0.05 0.06 ? 50 0 50 100 ta (c) overshoot (v) s-812c50b v in , v on/off = 0 v out(s) + 2 v, i out = 10 ma, c l = 10 f s-812c30b
high operating voltage cmos voltage regulator rev.4.2 _00 s-812c series seiko instruments inc. 27 1-2. power-on by power-off pin : s-812c30a (c l =10 f; ceramic capacitor) time (200 s/div) v out (0.5 v/div) 5 v 0 v 0 v 3 v v in = 5 v, v o n /o ff = 0 5 v, i out = 10 ma, c l = 10 f load dependency of overshoot at power-on by power- off pin c l dependency of overshoot at power-on by power-off pin 0.0 0.2 0.4 0.6 0.8 0.001 0.01 0.1 1 10 100 i out (ma) overshoot (v) s-812c50b v in = v out(s) + 2 v, v on/off = 0 v out(s) + 2 v, c l = 10 f s-812c30b 0.0 0.2 0.4 0.6 0.8 0 10 20 30 40 50 c l ( f ) overshoot (v) s-812c50b v in = v out(s) + 2 v, v on/off = 0 v out(s) + 2 v, i out = 10 ma s-812c30b v dd dependency of overshoot at power-on by power-off pin ?ta? dependency of overshoot at power-on by power- off pin 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 5 10 15 20 v dd (v) overshoot (v) s-812c50b v in = v dd , v on/off = 0 v dd , i out = 10 ma, c l = 10 f s-812c30b 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 ? 50 0 50 100 ta (c) overshoot (v) s-812c50b v in = v out(s) + 2 v, v on/off = 0 v out(s) + 2 v, i out = 10 ma, c l = 10 f s-812c30b
high operating voltage cmos voltage regulator s-812c series rev.4.2 _00 seiko instruments inc. 28 1-3. line transient response : s-812c30b (c l =10 f; ceramic capacitor) v in , v on/off = 4 8 v , i out = 10 m a time ( 100 s/div ) v out (0.05v / div) 10 v 0 v 5 v 3 v 2.9 v load dependency of overshoot at line transient c l dependency of overshoot at line transient 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0 10 20 30 40 50 i out (ma) overshoot (v) s-812c50b v in , v on/off = v out(s) + 1 v v out(s) + 5 v, c l = 10 f s-812c30b 0.00 0.05 0.10 0.15 0.20 0.25 0 10 20 30 40 50 c l ( f ) overshoot (v) s-812c50b v in , v on/off = v out(s) + 1 v v out(s) + 5 v, i out = 10 m a s-812c30b v dd dependency of overshoot at line transient ?ta? dependency of overshoot at line transient 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0 5 10 15 20 v dd (v) overshoot (v) s-812c50b v in , v on/off = v out(s) + 1 v v dd , i out = 10 ma, c l = 10 f s-812c30b 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 ? 50 0 50 100 ta (c) overshoot (v) s-812c50b v in , v on/off = v out(s) + 1 v v out(s) + 5 v, i out = 10 ma, c l = 10 f s-812c30b
high operating voltage cmos voltage regulator rev.4.2 _00 s-812c series seiko instruments inc. 29 time ( 500 s/div ) v out (0.05 v / div) 10 v 0 v 5 v 3 v 2.8 v 2.9 v v in , v on/off = 8 4 v, i out = 10 m a load dependency of undershoot at line transient c l dependency of undershoot at line transient 0.0 0.2 0.4 0.6 0.8 0 10 20 30 40 50 i out (ma) undershoot (v) s-812c50b v in , v on/off = v out(s) + 5 v v out(s) + 1 v, c l = 10 f s-812c30b 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0 10 20 30 40 50 c l ( f ) undershoot (v) s-812c50b v in , v on/off = v out(s) + 5 v v out(s) + 1 v, i out = 10 ma s-812c30b v dd dependency of undershoot at line transient ?ta? dependency of undershoot at line transient 0.00 0.05 0.10 0.15 0.20 0.25 0 5 10 15 20 v dd (v) undershoot (v) s-812c50b v in , v on/off = v dd v out(s) + 1 v, i out = 10ma, c l = 10 f s-812c30b 0.00 0.05 0.10 0.15 0.20 0.25 0.30 ? 50 0 50 100 ta (c) undershoot (v) s-812c50b s-812c30b v in , v on/off = v out(s) + 5 v v out(s) + 1 v, i out = 10ma, c l = 10 f
high operating voltage cmos voltage regulator s-812c series rev.4.2 _00 seiko instruments inc. 30 1-4. load transient response : s-812c30b (c l =10 f; ceramic capacitor) v in = 5 v , i out = 10 ma 1 a , c l = 10 f time ( 200 s / div ) v out (0.05 v / div) 2.9 v 3.1 v 3 v 0 ma 10 ma load dependency of overshoot at load transient c l dependency of overshoot at load transient 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0 20 40 60 80 100 i load (ma) overshoot (v) s-812c50b v in , v on/off = v out(s) + 2 v, i out = i load 1 a, c l = 10 f s-812c30b 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0 10 20 30 40 50 c l ( f ) overshoot (v) s-812c50b v in , v on/off = v out(s) + 2 v, i out = 10 ma 1 a s-812c30b v dd dependency of overshoot at load transient ?ta? dependency of overshoot at load transient 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0 5 10 15 20 v dd (v) overshoot (v) s-812c50b i out = 10 ma 1 a, c l = 10 f s-812c30b 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 ? 50 0 50 100 ta (c) overshoot (v) s-812c50b v in , v on/off =v out(s) + 2 v, i out = 10 ma 1 a, c l = 10 f s-812c30b
high operating voltage cmos voltage regulator rev.4.2 _00 s-812c series seiko instruments inc. 31 time ( 500 s / div ) v out (0.05 v / div) 2.9 v 3 v v in = 5 v, i out = 1 a, 10 ma, c l = 10 f 0 ma 10 ma load dependency of undershoot at load transient c l dependency of undershoot at load transient 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0 20 40 60 80 100 i load (ma) undershoot (v) s-812c50b v in , v on/off = v out(s) + 2 v, i out = 1 a i load , c l = 10 f s-812c30b 0.00 0.05 0.10 0.15 0.20 0.25 0 10 20 30 40 50 c l ( f ) undershoot (v) s-812c50b v in , v on/off = v out(s) + 2 v, i out = 1 a 10 ma s-812c30b v dd dependency of undershoot at load transient ?ta? dependency of undershoot at load transient 0.00 0.05 0.10 0.15 0.20 0 5 10 15 20 v dd (v) undershoot (v) s-812c50b i out = 1 a 10 ma, c l = 10 f s-812c30b 0.00 0.05 0.10 0.15 0.20 0.25 ? 50 0 50 100 ta (c) undershoot (v) s-812c50b v in , v on/off = v out(s) + 2 v, i out = 1 a 10 ma, c l = 10 f s-812c30b
  
     

   
! !"  # $%"  !  % &  #   ! # '#("  )  
! '! ) $ # 
* ++  $ " ' ! "  # $ " ' ,'# & '  , # '%#"  # #"  # !#"  # #-   
      
 ' 

 .  ./  
 ' & '  ' ! $ ) #
'!# .0 1 " ) ,')" !  -  - 23  
4'  
4' 5.6 ++.768  .5/.   
     

 4 5 #9 
  
  

.+4  +.     
)  
) ) ! ) ! ) #! ') #! . ;.68 7 /.  + 8 /..6 />5 7 @ 9 8.8 /..6 .?> /. ++ 8  8  .+ >?8 5  /6.+ =.5+   8 /. > . 8/..6 + 8.@ 8 .+==
  
             !   "#
# $  "#
# $  %!
#&'$ 
  
     (    (      !   !  "#
$  "#
$  %!
)  )* + ,,  -*. /0
  
      )1 ! (! -20 -20 34 !5 "#
6 $  "#
6 $  %!
6 7 7)8 ,,)98.  )7*)
  
                  !
! !"! !
! !"! #$%!
! &'" 
  
       $ ( ) !  ( ) ! *  +,  !
! !"! !
! !"! #$%!
! +  +- . //  0-1 23
  
       +, 03 03 45 6  !
!7!"! !
!7!"! #$%!
!7 8 8+9 //+:91  +8-+
  
                    !
! !"! !
! !"! #$%!
! &'" 
  
       $ ( ) !  ( ) ! *  +,       !
! !"! !
! !"! #$%!
! +  +- . //  0-1 23
  
      +,  45 6 03 03  !
!7!"! !
!7!"! #$%!
!7 8 8+9 //+:91  +8-+
  
              !"#$#%#&# !"#$#%#&# '(#$#%)*&  + ,,
  
          !    "   # $ %&'$
$($)$ %&'$
$($)$ *+$
$(,-) 
  
     ! "' .    / 0 ' / 0     !   %&'$
$ $)$ %&'$
$ $)$ *+$
$1 2 0   !'304 56 &    &     
  
     .'7 ' '   8% 9 %&'$
$1$)$ %&'$
$1$)$ *+$
$1 2
  
     
 
  ! "#  $! %& $'( )% ** !+ '! %& $'( , %& !' -$ 
  
     !+( ,'($ .$(! ' %&  / 0  / 0  %&  %& +(! $' %&  **  120 !+(3!04 5!'$(6 )% ** 1   1    ! 7%*%8 %0
  
      $+ !,! 0%  ! $ , ,' ! 9 !:' 1 1! 1 1! * 0% 08% * ;* 0%   4%$   ! 
%<
the information described herein is subject to change without notice. seiko instruments inc. is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties, patents, or other rights belong to third parties. the application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design. when the products described herein are regulated products subject to the wassenaar arrangement or other agreements, they may not be exported without authorization from the appropriate governmental authority. use of the information described herein for other purposes and/or reproduction or copying without the express permission of seiko instruments inc. is strictly prohibited. the products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of seiko instruments inc. although seiko instruments inc. exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. the user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.


▲Up To Search▲   

 
Price & Availability of S-812C43BPI-C4XTFGG

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X