|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
IRG4BC20UD insulated gate bipolar transistor with ultrafast soft recovery diode features e g c v ces = 600v v ce(on) typ. = 1.85v @v ge = 15v, i c = 6.5a parameter min. typ. max. units r jc junction-to-case - igbt ??? ??? 2.1 r jc junction-to-case - diode ??? ??? 3.5 c/w r cs case-to-sink, flat, greased surface ??? 0.50 ??? r junction-to-ambient, typical socket mount ??? ??? 80 wt weight ??? 2 (0.07) ??? g (oz) thermal resistance ultrafast copack igbt absolute maximum ratings v ces collector-to-emitter voltage 600 v i c @ t c = 25c continuous collector current 13 i c @ t c = 100c continuous collector current 6.5 i cm pulsed collector current 52 a i lm clamped inductive load current 52 i f @ t c = 100c diode continuous forward current 7.0 i fm diode maximum forward current 52 v ge gate-to-emitter voltage 20 v p d @ t c = 25c maximum power dissipation 60 p d @ t c = 100c maximum power dissipation 24 t j operating junction and -55 to +150 t stg storage temperature range c soldering temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) mounting torque, 6-32 or m3 screw. 10 lbfin (1.1 nm) ultrafast: optimized for high operating frequencies 8-40 khz in hard switching, >200khz in resonant mode generation 4 igbt design provides tighter para- meter distribution and higher efficiency than generation 3 igbt co-packaged with hexfred tm ultrafast, ultra- soft-recovery anti-parallel diodes for use in bridge configurations industry standard to-220ab package benefits generation 4 igbts offers the highest efficiencies available optimized for specific application conditions hexfred diodes optimized for performance with igbts . minimized recovery characteristics require less/no snubbing designed to be a "drop-in" replacement for equivalent industry-standard generation 3 ir igbts n-channel to-220ab www.irf.com 1 IRG4BC20UD 2 www.irf.com parameter min. typ. max. units conditions q g total gate charge (turn-on) ??? 27 41 i c = 6.5a qge gate - emitter charge (turn-on) ??? 4.5 6.8 nc v cc = 400v see fig. 8 q gc gate - collector charge (turn-on) ??? 10 16 v ge = 15v t d(on) turn-on delay time ??? 39 ??? t j = 25c t r rise time ??? 15 ??? ns i c = 6.5a, v cc = 480v t d(off) turn-off delay time ??? 93 140 v ge = 15v, r g = 50 ? t f fall time ??? 110 170 energy losses include "tail" and e on turn-on switching loss ??? 0.16 ??? diode reverse recovery. e off turn-off switching loss ??? 0.13 ??? mj see fig. 9, 10, 11, 18 e ts total switching loss ??? 0.29 0.37 t d(on) turn-on delay time ??? 38 ??? t j = 150c, see fig. 9, 10, 11, 18 t r rise time ??? 17 ??? ns i c = 6.5a, v cc = 480v t d(off) turn-off delay time ??? 100 ??? v ge = 15v, r g = 50 ? t f fall time ??? 220 ??? energy losses include "tail" and e ts total switching loss ??? 0.49 ??? mj diode reverse recovery. l e internal emitter inductance ??? 7.5 ??? nh measured 5mm from package c ies input capacitance ??? 530 ??? v ge = 0v c oes output capacitance ??? 39 ??? pf v cc = 30v see fig. 7 c res reverse transfer capacitance ??? 7.4 ??? ? = 1.0mhz t rr diode reverse recovery time ??? 37 55 ns t j = 25c see fig. ??? 55 90 t j = 125c 14 i f = 8.0a i rr diode peak reverse recovery current ??? 3.5 5.0 a t j = 25c see fig. ??? 4.5 8.0 t j = 125c 15 v r = 200v q rr diode reverse recovery charge ??? 65 138 nc t j = 25c see fig. ??? 124 360 t j = 125c 16 di/dt 200a/s di (rec)m /dt diode peak rate of fall of recovery ??? 240 ??? a/s t j = 25c see fig. during t b ??? 210 ??? t j = 125c 17 v (br)ces collector-to-emitter breakdown voltage 600 ??? ??? v v ge = 0v, i c = 250a ? v (br)ces / ? t j temperature coeff. of breakdown voltage ??? 0.69 ??? v/c v ge = 0v, i c = 1.0ma v ce(on) collector-to-emitter saturation voltage ??? 1.85 2.1 i c = 6.5a v ge = 15v ??? 2.27 ??? v i c = 13a see fig. 2, 5 ??? 1.87 ??? i c = 6.5a, t j = 150c v ge(th) gate threshold voltage 3.0 ??? 6.0 v ce = v ge , i c = 250a ? v ge(th) / ? t j temperature coeff. of threshold voltage ??? -11 ??? mv/c v ce = v ge , i c = 250a g fe forward transconductance 1.4 4.3 ??? s v ce = 100v, i c = 6.5a i ces zero gate voltage collector current ??? ??? 250 a v ge = 0v, v ce = 600v ??? ??? 1700 v ge = 0v, v ce = 600v, t j = 150c v fm diode forward voltage drop ??? 1.4 1.7 v i c = 8.0a see fig. 13 ??? 1.3 1.6 i c = 8.0a, t j = 150c i ges gate-to-emitter leakage current ??? ??? 100 na v ge = 20v switching characteristics @ t j = 25c (unless otherwise specified) electrical characteristics @ t j = 25c (unless otherwise specified) IRG4BC20UD www.irf.com 3 fig. 1 - typical load current vs. frequency (load current = i rms of fundamental) fig. 2 - typical output characteristics fig. 3 - typical transfer characteristics 0 2 4 6 8 10 12 0.1 1 10 100 f, frequency (khz) load current (a) a 60% of rated voltage duty cycle: 50% t = 125c t = 90c gate drive as specified turn-on losses include effects of reverse recovery sink j power dissipation = 13w 0.1 1 10 100 4 6 8 10 12 c i , collector-to-emitter current (a) ge t = 25c t = 150c j j v , gate-to-emitter voltage (v) a v = 10v 5s pulse width cc 0.1 1 10 100 0.1 1 1 0 ce c i , collector-to-emitter current (a) v , collector-to-emitter voltage (v) t = 150c t = 25c j j a v = 15v 20s pulse width ge IRG4BC20UD 4 www.irf.com fig. 4 - maximum collector current vs. case temperature fig. 6 - maximum igbt effective transient thermal impedance, junction-to-case 1.0 1.4 1.8 2.2 2.6 -60 -40 -20 0 20 40 60 80 100 120 140 160 ce v , collector-to-emitter voltage (v) v = 15v 80s pulse width ge a t , junction temperature (c) j i = 6.5a i = 13a i = 3.3a c c c 0 2 4 6 8 10 12 14 25 50 75 100 125 15 0 maximum dc collector current (a) t , case temperature (c) c v = 15v ge 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 1 10 t , rectangular pulse duration (sec) 1 thjc d = 0.50 0.01 0.02 0.05 0.10 0.20 single pulse (thermal response) thermal response (z ) p t 2 1 t dm notes: 1. duty factor d = t / t 2. peak t = p x z + t 12 j dm thjc c fig. 5 - typical collector-to-emitter voltage vs. junction temperature IRG4BC20UD www.irf.com 5 fig. 7 - typical capacitance vs. collector-to-emitter voltage fig. 8 - typical gate charge vs. gate-to-emitter voltage fig. 9 - typical switching losses vs. gate resistance fig. 10 - typical switching losses vs. junction temperature 0 200 400 600 800 1000 1 10 100 ce c, capacitance (pf) v , collector-to-emitter voltage (v) a v = 0v, f = 1mhz c = c + c , c shorted c = c c = c + c ge ies ge gc ce res gc oes ce gc c ies c res c oes 0 4 8 12 16 20 0 5 10 15 20 25 30 ge v , gate-to-emitter voltage (v) g q , total gate charge (nc) a v = 400v i = 6.5a ce c 0.1 1 10 -60 -40 -20 0 20 40 60 80 100 120 140 160 total switching losses (mj) a t , junction temperature (c) j i = 13a i = 6.5a i = 3.3a r = 50 ? v = 15v v = 480v c c c g ge cc 0.29 0.30 0.31 0.32 0 102030405060 g total switching losses (mj) a v = 480v v = 15v t = 25c i = 6.5a r , gate resistance ( ? ) cc ge j c IRG4BC20UD 6 www.irf.com fig. 11 - typical switching losses vs. collector-to-emitter current fig. 12 - turn-off soa fig. 13 - maximum forward voltage drop vs. instantaneous forward current 0.0 0.3 0.6 0.9 1.2 0 2 4 6 8 10 12 14 c total switching losses (mj) i , collector-to-emitter current (a) a r = 50 ? t = 150c v = 480v v = 15v g j cc ge 0.1 1 10 100 1000 1 10 100 100 0 c ce ge v , collector-to-emitter voltage (v) i , collector-to-emitter current (a) safe operating area v = 20v t = 125c ge j 0.1 1 10 100 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 fm f instantaneous forward current - i (a) forward voltage drop - v (v) t = 150c t = 125c t = 25c j j j IRG4BC20UD www.irf.com 7 fig. 14 - typical reverse recovery vs. di f /dt fig. 15 - typical recovery current vs. di f /dt fig. 16 - typical stored charge vs. di f /dt fig. 17 - typical di (rec)m /dt vs. di f /dt 0 100 200 300 400 500 100 1000 f di /dt - (a/s) rr q - (nc) i = 16a i = 8.0a i = 4.0a f f f v = 200v t = 125c t = 25c r j j 100 1000 10000 100 1000 f di /dt - (a/s) di(rec)m/dt - (a/s) i = 16a i = 8.0a i = 4.0a f f f v = 200v t = 125c t = 25c r j j 1 10 100 100 1000 f di /dt - (a/s) i - (a) irrm i = 16a i = 8.0a i = 4.0a f f f v = 200v t = 125c t = 25c r j j 0 20 40 60 80 100 100 1000 f di /dt - (a/s) t - (ns) rr i = 16a i = 8.0a i = 4.0a f f f v = 200v t = 125c t = 25c r j j IRG4BC20UD 8 www.irf.com fig. 18b - test waveforms for circuit of fig. 18a, defining e off , t d(off) , t f vce ie dt t2 t1 5% vce ic ipk vcc 10% ic vce t1 t2 dut voltage and current gate voltage d.u.t. +vg 10% +vg 90% ic tr td(on) diode reverse recovery energy tx eon = erec = t4 t3 vd id dt t4 t3 diode recovery waveforms ic vpk 10% vcc irr 10% irr vcc trr qrr = trr tx id dt same type device as d.u.t. d.u.t. 430f 80% of vce fig. 18a - test circuit for measurement of i lm , e on , e off(diode) , t rr , q rr , i rr , t d(on) , t r , t d(off) , t f fig. 18c - test waveforms for circuit of fig. 18a, defining e on , t d(on) , t r fig. 18d - test waveforms for circuit of fig. 18a, defining e rec , t rr , q rr , i rr t=5s d(on) t t f t r 90% t d(off) 10% 90% 10% 5% c i c e on e off ts on off e = (e +e ) v v ge IRG4BC20UD www.irf.com 9 vg gate signal device under tes t current d.u.t. voltage in d.u.t. current in d1 t0 t1 t2 d.u.t. v * c 50v l 1000v 6000f 100v figure 19. clamped inductive load test circuit figure 20. pulsed collector current test circuit figure 18e. macro waveforms for figure 18a's test circuit IRG4BC20UD 10 www.irf.com case outline ? to-220ab notes: repetitive rating: v ge =20v; pulse width limited by maximum junction tem- perature (figure 20) v cc =80%(v ces ), v ge =20v, l=10h, r g = 50 ? (figure 19) pulse width 80s; duty factor 0.1%. pulse width 5.0s, single shot. 0.55 (.022) 0.46 (.018) 3 x 2.92 (.115) 2.64 (.104) 1.32 (.052) 1.22 (.048) - b - 4.69 (.185) 4.20 (.165) 3.78 (.149) 3.54 (.139) - a - 6.47 (.255) 6.10 (.240) 1.15 (.045) min 4.06 (.160) 3.55 (.140) 3 x 3.96 (.160) 3.55 (.140) 3 x 0.93 (.037) 0.69 (.027) 0.36 (.014) m b a m 10.54 (.415) 10.29 (.405) 2.87 (.113) 2.62 (.103) 15.24 (.600) 14.84 (.584) 14.09 (.555) 13.47 (.530) 1.40 (.055) 1.15 (.045) 3 x 2.54 (.100) 2x 1 2 3 4 conforms to jedec outline to-220ab dimensions in millimeters and (inches) lead assignments 1 - gate 2 - collector 3 - emitter 4 - collector notes: 1 dimensions & tolerancing per ansi y14.5m, 1982. 2 controlling dimension : inch. 3 dimensions are shown millimeters (inches). 4 conforms to jedec outline to-220ab. world headquarters: 233 kansas st., el segundo, california 90245, tel: (310) 252-7105 ir great britain: hurst green, oxted, surrey rh8 9bb, uk tel: ++ 44 1883 732020 ir canada: 15 lincoln court, brampton, ontario l6t3z2, tel: (905) 453 2200 ir germany: saalburgstrasse 157, 61350 bad homburg tel: ++ 49 6172 96590 ir italy: via liguria 49, 10071 borgaro, torino tel: ++ 39 11 451 0111 ir japan: k&h bldg., 2f, 30-4 nishi-ikebukuro 3-chome, toshima-ku, tokyo japan 171 tel: 81 3 3983 0086 ir southeast asia: 1 kim seng promenade, great world city west tower, 13-11, singapore 237994 tel: ++ 65 838 4630 ir taiwan: 16 fl. suite d. 207, sec. 2, tun haw south road, taipei, 10673, taiwan tel: 886-2-2377-9936 data and specifications subject to change without notice. 6/03 |
Price & Availability of IRG4BC20UD |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |