![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
april 2011 doc id 15058 rev 5 1/79 1 stm32f101x4 stm32f101x6 low-density access line, arm-based 32-bit mcu with 16 or 32 kb flash, 5 timers, adc and 4 communication interfaces features core: arm 32-bit cortex?-m3 cpu ? 36 mhz maximum frequency, 1.25 dmips/mhz (dhrystone 2.1) performance at 0 wait state memory access ? single-cycle multiplication and hardware division memories ? 16 to 32 kbytes of flash memory ? 4 to 6 kbytes of sram clock, reset and supply management ? 2.0 to 3.6 v application supply and i/os ? por, pdr and programmable voltage detector (pvd) ? 4-to-16 mhz crystal oscillator ? internal 8 mhz factory-trimmed rc ? internal 40 khz rc ? pll for cpu clock ? 32 khz oscillator for rtc with calibration low power ? sleep, stop and standby modes ?v bat supply for rtc and backup registers debug mode ? serial wire debug (swd) and jtag interfaces dma ? 7-channel dma controller ? peripherals supported: timers, adc, spis, i 2 cs and usarts 1 12-bit, 1 s a/d converter (up to 16 channels) ? conversion range: 0 to 3.6 v ? temperature sensor up to 51 fast i/o ports ? 26/37/51 i/os, all mappable on 16 external interrupt vectors and almost all 5 v-tolerant up to 5 timers ? up to two16-bit timers, each with up to 4 ic/oc/pwm or pulse counter ? 2 watchdog timers (independent and window) ? systick timer: 24-bit downcounter up to 4 communication interfaces ? 1 x i 2 c interface (smbus/pmbus) ? up to 2 usarts (iso 7816 interface, lin, irda capability, modem control) ? 1 spi (18 mbit/s) crc calculation unit, 96-bit unique id ecopack ? packages table 1. device summary reference part number stm32f101x4 stm32f101c4, stm32f101r4, stm32f101t4 stm32f101x6 stm32f101c6, stm32f101r6, stm32f101t6 lqfp48 7 x 7 mm lqfp64 10 x 10 mm vfqfpn36 6 6 mm vfqfpn48 7 7 mm www.st.com
contents stm32f101x4, stm32f101x6 2/79 doc id 15058 rev 5 contents 1 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1 device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.1 arm ? cortex?-m3 core with embedded flash and sram . . . . . . . . . 15 2.3.2 embedded flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.3 crc (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 15 2.3.4 embedded sram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.5 nested vectored interrupt controller (nvic) . . . . . . . . . . . . . . . . . . . . . . 15 2.3.6 external interrupt/event controller (exti) . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.7 clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.8 boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.9 power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.10 power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.11 voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.12 low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.13 dma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.14 rtc (real-time clock) and backup registers . . . . . . . . . . . . . . . . . . . . . . 18 2.3.15 independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.16 window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.17 systick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.18 general-purpose timers (timx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.19 i 2 c bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.20 universal synchronous/asynchronous receiver transmitter (usart) . . 19 2.3.21 serial peripheral interface (spi) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.22 gpios (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.23 adc (analog to digital converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.24 temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.25 serial wire jtag debug port (swj-dp) . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 stm32f101x4, stm32f101x6 contents doc id 15058 rev 5 3/79 4 memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5 electrical characteristi cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.1 parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.1.1 minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.1.2 typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.1.3 typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.1.4 loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.1.5 pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.1.6 power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.1.7 current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.2 absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.3 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.3.1 general operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.3.2 operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 31 5.3.3 embedded reset and power control block characteristics . . . . . . . . . . . 31 5.3.4 embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.3.5 supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.3.6 external clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.3.7 internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.3.8 pll characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.3.9 memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.3.10 emc characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.3.11 absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 50 5.3.12 i/o current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.3.13 i/o port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.3.14 nrst pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.3.15 tim timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.3.16 communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.3.17 12-bit adc characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.3.18 temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6 package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.1 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.2 thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.2.1 reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.2.2 evaluating the maximum junction temperature for an application . . . . . 75 contents stm32f101x4, stm32f101x6 4/79 doc id 15058 rev 5 7 ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 8 revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 stm32f101x4, stm32f101x6 list of tables doc id 15058 rev 5 5/79 list of tables table 1. device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 table 2. low-density stm32f101xx device features and peripheral counts . . . . . . . . . . . . . . . . . . 11 table 3. stm32f101xx family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 table 4. low-density stm32f101xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 table 5. voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 table 6. current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 table 7. thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 table 8. general operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 table 9. operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 table 10. embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 32 table 11. embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 table 12. maximum current consumption in run mode, code with data processing running from flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 table 13. maximum current consumption in run mode, code with data processing running from ram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 table 14. maximum current consumption in sleep mode, code running from flash or ram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 table 15. typical and maximum current consumptions in stop and standby modes . . . . . . . . . . . . 36 table 16. typical current consumption in run mode, code with data processing running from flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 table 17. typical current consumption in sleep mode, code running from flash or ram . . . . . . . . . 40 table 18. peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 table 19. high-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 table 20. low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 table 21. hse 4-16 mhz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4 table 22. lse oscillator characteristics (f lse = 32.768 khz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 table 23. hsi oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 table 24. lsi oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 table 25. low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 table 26. pll characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 table 27. flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 table 28. flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 table 29. ems characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 table 30. emi characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 table 31. esd absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 table 32. electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 table 33. i/o current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 table 34. i/o static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 table 35. output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 table 36. i/o ac characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 table 37. nrst pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 table 38. timx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 table 39. i 2 c characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 table 40. scl frequency (f pclk1 = mhz, v dd = 3.3 v) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 table 41. spi characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 table 42. adc characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 table 43. r ain max for f adc = 14 mhz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 table 44. adc accuracy - limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 list of tables stm32f101x4, stm32f101x6 6/79 doc id 15058 rev 5 table 45. adc accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 table 46. ts characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 table 47. vfqfpn48 7 x 7 mm, 0.5 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . . . 70 table 48. vfqfpn36 6 x 6 mm, 0.5 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . . . 71 table 49. lqfp64 ? 10 x 10 mm, 64-pin low-profile quad flat package mechanical data . . . . . . . . . 72 table 50. lqfp48 ? 7 x 7mm, 48-pin low-profile quad flat package mechanical data. . . . . . . . . . . . 73 table 51. package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 table 52. ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 table 53. document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 stm32f101x4, stm32f101x6 list of figures doc id 15058 rev 5 7/79 list of figures figure 1. stm32f101xx low-density access line block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 figure 2. clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 figure 3. stm32f101xx low-density access line lqfp64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . 21 figure 4. stm32f101xx low-density access line lqfp48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . 21 figure 5. stm32f101xx low-density access line vfqpfn48 pinout . . . . . . . . . . . . . . . . . . . . . . . . 22 figure 6. stm32f101xx low-density access line vfqpfn36 pinout . . . . . . . . . . . . . . . . . . . . . . . . 22 figure 7. memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 figure 8. pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 figure 9. pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 figure 10. power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 figure 11. current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 figure 12. typical current consumption in run mode versus frequency (at 3.6 v) - code with data processing running from ram, peripherals enabled. . . . . . . . . . . . . . . . . . 35 figure 13. typical current consumption in run mode versus frequency (at 3.6 v) - code with data processing running from ram, peripherals disabled . . . . . . . . . . . . . . . . . 35 figure 14. typical current consumption on v bat with rtc on versus temperature at different v bat values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 figure 15. typical current consumption in stop mode with regulator in run mode versus temperature at v dd = 3.3 v and 3.6 v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 figure 16. typical current consumption in stop mode with regulator in low-power mode versus temperature at v dd = 3.3 v and 3.6 v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 figure 17. typical current consumption in standby mode versus temperature at v dd = 3.3 v and 3.6 v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 figure 18. high-speed external clock source ac timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 figure 19. low-speed external clock source ac timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 figure 20. typical application with an 8 mhz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 figure 21. typical application with a 32.768 khz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 figure 22. standard i/o input characteristics - cmos port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 figure 23. standard i/o input characteristics - ttl port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 figure 24. 5 v tolerant i/o input characteristics - cmos port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 figure 25. 5 v tolerant i/o input characteristics - ttl port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 figure 26. i/o ac characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 figure 27. recommended nrst pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 figure 28. i 2 c bus ac waveforms and measurement circuit (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 figure 29. spi timing diagram - slave mode and cpha = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 figure 30. spi timing diagram - slave mode and cpha = 1 (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 figure 31. spi timing diagram - master mode (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 figure 32. adc accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 figure 33. typical connection diagram using the adc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 figure 34. power supply and reference decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 figure 35. vfqfpn48 7 x 7 mm, 0.5 mm pitch, package outline (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 figure 36. recommended footprint (dimensions in mm) (1)(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 figure 37. vfqfpn36 6 x 6 mm, 0.5 mm pitch, package outline (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 figure 38. recommended footprint (dimensions in mm) (1)(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 figure 39. lqfp64 ? 10 x 10 mm, 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . 72 figure 40. recommended footprint (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 figure 41. lqfp48 ? 7 x 7mm, 48-pin low-profile quad flat package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 list of figures stm32f101x4, stm32f101x6 8/79 doc id 15058 rev 5 figure 42. recommended footprint (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 figure 43. lqfp64 p d max vs. t a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 stm32f101x4, stm32f101x6 introduction doc id 15058 rev 5 9/79 1 introduction this datasheet provides the ordering information and mechanical device characteristics of the stm32f101x4 and stm32f101x6 low-density access line microcontrollers. for more details on the whole stmicroelectronics stm32f101xx family, please refer to section 2.2: full compatibility throughout the family . the low-density stm32f101xx datasheet should be read in conjunction with the low-, medium- and high-density stm32f10xxx reference manual. for information on programming, erasing and protection of the internal flash memory please refer to the stm32f10xxx flash programming manual. the reference and flash programming manuals are both available from the stmicroelectronics website www.st.com . for information on the cortex?-m3 core please refer to the cortex?-m3 technical reference manual, available from the www.arm.com website at the following address: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/. description stm32f101x4, stm32f101x6 10/79 doc id 15058 rev 5 2 description the stm32f101x4 and stm32f101x6 low-density access line family incorporates the high-performance arm cortex?-m3 32-bit risc core operating at a 36 mhz frequency, high-speed embedded memories (flash memory of 16 to 32 kbytes and sram of 4 to 6 kbytes), and an extensive ra nge of enhanced peri pherals and i/os c onnected to two apb buses. all devices offer standard communication interfaces (one i 2 c, one spi, and two usarts), one 12-bit adc and up to two general-purpose 16-bit timers. the stm32f101xx low-density access line family operates in the ?40 to +85 c temperature range, from a 2.0 to 3.6 v power supply. a comprehensive set of power-saving mode allows the design of low-power applications. the stm32f101xx low-density access line family includes devices in three different packages ranging from 36 pins to 64 pins. depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family. these features make the stm32f101xx low-density access line microcontroller family suitable for a wide range of applications such as application control and user interface, medical and handheld equipment, pc peripherals, gaming and gps platforms, industrial applications, plcs, inverters, printers, scanners, alarm systems, video intercoms, and hvacs. stm32f101x4, stm32f101x6 description doc id 15058 rev 5 11/79 2.1 device overview figure 1 shows the general block diagram of the device family. table 2. low-density stm32f101xx device features and peripheral counts peripheral stm32f101tx stm32f101cx stm32f101rx flash - kbytes 16 32 16 32 16 32 sram - kbytes 464646 timers general-purpose 222222 communication spi 111111 i 2 c 111111 usart 222222 12-bit synchronized adc number of channels 1 10 channels 1 10 channels 1 16 channels gpios 26 37 51 cpu frequency 36 mhz operating voltage 2.0 to 3.6 v operating temperatures ambient temperature: ?40 to +85 c (see ta b l e 8 ) junction temperature: ?40 to +105 c (see ta bl e 8 ) packages vfqfpn36 lqfp48, vfqfpn48 lqfp64 description stm32f101x4, stm32f101x6 12/79 doc id 15058 rev 5 figure 1. stm32f101xx low-density access line block diagram 1. af = alternate function on i/o port pin. 2. t a = ?40 c to +85 c (junction temperature up to 105 c). temp s en s or pa[ 15:0] exti w w d g nvic 12 b it adc s wd 16af jtdi jtck/ s wclk jtm s / s wdio njtr s t jtdo nr s t v dd = 2 to 3 .6 v 8 0af pb[ 15:0] pc[15:0] ahb2 s ram wakeup gpioa gpiob gpioc f m a x : 3 6 mhz v ss gp dma tim2 tim 3 xtal o s c 4-16 mhz xtal 3 2 khz o s c_in o s c_out o s c 3 2_out o s c 3 2_in pll & apb 1 : f m a x =24 / 3 6 mhz pclk1 hclk clock managt pclk 2 volt. reg. 3 . 3 v to 1. 8 v power b a ck u p i nterf a ce as af 6 kb rtc rc 8 mhz cortex m 3 cpu u s art1 u s art2 7 ch a nnel s b a ck u p reg s cl, s da, s mba i2c as af pd[ 3 :0] gpiod ahb:f m a x = 3 6 mhz 4 ch a nn el s 4 ch a nn el s fclk rc 42 khz s t a nd b y iwdg @vdd @vbat por / pdr s upply @vdda vdda v ss a @vdda v bat rx,tx, ct s , rt s , s m a rtc a rd as af rx,tx, ct s , rt s , apb2 : f m a x = 3 6 mhz nvic s pi mo s i,mi s o, s ck,n ss as af if interf a ce @vdda s upervi s ion pvd r s t int @vdd ahb2 apb2 apb 1 awu tamper-rtc fl as h 3 2 kb b us m a trix 64 b it inte rf a ce i bus d bus p bus o b l fl as h tr a ce controller s y s tem a i1517 3 c traceclk traced[0: 3 ] as a s s w/jtag tpiu tr a ce/trig ck, s m a rtc a rd as af stm32f101x4, stm32f101x6 description doc id 15058 rev 5 13/79 figure 2. clock tree 1. when the hsi is used as a pll clock input, the maxi mum system clock frequency t hat can be achieved is 36 mhz. 2. to have an adc conversion time of 1 s, apb2 must be at 14 mhz or 28 mhz. hse osc 4-16 mhz osc_in osc_out osc32_in osc32_out lse osc 32.768 khz hsi rc 8 mhz lsi rc 40 khz to independent watchdog (iwdg) pll x2, x3, x4 pllmul legend: mco clock output main pllxtpre /2 ..., x16 ahb prescaler /1, 2..512 /2 pllclk hsi hse apb1 prescaler /1, 2, 4, 8, 16 adc prescaler /2, 4, 6, 8 adcclk pclk1 hclk pllclk to ahb bus, core, memory and dma to tim2, tim3 to adc lse lsi hsi /128 /2 hsi hse peripherals to apb1 peripheral clock enable (13 bits) enable (3 bits) p eripheral clock apb2 prescaler /1, 2, 4, 8, 16 pclk2 peripherals to apb2 peripheral clock enable (11 bits) 36 mhz max 36 mhz max to rtc pllsrc sw mco css to cortex system timer /8 clock enable (3 bits) sysclk rtcclk rtcsel[1:0] timxclk iwdgclk sysclk fclk cortex free running clock tim2, tim3 if (apb1 prescaler =1) x1 else x2 hse = high-speed external clock signal hsi = high-speed internal clock signal lsi = low-speed internal clock signal lse = low-speed external clock signal ai15174 36 mhz max 36 mhz max description stm32f101x4, stm32f101x6 14/79 doc id 15058 rev 5 2.2 full compatibility throughout the family the stm32f101xx is a complete family whose members are fully pin-to-pin, software and feature compatible. in the reference manual, the stm32f101x4 and stm32f101x6 are referred to as low-density devices, the stm32f101x8 and stm32f101xb are referred to as medium-density devices, and the stm32f101xc, stm32f101xd and stm32f101xe are referred to as high-density devices. low- and high-density devices are an extension of the stm32f101x8/b devices, they are specified in the stm32f101x4/6 and stm32f101xc/d/e datasheets, respectively. low- density devices feature lower flash memory and ram capacities and a timer less. high- density devices have higher flash memory and ram capacities, and additional peripherals like fsmc and dac, while remaining fully compatible with the other members of the stm32f101xx family. the stm32f101x4, stm32f101x6, stm32f101xc, stm32f101xd and stm32f101xe are a drop-in replacement for the stm32f101x8/b medium-density devices, allowing the user to try different memory densities and providing a greater degree of freedom during the development cycle. moreover, the stm32f101xx performance line fam ily is fully compatible with all existing stm32f101xx access line and stm32f102xx usb access line devices. table 3. stm32f101xx family pinout memory size low-density devices medium-densi ty devices high-density devices 16 kb flash 32 kb flash (1) 1. for orderable part numbers that do not show the a inte rnal code after the temperature range code (6), the reference datasheet for electrical c haracteristics is that of the st m32f101x8/b medium-density devices. 64 kb flash 128 kb flash 256 kb flash 384 kb flash 512 kb flash 4 kb ram 6 kb ram 10 kb ram 16 kb ram 32 kb ram 48 kb ram 48 kb ram 144 5 usarts 4 16-bit timers, 2 basic timers 3 spis, 2 i 2 cs, 1 adc, 2 dacs, fsmc (100 and 144 pins) 100 3 usarts 3 16-bit timers 2 spis, 2 i2cs, 1 adc 64 2 usarts 2 16-bit timers 1 spi, 1 i 2 c 1 adc 48 36 stm32f101x4, stm32f101x6 description doc id 15058 rev 5 15/79 2.3 overview 2.3.1 arm ? cortex?-m3 core with embedded flash and sram the arm cortex?-m3 processor is the latest generation of arm processors for embedded systems. it has been developed to provide a low-cost platform that meets the needs of mcu implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts. the arm cortex?-m3 32-bit risc processor features exceptional code-efficiency, delivering the high-performance expected from an arm core in the memory size usually associated with 8- and 16-bit devices. the stm32f101xx low-density access line family having an embedded arm core, is therefore compatible with all arm tools and software. 2.3.2 embedded flash memory 16 or 32 kbytes of embedded flash is available for storing programs and data. 2.3.3 crc (cyclic redundanc y check) calculation unit the crc (cyclic redundancy check) calculation unit is used to get a crc code from a 32-bit data word and a fixed generator polynomial. among other applications, crc-based techniques are used to verify data transmission or storage integrity. in the scope of the en/iec 60335-1 standard, they offer a means of verifying the flash memory integrity. the crc ca lculation unit helps co mpute a signature of the software during runtime, to be compared with a reference signature generated at link- time and stored at a given memory location. 2.3.4 embedded sram up to 6 kbytes of embedded sram accessed (read/write) at cpu clock speed with 0 wait states. 2.3.5 nested vectored interrupt controller (nvic) the stm32f101xx low-density access line embeds a nested vectored interrupt controller able to handle up to 43 maskable interrupt channels (not including the 16 interrupt lines of cortex?-m3) and 16 priority levels. closely coupled nvic gives low latency interrupt processing interrupt entry vector table address passed directly to the core closely coupled nvic core interface allows early processing of interrupts processing of late arriving higher priority interrupts support for tail-chaining processor state automatically saved interrupt entry restored on interrupt exit with no instruction overhead this hardware block provides flexible interrupt management features with minimal interrupt latency. description stm32f101x4, stm32f101x6 16/79 doc id 15058 rev 5 2.3.6 external interrupt /event controller (exti) the external interrupt/event controller consists of 19 edge detector lines used to generate interrupt/event requests. each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. a pending register maintains the status of the interrupt requests. the exti can detect an external line with a pulse width shorter than the internal apb2 cloc k period. up to 80 gp ios can be connected to the 16 external interrupt lines. 2.3.7 clocks and startup system clock selection is performed on startup, however the internal rc 8 mhz oscillator is selected as default cpu clock on reset. an ex ternal 4-16 mhz clock can be selected, in which case it is monitored for failure. if failure is detected, the system automatically switches back to the internal rc oscillato r. a software interrupt is genera ted if enabled. similarly, full interrupt management of the pll clock entry is available when necessary (for example on failure of an indirectly used extern al crystal, resonator or oscillator). several prescalers allow the configuration of the ahb frequency, the high-speed apb (apb2) and the low-speed apb (apb1) domains. the maximum freque ncy of the ahb and the apb domains is 36 mhz. see figure 2 for details on the clock tree. 2.3.8 boot modes at startup, boot pins are used to select one of three boot options: boot from user flash boot from system memory boot from embedded sram the boot loader is located in system memory. it is used to reprogram the flash memory by using usart1. for further details please refer to an2606. 2.3.9 power supply schemes v dd = 2.0 to 3.6 v: external power supply for i/os and the internal regulator. provided externally through v dd pins. v ssa , v dda = 2.0 to 3.6 v: external analog power supplies for adc, reset blocks, rcs and pll (minimum voltage to be applied to v dda is 2.4 v when the adc is used). v dda and v ssa must be connected to v dd and v ss , respectively. v bat = 1.8 to 3.6 v: power supply for rtc, ex ternal clock 32 khz oscillator and backup registers (through power switch) when v dd is not present. for more details on how to connect power pins, refer to figure 10: power supply scheme . 2.3.10 power supply supervisor the device has an integrated power on reset (por)/power down reset (pdr) circuitry. it is always active, and ensures proper operation starting from/down to 2 v. the device remains in reset mode when v dd is below a specified threshold, v por/pdr , without the need for an external reset circuit. the device features an embedded programmable voltage detector (pvd) that monitors the v dd /v dda power supply and compares it to the v pvd threshold. an interrupt can be generated when v dd /v dda drops below the v pvd threshold and/or when v dd /v dda is higher stm32f101x4, stm32f101x6 description doc id 15058 rev 5 17/79 than the v pvd threshold. the interrupt service routine can then generate a warning message and/or put the mcu into a safe state. the pvd is enabled by software. refer to table 10: embedded reset and power control block characteristics for the values of v por/pdr and v pvd . 2.3.11 voltage regulator the regulator has three operation modes: main (mr), low power (lpr) and power down. mr is used in the nominal regulation mode (run) lpr is used in the stop mode power down is used in standby mode: the regulator output is in high impedance: the kernel circuitry is powered down, inducing ze ro consumption (but the contents of the registers and sram are lost) this regulator is always enabled after reset. it is disabled in standby mode, providing high impedance output. 2.3.12 low-power modes the stm32f101xx low-density access line supp orts three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources: sleep mode in sleep mode, only the cpu is stopped. all peripherals continue to operate and can wake up the cpu when an interrupt/event occurs. stop mode stop mode achieves the lowest power consumption while retaining the content of sram and registers. all clocks in the 1.8 v domain are stopped, the pll, the hsi rc and the hse crystal oscillators are disabled. the voltage regulator can also be put either in normal or in low power mode. the device can be woken up from stop mode by any of the exti line. the exti line source can be one of the 16 external lines, the pvd output or the rtc alarm. standby mode the standby mode is used to achieve the lowest power consumption. the internal voltage regulator is switched off so that the entire 1.8 v domain is powered off. the pll, the hsi rc and the hse crystal oscillators are also switched off. after entering standby mode, sram and register contents are lost except for registers in the backup domain and standby circuitry. the device exits standby mode when an external reset (nrst pin), a iwdg reset, a rising edge on the wkup pin, or an rtc alarm occurs. note: the rtc, the iwdg, and the corresponding clock sources are not stopped by entering stop or standby mode. 2.3.13 dma the flexible 7-channel general-purpose dma is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. the dma controller supports circular buffer management avoiding the generation of interrupts when the controller reaches the end of the buffer. description stm32f101x4, stm32f101x6 18/79 doc id 15058 rev 5 each channel is connected to dedicated hardware dma requests, with support for software trigger on each channel. configuration is made by software and transfer sizes between source and destination are independent. the dma can be used with the main peripherals: spi, i 2 c, usart, general purpose timers timx and adc. 2.3.14 rtc (real-time cl ock) and backup registers the rtc and the backup registers are supplied through a switch that takes power either on v dd supply when present or through the v bat pin. the backup registers are ten 16-bit registers used to store 20 bytes of user application data when v dd power is not present. the real-time clock provides a set of continuo usly running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and a periodic interrupt. it is clocke d by a 32.768 khz external crysta l, resonator or oscillator, the internal low power rc oscillator or the high -speed external clock divided by 128. the internal low power rc has a typical frequency of 40 khz. the rtc can be calibrated using an external 512 hz output to compensate for any natural crystal deviation. the rtc features a 32-bit programmable counter for long term measurement using the compare register to generate an alarm. a 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 khz. 2.3.15 independent watchdog the independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. it is clocked from an independent 40 khz internal rc and as it operates independently from the main clock, it can operate in stop and standby modes. it can be used as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. it is hardware or software configurable through the option bytes. the counter can be frozen in debug mode. 2.3.16 window watchdog the window watchdog is based on a 7-bit downcoun ter that can be set as free running. it can be used as a watchdog to reset the device when a problem occurs. it is clocked from the main clock. it has an early warning interrup t capability and the counter can be frozen in debug mode. 2.3.17 systick timer this timer is dedicated for os, but could al so be used as a standard down counter. it features: a 24-bit down counter autoreload capability maskable system interrupt generation when the counter reaches 0. programmable clock source 2.3.18 general-purpose timers (timx) there areup to two synchronizable general-purpose timers embedded in the stm32f101xx low-density access line devices. these timers are based on a 16-bit auto-reload up/down counter, a 16-bit prescaler and feature 4 independent channels each for input capture, stm32f101x4, stm32f101x6 description doc id 15058 rev 5 19/79 output compare, pwm or one pulse mode output. this gives up to 12 input captures / output compares / pwms on the largest packages. the general-purpose timers can work together via the timer link feature for synchronization or event chaining. their counter can be frozen in debug mode. any of the general-purpose timers can be used to generate pwm outputs. they all have independent dma request generation. these timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors. 2.3.19 i 2 c bus the i2c bus interface can operate in multimaster and slave modes. it can support standard and fast modes. it supports dual slave addressing (7-bit only) and both 7/10-bit addressing in master mode. a hardware crc generation/verification is embedded. the interface can be served by dma and it supports sm bus 2.0/pm bus. 2.3.20 universal sy nchronous/asynchronous receiver transmitter (usart) the available usart interfaces communicate at up to 2.25 mbit/s. they provide hardware management of the cts and rts signals, support irda sir endec, are iso 7816 compliant and have lin master/slave capability. the usart interfaces can be served by the dma controller. 2.3.21 serial perip heral interface (spi) the spi interface is able to communicate up to 18 mbit/s in slave and master modes in full- duplex and simplex communication modes. the 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. the hardware crc generation/verification supports basic sd card/mmc modes. the spi interface can be served by the dma controller. 2.3.22 gpios (genera l-purpose inputs/outputs) each of the gpio pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. most of the gpio pins are shared with digital or analog alternate functions. all gpios are high current- capable except for analog inputs. the i/os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the i/os registers. 2.3.23 adc (analog to digital converter) the 12-bit analog to digital converter has up to 16 external channels and performs conversions in single-shot or scan modes. in scan mode, automatic conversion is performed on a selected group of analog inputs. the adc can be served by the dma controller. description stm32f101x4, stm32f101x6 20/79 doc id 15058 rev 5 an analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. an interrupt is generated when the converted voltage is outside the programmed thresholds. 2.3.24 temperature sensor the temperature sensor has to generate a voltage that varies linearly with temperature. the conversion range is between 2 v < v dda < 3.6 v. the temperature sensor is internally connected to the adc_in16 input channel which is used to convert the sensor output voltage into a digital value. 2.3.25 serial wire jtag debug port (swj-dp) the arm swj-dp interface is embedded, and is a combined jtag and serial wire debug port that enables either a serial wire debug or a jtag probe to be connected to the target. the jtag tms and tck pins are shared respectively with swdio and swclk and a specific sequence on the tms pin is used to switch between jtag-dp and sw-dp. stm32f101x4, stm32f101x6 pinouts and pin description doc id 15058 rev 5 21/79 3 pinouts and pin description figure 3. stm32f101xx low-density access line lqfp64 pinout figure 4. stm32f101xx low-density access line lqfp48 pinout 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 17 18 19 20 21 22 23 24 29 30 31 32 25 26 27 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 vbat pc14-osc32_in pc15-osc32_out pd0 osc_in pd1 osc_out nrst pc0 pc1 pc2 pc3 vssa vdda pa 0 - w k u p pa 1 pa 2 vdd_3 vss_3 pb9 pb8 boot0 pb7 pb6 pb5 pb4 pb3 pd2 pc12 pc11 pc10 pa 1 5 pa 1 4 vdd_2 vss_2 pa 1 3 pa 1 2 pa 1 1 pa 1 0 pa 9 pa 8 pc9 pc8 pc7 pc6 pb15 pb14 pb13 pb12 pa 3 vss_4 vdd_4 pa 4 pa 5 pa 6 pa 7 pc4 pc5 pb0 pb1 pb2 pb10 pb11 vss_1 vdd_1 lqfp64 ai14387b pc13-tamper-rtc 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 12 13 14 15 16 17 18 19 20 21 22 1 2 3 4 5 6 7 8 9 10 11 48 47 46 45 lqfp48 pa 3 pa 4 pa 5 pa 6 pa 7 pb0 pb1 pb2 pb10 pb11 vss_1 vdd_1 vdd_2 vss_2 pa 1 3 pa 1 2 pa 1 1 pa 1 0 pa 9 pa 8 pb15 pb14 pb13 pb12 vbat pc14-osc32_in pc15-osc32_out pd0-osc_in pd1-osc_out nrst vssa vdda pa 0 - w k u p pa 1 pa 2 vdd_3 vss_3 pb9 pb8 boot0 pb7 pb6 pb5 pb4 pb3 pa 1 5 pa 1 4 ai14378d pc13-tamper-rtc pinouts and pin description stm32f101x4, stm32f101x6 22/79 doc id 15058 rev 5 figure 5. stm32f101xx low-density access line vfqpfn48 pinout figure 6. stm32f101xx low-density access line vfqpfn36 pinout ai18300 vdd_3 vss_3 pb9 pb8 boot0 pb7 pb6 pb5 pb4 pb3 pa15 pa14 pa 3 pa 4 pa 5 pa 6 pa 7 pb0 pb1 pb2 pb10 pb11 vss_1 vdd_1 vbat pc13-tamper-rtc pc14-osc32_in pc15-osc32_out pd0-osc_in pd1-osc_out nrst vssa vdda pa0-wkup pa 1 pa 2 vdd_2 vss_2 pa13 pa12 pa11 pa10 pa 9 pa 8 pb15 pb14 pb13 pb12 48 vfqfpn48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7 8 9 10 11 12 v ss_3 boot0 pb7 pb6 pb5 pb4 pb3 pa15 pa14 36 35 34 33 32 31 30 29 28 v dd_3 1 27 v dd_2 osc_in/pd0 2 26 v ss_2 osc_out/pd1 3 25 pa13 nrst 4 qfn36 24 pa12 v ssa 5 23 pa11 v dda 6 22 pa10 pa0-wkup 7 21 pa 9 pa 1 8 20 pa 8 pa 2 9 19 v dd_1 10 11 12 13 14 15 16 17 18 pa 3 pa 4 pa 5 pa 6 pa 7 pb0 pb1 pb2 v ss_1 ai14654 stm32f101x4, stm32f101x6 pinouts and pin description doc id 15058 rev 5 23/79 table 4. low-density stm32f101xx pin definitions pins pin name type (1) i / o level (2) main function (3) (after reset) alternate functions (3)(4) lqfp48/ vfqfpn48 lqfp64 vfqfpn36 default remap 11- v bat sv bat 2 2 - pc13-tamper-rtc (5) i/o pc13 (6) tamper-rtc 3 3 - pc14-osc32_in (5) i/o pc14 (6) osc32_in 4 4 - pc15-osc32_out (5) i/o pc15 (6) osc32_out 5 5 2 osc_in i osc_in 6 6 3 osc_out o osc_out 7 7 4 nrst i/o nrst - 8 - pc0 i/o pc0 adc_in10 - 9 - pc1 i/o pc1 adc_in11 - 10 - pc2 i/o pc2 adc_in12 - 11 - pc3 i/o pc3 adc_in13 8125 v ssa sv ssa 9136 v dda sv dda 10 14 7 pa0-wkup i/o pa0 wkup/usart2_cts/ adc_in0/ tim2_ch1_etr (7) 11 15 8 pa1 i/o pa1 usart2_rts/ adc_in1/tim2_ch2 (7) 12 16 9 pa2 i/o pa2 usart2_tx/ adc_in2/tim2_ch3 (7) 13 17 10 pa3 i/o pa3 usart2_rx/ adc_in3/tim2_ch4 (7) -18- v ss_4 sv ss_4 -19- v dd_4 sv dd_4 14 20 11 pa4 i/o pa4 spi_nss (7) /adc_in4 usart2_ck 15 21 12 pa5 i/o pa5 spi_sck (7) /adc_in5 16 22 13 pa6 i/o pa6 spi_miso (7) /adc_in6/ tim3_ch1 (7) 17 23 14 pa7 i/o pa7 spi_mosi (7) /adc_in7/ tim3_ch2 (7) - 24 pc4 i/o pc4 adc_in14 - 25 pc5 i/o pc5 adc_in15 18 26 15 pb0 i/o pb0 adc_in8/tim3_ch3 (7) 19 27 16 pb1 i/o pb1 adc_in9/tim3_ch4 (7) pinouts and pin description stm32f101x4, stm32f101x6 24/79 doc id 15058 rev 5 20 28 17 pb2 i/o ft pb2/boot1 21 29 - pb10 i/o ft pb10 tim2_ch3 22 30 - pb11 i/o ft pb11 tim2_ch4 23 31 18 v ss_1 sv ss_1 24 32 19 v dd_1 sv dd_1 25 33 - pb12 i/o ft pb12 26 34 - pb13 i/o ft pb13 27 35 - pb14 i/o ft pb14 28 36 - pb15 i/o ft pb15 - 37 - pc6 i/o ft pc6 tim3_ch1 38 - pc7 i/o ft pc7 tim3_ch2 39 - pc8 i/o ft pc8 tim3_ch3 - 40 - pc9 i/o ft pc9 tim3_ch4 29 41 20 pa8 i/o ft pa8 usart1_ck/mco 30 42 21 pa9 i/o ft pa9 usart1_tx (7) 31 43 22 pa10 i/o ft pa10 usart1_rx (7) 32 44 23 pa11 i/o ft pa11 usart1_cts 33 45 24 pa12 i/o ft pa12 usart1_rts 34 46 25 pa13 i/o ft jtms-swdio pa13 35 47 26 v ss_2 sv ss_2 36 48 27 v dd_2 sv dd_2 37 49 28 pa14 i/o ft jtck/swclk pa14 38 50 29 pa15 i/o ft jtdi tim2_ch1_etr/ pa15 / spi_nss -51 pc10 i/oft pc10 -52 pc11 i/oft pc11 -53 pc12 i/oft pc12 552 pd0 i/oftosc_in (8) 6 6 3 pd1 i/o ft osc_out (8) 54 - pd2 i/o ft pd2 tim3_etr 39 55 30 pb3 i/o ft jtdo tim2_ch2 / pb3 traceswo spi_sck table 4. low-density stm32f101xx pin definitions (continued) pins pin name type (1) i / o level (2) main function (3) (after reset) alternate functions (3)(4) lqfp48/ vfqfpn48 lqfp64 vfqfpn36 default remap stm32f101x4, stm32f101x6 pinouts and pin description doc id 15058 rev 5 25/79 40 56 31 pb4 i/o ft njtrst tim3_ch1 / pb4 spi_miso 41 57 32 pb5 i/o pb5 i2c_smba tim3_ch2 / spi_mosi 42 58 33 pb6 i/o ft pb6 i2c_scl (7) usart1_tx 43 59 34 pb7 i/o ft pb7 i2c_sda (7) usart1_rx 44 60 35 boot0 i boot0 45 61 - pb8 i/o ft pb8 i2c_scl 46 62 - pb9 i/o ft pb9 i2c_sda 47 63 36 v ss_3 sv ss_3 48 64 1 v dd_3 sv dd_3 1. i = input, o = output, s = supply. 2. ft= 5 v tolerant. 3. function availability depends on the chosen device. for devices having reduced peripher al counts, it is always the lower number of peripherals that is included. fo r example, if a device has only one spi, tw o usarts and two timers, they will be called spi, usart1 & usart2 and tim2 & tim 3, respectively. refer to table 2 on page 11 . 4. if several peripherals share the same i/o pin, to avoid conflict between these alte rnate functions only one peripheral should be enabled at a time through the peri pheral clock enable bit (in the correspondi ng rcc peripheral clock enable register). 5. pc13, pc14 and pc15 are supplied through the power switch. si nce the switch only sinks a limited amount of current (3 ma), the use of gpios pc13 to pc15 in output mode is limited: the speed should not exceed 2 mhz with a maximum load of 30 pf and these ios must not be used as a current source (e.g. to drive an led). 6. main function after the first backup domain power-up. later on, it depends on the contents of the backup registers even after reset (because these registers are not reset by the main reset). for details on how to manage these ios, refer to the battery backup domain and bkp register description sections in the stm32f10xxx reference manual, available from the stmicroelectronics website: www.st.com. 7. this alternate function can be remapped by software to some other port pins (if available on the used package). for more details, refer to the alternate function i/o and debug configurat ion section in the stm32f10xxx reference manual, available from the stmicroelectroni cs website: www.st.com. 8. the pins number 2 and 3 in the vfqfpn36 package, and 5 and 6 in the lqfp48 and lqfp64 packages are configured as osc_in/osc_out after reset, however the functionality of pd0 and pd1 can be remapped by software on these pins. for more details, refer to the alternate function i/o and debug configuration section in the stm32f10xxx reference manual. table 4. low-density stm32f101xx pin definitions (continued) pins pin name type (1) i / o level (2) main function (3) (after reset) alternate functions (3)(4) lqfp48/ vfqfpn48 lqfp64 vfqfpn36 default remap memory mapping stm32f101x4, stm32f101x6 26/79 doc id 15058 rev 5 4 memory mapping the memory map is shown in figure 7 . figure 7. memory map apb memory space dma rtc wwdg iwdg usart2 adc usart1 spi exti rcc 0 1 2 3 4 5 6 7 peripherals sram reserved reserved option bytes reserved 0x4000 0000 0x4000 0400 0x4000 0800 0x4000 2800 0x4000 2c00 0x4000 3000 0x4000 3400 0x4000 4400 0x4000 4800 0x4000 5400 0x4000 5800 0x4000 6000 0x4000 6400 0x4000 6800 0x4000 6c00 0x4000 7000 0x4000 7400 0x4001 0000 0x4001 0400 0x4001 0800 0x4001 0c00 0x4001 1000 0x4001 1400 0x4001 1800 0x4001 2400 0x4001 2800 0x4001 2c00 0x4001 3000 0x4001 3400 0x4001 3800 0x4001 3c00 0x4002 0000 0x4002 0400 0x4002 1000 0x4002 1400 0x4002 2000 0x4002 2400 0x4002 3000 0x4002 3400 0x6000 0000 0xe010 0000 0xffff ffff reserved reserved reserved crc reserved reserved flash interface reserved reserved reserved reserved reserved reserved reserved port d port c port b port a afio pwr bkp reserved reserved reserved reserved i2c reserved reserved reserved tim3 tim2 0xffff ffff 0xe010 0000 0xe000 0000 0xc000 0000 0xa000 0000 0x8000 0000 0x6000 0000 0x4000 0000 0x2000 0000 0x0000 0000 0x1fff ffff 0x1fff f80f 0x1fff f800 0x1fff f000 0x0801 ffff 0x0800 0000 system memory flash memory cortex-m3 internal peripherals ai15175b 0x0000 0000 aliased to flash or system memory depending on boot pins stm32f101x4, stm32f101x6 electrical characteristics doc id 15058 rev 5 27/79 5 electrical characteristics 5.1 parameter conditions unless otherwise specified, all voltages are referenced to v ss . 5.1.1 minimum and maximum values unless otherwise specified the minimum and ma ximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at t a = 25 c and t a = t a max (given by the selected temperature range). data based on characterization results, desi gn simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean3 ). 5.1.2 typical values unless otherwise specified, typical data are based on t a = 25 c, v dd = 3.3 v (for the 2v v dd 3.6 v voltage range). they are given only as design guidelines and are not tested. typical adc accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean2 ) . 5.1.3 typical curves unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 5.1.4 loading capacitor the loading conditions used for pin parameter measurement are shown in figure 8 . 5.1.5 pin input voltage the input voltage measurement on a pin of the device is described in figure 9 . electrical characteristics stm32f101x4, stm32f101x6 28/79 doc id 15058 rev 5 5.1.6 power supply scheme figure 10. power supply scheme caution: in figure 10 , the 4.7 f capacitor must be connected to v dd3 . figure 8. pin loading conditions figure 9. pin input voltage ai14123b c = 50 pf stm32f10xxx pin ai14124b stm32f10xxx pin v in ai15496 v dd 1/2/3/4/5 an alo g: rcs, pll, ... po wer swi tch v bat gp i/o s out in kernel logic (cpu, digital & memories) backup circuitry (osc32k,rtc, backup registers) wakeup logic 5 100 nf + 1 4.7 f 1.8-3.6v regulator v ss 1/2/3/4/5 v dda v ssa adc level shifter io logic v dd 10 nf + 1 f v dd v ref+ v ref- stm32f101x4, stm32f101x6 electrical characteristics doc id 15058 rev 5 29/79 5.1.7 current con sumption measurement figure 11. current consumption measurement scheme 5.2 absolute maximum ratings stresses above the absolute maximum ratings listed in table 5: voltage characteristics , table 6: current characteristics , and table 7: thermal characteristics may cause permanent damage to the device. these are stress ratings only and functional operation of the device at these conditions is not implied. exposure to maximum rating conditions for extended periods may affect device reliability. ai14126 v bat v dd v dda i dd _v bat i dd table 5. voltage characteristics symbol ratings min max unit v dd ? v ss external main supply voltage (including v dda and v dd ) (1) 1. all main power (v dd , v dda ) and ground (v ss , v ssa ) pins must always be connected to the external power supply, in the permitted range. ?0.3 4.0 v v in (2) 2. v in maximum must always be respected. refer to table 6: current characteristics for the maximum allowed injected current values. input voltage on five volt tolerant pin v ss ? 0.3 v dd + 4.0 input voltage on any other pin v ss ? 0.3 4.0 | v ddx | variations between different v dd power pins 50 mv |v ssx ? v ss | variations between all the different ground pins 50 v esd(hbm) electrostatic discharge voltage (human body model) see section 5.3.11: absolute maximum ratings (electrical sensitivity) electrical characteristics stm32f101x4, stm32f101x6 30/79 doc id 15058 rev 5 5.3 operating conditions 5.3.1 general operating conditions table 6. current characteristics symbol ratings max. unit i vdd total current into v dd /v dda power lines (source) (1) 1. all main power (v dd , v dda ) and ground (v ss , v ssa ) pins must always be connected to the external power supply, in the permitted range. 150 ma i vss total current out of v ss ground lines (sink) (1) 150 i io output current sunk by any i/o and control pin 25 output current source by any i/os and control pin ? 25 i inj(pin) (2) 2. negative injection disturbs the analog performance of the device. see note in section 5.3.17: 12-bit adc characteristics . injected current on five volt tolerant pins (3) 3. positive injection is not possible on thes e i/os. a negative injection is induced by v in electrical characteristics stm32f101x4, stm32f101x6 32/79 doc id 15058 rev 5 . table 10. embedded reset and power control block characteristics symbol parameter conditions min typ max unit v pvd programmable voltage detector level selection pls[2:0]=000 (rising edge) 2.1 2.18 2.26 v pls[2:0]=000 (falling edge) 2 2.08 2.16 v pls[2:0]=001 (rising edge) 2.19 2.28 2.37 v pls[2:0]=001 (falling edge) 2.09 2.18 2.27 v pls[2:0]=010 (rising edge) 2.28 2.38 2.48 v pls[2:0]=010 (falling edge) 2.18 2.28 2.38 v pls[2:0]=011 (rising edge) 2.38 2.48 2.58 v pls[2:0]=011 (falling edge) 2.28 2.38 2.48 v pls[2:0]=100 (rising edge) 2.47 2.58 2.69 v pls[2:0]=100 (falling edge) 2.37 2.48 2.59 v pls[2:0]=101 (rising edge) 2.57 2.68 2.79 v pls[2:0]=101 (falling edge) 2.47 2.58 2.69 v pls[2:0]=110 (rising edge) 2.66 2.78 2.9 v pls[2:0]=110 (falling edge) 2.56 2.68 2.8 v pls[2:0]=111 (rising edge) 2.76 2.88 3 v pls[2:0]=111 (falling edge) 2.66 2.78 2.9 v v pvdhyst (2) pvd hysteresis 100 mv v por/pdr power on/power down reset threshold falling edge 1.8 (1) 1. the product behavior is guaranteed by design down to the minimum v por/pdr value. 1.88 1.96 v rising edge 1.84 1.92 2.0 v v pdrhyst (2) pdr hysteresis 40 mv t rsttempo (2) 2. guaranteed by design, not tested in production. reset temporization 1.5 2.5 4.5 ms stm32f101x4, stm32f101x6 electrical characteristics doc id 15058 rev 5 33/79 5.3.4 embedded reference voltage the parameters given in ta bl e 1 1 are derived from tests performed under the ambient temperature and v dd supply voltage conditions summarized in ta b l e 8 . 5.3.5 supply current characteristics the current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, i/o pin loading, device software configuration, operating frequencies, i/o pin switching rate, program location in memory and executed binary code. the current consumption is measured as described in figure 11: current consumption measurement scheme . all run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to dhrystone 2.1 code. maximum current consumption the mcu is placed under the following conditions: all i/o pins are in input mode with a static value at v dd or v ss (no load) all peripherals are disabled except if it is explicitly mentioned the flash access time is adjusted to f hclk frequency (0 wait state from 0 to 24 mhz, 1 wait state from 24 to 36 mhz) prefetch in on (reminder: this bit must be set before clock setting and bus prescaling) when the peripherals are enabled f pclk1 = f hclk/2 , f pclk2 = f hclk the parameters given in ta bl e 1 2 are derived from tests performed under the ambient temperature and v dd supply voltage conditions summarized in ta b l e 8 . table 11. embedded internal reference voltage symbol parameter conditions min typ max unit v refint internal reference voltage ?40 c < t a < +85 c 1.16 1.20 1.24 v t s_vrefint (1) 1. shortest sampling time can be determined in the application by multiple iterations. adc sampling time when reading the internal reference voltage 5.1 17.1 (2) 2. guaranteed by design, not tested in production. s v rerint (2) internal reference voltage spread over the temperature range v dd = 3 v 10 mv 10 mv t coeff (2) temperature coefficient 100 ppm/ c electrical characteristics stm32f101x4, stm32f101x6 34/79 doc id 15058 rev 5 table 12. maximum current consumption in run mode, code with data processing running from flash symbol parameter conditions f hclk max (1) 1. based on characterization , not tested in production. unit t a = 85 c i dd supply current in run mode external clock (2) , all peripherals enabled 2. external clock is 8 mhz and pll is on when f hclk > 8 mhz. 36 mhz 26 ma 24 mhz 18 16 mhz 13 8 mhz 7 external clock (2) , all peripherals disabled 36 mhz 19 24 mhz 13 16 mhz 10 8 mhz 6 table 13. maximum current consumption in run mode, code with data processing running from ram symbol parameter conditions f hclk max (1) 1. based on characterization, tested in production at v dd max, f hclk max. unit t a = 85 c i dd supply current in run mode external clock (2) , all peripherals enabled 2. external clock is 8 mhz and pll is on when f hclk > 8 mhz. 36 mhz 20 ma 24 mhz 14 16 mhz 10 8 mhz 6 external clock (2) all peripherals disabled 36 mhz 15 24 mhz 10 16 mhz 7 8 mhz 5 stm32f101x4, stm32f101x6 electrical characteristics doc id 15058 rev 5 35/79 figure 12. typical current consumption in run mode versus frequency (at 3.6 v) - code with data processing running from ram, peripherals enabled figure 13. typical current consumption in run mode versus frequency (at 3.6 v) - code with data processing running from ram, peripherals disabled 0 5 10 15 20 25 ? 45c 25 c 70 c 85 c temperature (c) consumption (ma) 36 mhz 16 mhz 8 mhz 0 2 4 6 8 10 12 14 16 ? 45c 25 c 70 c 85 c temperature (c) consumption (ma) 36 mhz 16 mhz 8 mhz electrical characteristics stm32f101x4, stm32f101x6 36/79 doc id 15058 rev 5 table 14. maximum current consumption in sleep mode, code running from flash or ram symbol parameter conditions f hclk max (1) 1. based on characterization, tested in production at v dd max and f hclk max with peripherals enabled. unit t a = 85 c i dd supply current in sleep mode external clock (2) all peripherals enabled 2. external clock is 8 mhz and pll is on when f hclk > 8 mhz. 36 mhz 14 ma 24 mhz 10 16 mhz 7 8 mhz 4 external clock (2) , all peripherals disabled 36 mhz 5 24 mhz 4.5 16 mhz 4 8 mhz 3 table 15. typical and maximum current consumptions in stop and standby modes symbol parameter conditions typ (1) max unit v dd /v bat = 2.0 v v dd / v bat = 2.4 v v dd /v bat = 3.3 v t a = 85 c (2) i dd supply current in stop mode regulator in run mode, low-speed and high-speed internal rc oscillators and high-speed oscillator off (no independent watchdog) - 21.3 21.7 160 a regulator in low power mode, low-speed and high-speed internal rc oscillators and high-speed oscillator off (no independent watchdog) - 11.3 11.7 145 supply current in standby mode low-speed internal rc oscillator and independent watchdog on -2.63.4- low-speed internal rc oscillator on, independent watchdog off -2.43.2- low-speed internal rc oscillator and independent watchdog off, low-speed oscillator and rtc off - 1.7 2 3.2 i dd_vbat backup domain supply current low-speed oscillator and rtc on 0.9 1.1 1.4 1.9 1. typical values are measured at t a = 25 c. 2. based on characterization, not rested in production. stm32f101x4, stm32f101x6 electrical characteristics doc id 15058 rev 5 37/79 figure 14. typical current consumption on v bat with rtc on versus temperature at different v bat values figure 15. typical current consumption in stop mode with regulator in run mode versus temperature at v dd = 3.3 v and 3.6 v 0 0.5 1 1.5 2 2.5 ?40 c 25 c 70 c 8 5 c 105 c temper a t u re (c) con su mption ( a ) 2 v 2.4 v 3 v 3 .6 v a i17 3 51 0 5 10 15 20 25 30 35 40 45 ?45 c 25 c 85 c temperature (c) consumption (a) 3.3 v 3.6 v electrical characteristics stm32f101x4, stm32f101x6 38/79 doc id 15058 rev 5 figure 16. typical current consumption in stop mode with regulator in low-power mode versus temperature at v dd = 3.3 v and 3.6 v figure 17. typical current consumption in standby mode versus temperature at v dd = 3.3 v and 3.6 v 0 5 10 15 20 25 30 ?45 c 25 c 85 c temperature (c) consumption (a) 3.3 v 3.6 v 0 0.5 1 1.5 2 2.5 3 3.5 ?45 c 25 c 85 c temperature (c) consumption (a) 3.3 v 3.6 v stm32f101x4, stm32f101x6 electrical characteristics doc id 15058 rev 5 39/79 typical current consumption the mcu is placed under the following conditions: all i/o pins are in input mode with a static value at v dd or v ss (no load) all peripherals are disabled except if it is explicitly mentioned the flash access time is adjusted to f hclk frequency (0 wait state from 0 to 24 mhz, 1 wait state from 24 to 36 mhz) prefetch is on (reminder: this bit must be set before clock setting and bus prescaling) when the peripherals are enabled f pclk1 = f hclk/4 , f pclk2 = f hclk/2 , f adcclk = f pclk2 /4 the parameters given in ta bl e 1 6 are derived from tests performed under the ambient temperature and v dd supply voltage conditions summarized in ta b l e 8 . table 16. typical current consumption in run mode, code with data processing running from flash symbol parameter conditions f hclk typ (1) 1. typical values are measures at t a = 25 c, v dd = 3.3 v. typ (1) unit all peripherals enabled (2) 2. add an additional power consumption of 0.8 ma per adc for the analog part. in applications, this consumption occurs only while the adc is on (adon bit is set in the adc_cr2 register). all peripherals disabled i dd supply current in run mode external clock (3) 3. external clock is 8 mhz and pll is on when f hclk > 8 mhz. 36 mhz 17.2 13.8 ma 24 mhz 11.2 8.9 16 mhz 8.1 6.6 8 mhz 5 4.2 4 mhz 3 2.6 2 mhz 2 1.8 1 mhz 1.5 1.4 500 khz 1.2 1.2 125 khz 1.05 1 running on high speed internal rc (hsi), ahb prescaler used to reduce the frequency 36 mhz 16.5 13.1 24 mhz 10.5 8.2 16 mhz 7.4 5.9 8 mhz 4.3 3.6 4 mhz 2.4 2 2 mhz 1.5 1.3 1 mhz 1 0.9 500 khz 0.7 0.65 125 khz 0.5 0.45 electrical characteristics stm32f101x4, stm32f101x6 40/79 doc id 15058 rev 5 table 17. typical current consumption in sleep mode, code running from flash or ram symbol parameter conditions f hclk typ (1) 1. typical values are measures at t a = 25 c, v dd = 3.3 v. typ (1) unit all peripherals enabled (2) 2. add an additional power consumption of 0.8 ma per adc for the analog part. in applications, this consumption occurs only while the adc is on (adon bit is set in the adc_cr2 register). all peripherals disabled i dd supply current in sleep mode external clock (3) 3. external clock is 8 mhz and pll is on when f hclk > 8 mhz. 36 mhz 6.7 3.1 ma 24 mhz 4.8 2.3 16 mhz 3.4 1.8 8 mhz 2 1.2 4 mhz 1.5 1.1 2 mhz 1.25 1 1 mhz 1.1 0.98 500 khz 1.05 0.96 125 khz 1 0.95 running on high speed internal rc (hsi), ahb prescaler used to reduce the frequency 36 mhz 6.1 2.5 24 mhz 4.2 1.7 16 mhz 2.8 1.2 8 mhz 1.4 0.55 4 mhz 0.9 0.5 2 mhz 0.7 0.45 1 mhz 0.55 0.42 500 khz 0.48 0.4 125 khz 0.4 0.38 stm32f101x4, stm32f101x6 electrical characteristics doc id 15058 rev 5 41/79 on-chip peripheral current consumption the current consumption of the on-chip peripherals is given in ta bl e 1 8 . the mcu is placed under the following conditions: all i/o pins are in input mode with a static value at v dd or v ss (no load) all peripherals are disabled unless otherwise mentioned the given value is calculated by measuring the current consumption ? with all peripherals clocked off ? with only one peripheral clocked on ambient operating temperature and v dd supply voltage conditions summarized in ta bl e 5 . 5.3.6 external cloc k source characteristics high-speed external user clock generated from an external source the characteristics given in ta b l e 1 9 result from tests performed using an high-speed external clock source, and under the ambient temperature and supply voltage conditions summarized in ta b l e 8 . table 18. peripheral current consumption peripheral typical consumption at 25 c unit apb1 tim2 0.6 ma tim3 0.6 usart2 0.21 i2c 0.18 apb2 gpio a 0.21 gpio b 0.21 gpio c 0.21 gpio d 0.21 adc (1) 1. specific conditions for adc: f hclk = 28 mhz, f apb1 = f hclk /2, f apb2 = f hclk , f adcclk = f apb2 /2, adon bit in the adc_cr2 register is set to 1. 1.4 spi 0.24 usart1 0.35 electrical characteristics stm32f101x4, stm32f101x6 42/79 doc id 15058 rev 5 low-speed external user clock generated from an external source the characteristics given in ta b l e 2 0 result from tests performed using an low-speed external clock source, and under the ambient temperature and supply voltage conditions summarized in ta b l e 8 . table 19. high-speed external user clock characteristics symbol parameter conditions min typ max unit f hse_ext user external clock source frequency (1) 1. guaranteed by design, not tested in production. 1825mhz v hseh osc_in input pin high level voltage 0.7v dd v dd v v hsel osc_in input pin low level voltage v ss 0.3v dd t w(hse) t w(hse) osc_in high or low time (1) 5 ns t r(hse) t f(hse) osc_in rise or fall time (1) 20 c in(hse) osc_in input capacitance (1) 5pf ducy (hse) duty cycle 45 55 % i l osc_in input leakage current v ss v in v dd 1 a table 20. low-speed external user clock characteristics symbol parameter conditions min typ max unit f lse_ext user external clock source frequency (1) 1. guaranteed by design, not tested in production. 32.768 1000 khz v lseh osc32_in input pin high level voltage 0.7v dd v dd v v lsel osc32_in input pin low level voltage v ss 0.3v dd t w(lse) t w(lse) osc32_in high or low time (1) 450 ns t r(lse) t f(lse) osc32_in rise or fall time (1) 50 c in(lse) osc32_in input capacitance (1) 5pf ducy (lse) duty cycle 30 70 % i l osc32_in input leakage current v ss v in v dd 1 a stm32f101x4, stm32f101x6 electrical characteristics doc id 15058 rev 5 43/79 figure 18. high-speed external clock source ac timing diagram figure 19. low-speed external clock source ac timing diagram high-speed external clock generated from a crystal/ceramic resonator the high-speed external (hse) clock can be supplied with a 4 to 16 mhz crystal/ceramic resonator oscillato r. all the information given in this paragraph are based on characterization results obtained with typical external components specified in ta bl e 2 1 . in the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion a nd startup stabilization time. refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). ai14127b os c _i n external stm32f10xxx clock source v hseh t f(hse) t w(hse) i l 90% 10% t hse t t r(hse) t w(hse) f hse_ext v hsel ai14140c osc32_in external stm32f10xxx clock source v lseh t f(lse) t w(lse) i l 90% 10% t lse t t r(lse) t w(lse) f lse_ext v lsel electrical characteristics stm32f101x4, stm32f101x6 44/79 doc id 15058 rev 5 for c l1 and c l2 , it is recommended to use high-quality external ceramic capacitors in the 5 pf to 25 pf range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see figure 20 ). c l1 and c l2 are usually the same size. the crystal manufacturer typically specifies a load capacitance which is the series combination of c l1 and c l2 . pcb and mcu pin capacitance must be included (10 pf can be used as a rough estimate of the comb ined pin and board capacitance) when sizing c l1 and c l2 . refer to the application note an28 67 ?oscillator design guide for st microcontrollers? available fr om the st website www.st.com. figure 20. typical application with an 8 mhz crystal 1. r ext value depends on the cr ystal characteristics. low-speed external clock generated from a crystal/ceramic resonator the low-speed external (lse) clock can be supplied with a 32.768 khz crystal/ceramic resonator oscillato r. all the information given in this paragraph are based on characterization results obtained with typical external components specified in ta bl e 2 2 . in the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion a nd startup stabilization time. refer to the crystal table 21. hse 4-16 mhz oscillator characteristics (1)(2) 1. resonator characteristics given by the crystal/ceramic resonator manufacturer. 2. based on characterization, not tested in production. symbol parameter conditions min typ max unit f osc_in oscillator frequency 4 8 16 mhz r f feedback resistor 200 k c recommended load capacitance versus equivalent serial resistance of the crystal (r s ) (3) 3. the relatively low value of the rf resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and t he bias condition change. however, it is recommended to take this point into account if the mcu is used in tough humidity conditions. r s = 30 30 pf i 2 hse driving current v dd = 3.3 v, v in = v ss with 30 pf load 1ma g m oscillator transconductance startup 25 ma/v t su(hse) (4) 4. t su(hse) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 mhz oscillation is reached. this value is measured for a standard crystal resonat or and it can vary significantly with the crystal manufacturer startup time v dd is stabilized 2 ms ai14128b osc_ou t osc_in f hse c l1 r f stm32f10xxx 8 mh z resonator resonator with integrated capacitors bias controlled gain r ext (1) c l2 stm32f101x4, stm32f101x6 electrical characteristics doc id 15058 rev 5 45/79 resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). note: for c l1 and c l2 it is recommended to use high-quality ceramic capacitors in the 5 pf to 15 pf range selected to match the requirements of the crystal or resonator. c l1 and c l2, are usually the same size. the crystal manufacturer typically specifies a load capacitance which is the series combination of c l1 and c l2 . load capacitance c l has the following formula: c l = c l1 x c l2 / ( c l1 + c l2 ) + c stray where c stray is the pin capacitance and board or trace pcb-related capacitance. typically, it is between 2 pf and 7 pf. caution: to avoid exceeding the maximum value of c l1 and c l2 (15 pf) it is strongly recommended to use a resonator with a load capacitance c l 7 pf. never use a resonator with a load capacitance of 12.5 pf. example: if you choose a resonator with a load capacitance of c l = 6 pf, and c stray = 2 pf, then c l1 = c l2 = 8 pf. table 22. lse oscillator characteristics (f lse = 32.768 khz) (1) (2) symbol parameter conditions min typ max unit r f feedback resistor 5 m c recommended load capacitance versus equivalent serial resistance of the crystal (r s ) r s = 30 k 15 pf i 2 lse driving current v dd = 3.3 v v in = v ss 1.4 a g m oscillator transconductance 5 a/v t su(lse) (3) startup time v dd is stabilized t a = 50 c 1.5 s t a = 25 c 2.5 t a = 10 c 4 t a = 0 c 6 t a = -10 c 10 t a = -20 c 17 t a = -30 c 32 t a = -40 c 60 1. based on characterization, not tested in production. 2. refer to the note and caution paragraphs below the table, and to the application note an2867 ?oscillator design guide for st microcontrollers?. 3. t su(lse) is the startup time measured from the moment it is enab led (by software) to a stabilized 32.768 khz oscillation is reached. this value is measured for a standard crystal and it can vary significantly wi th the crystal manufacturer electrical characteristics stm32f101x4, stm32f101x6 46/79 doc id 15058 rev 5 figure 21. typical application with a 32.768 khz crystal 5.3.7 internal clock source characteristics the parameters given in ta bl e 2 3 are derived from tests performed under the ambient temperature and v dd supply voltage conditions summarized in ta b l e 8 . high-speed internal (hsi) rc oscillator ai14129b osc32_ou t osc32_in f lse c l1 r f stm32f10xxx 32.768 kh z resonator resonator with integrated capacitors bias controlled gain c l2 table 23. hsi oscillator characteristics (1) 1. v dd = 3.3 v, t a = ?40 to 105 c unless otherwise specified. symbol parameter conditions min typ max unit f hsi frequency 8 mhz ducy (hsi) duty cycle 45 55 % acc hsi accuracy of the hsi oscillator user-trimmed with the rcc_cr register (2) 2. refer to application note an2868 ?stm32f10xxx internal rc oscillator (hsi) calibration? available from the st website www.st.com. 1 (3) 3. guaranteed by design, not tested in production. % factory- calibrated (4) 4. based on characterization, not tested in production. t a = ?40 to 105 c ?2 2.5 % t a = ?10 to 85 c ?1.5 2.2 % t a = 0 to 70 c ?1.3 2 % t a = 25 c ?1.1 1.8 % t su(hsi) (4) hsi oscillator startup time 12s i dd(hsi) (4) hsi oscillator power consumption 80 100 a stm32f101x4, stm32f101x6 electrical characteristics doc id 15058 rev 5 47/79 low-speed internal (lsi) rc oscillator wakeup time from low-power mode the wakeup times given in ta b l e 2 5 are measured on a wakeup phase with an 8-mhz hsi rc oscillator. the clock source used to wake up the device depends from the current operating mode: stop or standby mode: the cloc k source is the rc oscillator sleep mode: the clock source is the clock that was set before entering sleep mode. all timings are derived from tests performed under the ambient temperature and v dd supply voltage conditions summarized in ta bl e 8 . 5.3.8 pll characteristics the parameters given in ta bl e 2 6 are derived from tests performed under the ambient temperature and v dd supply voltage conditions summarized in ta b l e 8 . table 24. lsi oscillator characteristics (1) 1. v dd = 3 v, t a = ?40 to 85 c unless otherwise specified. symbol parameter min typ max unit f lsi (2) 2. based on characterization, not tested in production. frequency 30 40 60 khz t su(lsi) (3) 3. guaranteed by design, not tested in production. lsi oscillator startup time 85 s i dd(lsi) (3) lsi oscillator power consumption 0.65 1.2 a table 25. low-power mode wakeup timings symbol parameter typ unit t wusleep (1) 1. the wakeup times are measured from the wakeup even t to the point at which the user application code reads the first instruction. wakeup from sleep mode 1.8 s t wustop (1) wakeup from stop mode (regulator in run mode) 3.6 s wakeup from stop mode (regu lator in low-power mode) 5.4 t wustdby (1) wakeup from standby mode 50 s table 26. pll characteristics symbol parameter value unit min (1) typ max (1) f pll_in pll input clock (2) 18.025mhz pll input clock duty cycle 40 60 % f pll_out pll multiplier output clock 16 36 mhz electrical characteristics stm32f101x4, stm32f101x6 48/79 doc id 15058 rev 5 5.3.9 memory characteristics flash memory the characteristics are given at t a = ?40 to 85 c unless otherwise specified. table 28. flash memory endurance and data retention 5.3.10 emc characteristics susceptibility tests ar e performed on a sample basis during device characterization. t lock pll lock time 200 s jitter cycle-to-cycle jitter 300 ps 1. based on device characteriza tion, not tested in production. 2. take care of using the appropriate multiplier factors so as to have pll input clock values compatible with the range defined by f pll_out . table 26. pll characteristics symbol parameter value unit min (1) typ max (1) table 27. flash memory characteristics symbol parameter conditions min (1) 1. guaranteed by design, not tested in production. typ max (1) unit t prog 16-bit programming time t a = ?40 to +85 c 40 52.5 70 s t erase page (1 kb) erase time t a = ?40 to +85 c 20 40 ms t me mass erase time t a = ?40 to +85 c 20 40 ms i dd supply current read mode f hclk = 36 mhz with 1 wait state, v dd = 3.3 v 20 ma write / erase modes f hclk = 36 mhz, v dd = 3.3 v 5ma power-down mode / halt, v dd = 3.0 to 3.6 v 50 a v prog programming voltage 2 3.6 v symbol parameter conditions value unit min (1) 1. based on characterization not tested in production. typ max n end endurance t a = ?40 c to 85 c 10 kcycles t ret data retention t a = 85 c, 1 kcycle (2) 2. cycling performed over the whole temperature range. 30 ye a r s t a = 55 c, 10 kcycle (2) 20 stm32f101x4, stm32f101x6 electrical characteristics doc id 15058 rev 5 49/79 functional ems (electromagnetic susceptibility) while a simple application is executed on the device (toggling 2 leds through i/o ports). the device is stressed by two electromagnetic events until a failure occurs. the failure is indicated by the leds: electrostatic discharge (esd) (positive and negative) is applied to all device pins until a functional disturbance occurs. this test is compliant with the iec 61000-4-2 standard. ftb : a burst of fast transient voltage (positive and negative) is applied to v dd and v ss through a 100 pf capacitor, until a functional disturbance occurs. this test is compliant with the iec 61000-4-4 standard. a device reset allows normal operations to be resumed. the test results are given in ta b l e 2 9 . they are based on the ems levels and classes defined in application note an1709. designing hardened software to avoid noise problems emc characterization and optimization are performed at component level with a typical application environment and simplified mcu software. it should be noted that good emc performance is highly dependent on the user application and the software in particular. therefore it is recommended that the user applies emc software optimization and pre qualification tests in rela tion with the emc level requested for his application. software recommendations the software flowchart must include the management of runaway conditions such as: corrupted program counter unexpected reset critical data corruption (control registers...) prequalification trials most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forci ng a low state on the nrst pin or the oscillator pins for 1 second. to complete these trials, esd stress can be applied directly on the device, over the range of specification values. when unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note an1015). table 29. ems characteristics symbol parameter conditions level/class v fesd voltage limits to be applied on any i/o pin to induce a functional disturbance v dd = 3.3 v, t a = +25 c, f hclk = 36 mhz conforms to iec 61000-4-2 2b v eftb fast transient voltage burst limits to be applied through 100 pf on v dd and v ss pins to induce a functional disturbance v dd = 3.3 v, t a = +25 c, f hclk = 36 mhz conforms to iec 61000-4-4 4a electrical characteristics stm32f101x4, stm32f101x6 50/79 doc id 15058 rev 5 electromagnetic interference (emi) the electromagnetic field emitted by the device is monitored while a simple application is executed (toggling 2 leds through the i/o ports). this emission test is compliant with iec61967-2 standard which specifies the test board and the pin loading. 5.3.11 absolute maximum rati ngs (electrical sensitivity) based on three different tests (esd, lu) using specific measurement methods, the device is stressed in order to determine its perfor mance in terms of electrical sensitivity. electrostatic discharge (esd) electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. the sample size depends on the number of supply pins in the device (3 parts (n+1) supply pins). this test conforms to the jesd22-a114/c101 standard. static latch-up two complementary static tests are required on six parts to assess the latch-up performance: a supply overvoltage is applied to each power supply pin a current injection is applied to each input, output and configurable i/o pin these tests are compliant with eia/jesd 78 ic latch-up standard. table 30. emi characteristics symbol parameter conditions monitored frequency band max vs. [f hse /f hclk ] unit 8/36 mhz s emi peak level v dd = 3.3 v, t a = 25 c, lqfp100 package compliant with iec 61967-2 0.1 mhz to 30 mhz 7 dbv 30 mhz to 130 mhz 8 130 mhz to 1ghz 13 sae emi level 3.5 - table 31. esd absolute maximum ratings symbol ratings conditions class maximum value (1) 1. based on characterization results, not tested in production. unit v esd(hbm) electrostatic discharge voltage (human body model) t a = +25 c conforming to jesd22-a114 2 2000 v v esd(cdm) electrostatic discharge voltage (charge device model) t a = +25 c conforming to jesd22-c101 ii 500 table 32. electrical sensitivities symbol parameter conditions class lu static latch-up class t a = +85 c conforming to jesd78a ii level a stm32f101x4, stm32f101x6 electrical characteristics doc id 15058 rev 5 51/79 5.3.12 i/o current in jection characteristics as a general rule, current injection to the i/o pins, due to external voltage below v ss or above v dd (for standard, 3 v-capable i/o pins) should be avoided during normal product operation. however, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection a ccidentally happens, susceptibilit y tests are performed on a sample basis during device characterization. functional susceptibilty to i/o current injection while a simple application is executed on the device, the device is stressed by injecting current into the i/o pins programmed in floating input mode. while current is injected into the i/o pin, one at a time, the device is checked for functional failures. the failure is indicated by an out of range parameter: adc error above a certain limit (>5 lsb tue), out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation). the test results are given in ta b l e 3 3 table 33. i/o current injection susceptibility symbol description functional susceptibility unit negative injection positive injection i inj injected current on osc_in32, osc_out32, pa4, pa5, pc13 -0 +0 ma injected current on all ft pins -5 +0 injected current on any other pin -5 +5 electrical characteristics stm32f101x4, stm32f101x6 52/79 doc id 15058 rev 5 5.3.13 i/o port characteristics general input/output characteristics unless otherwise specified, the parameters given in ta bl e 3 4 are derived from tests performed under the conditions summarized in ta b l e 8 . all i/os are cmos and ttl compliant. table 34. i/o static characteristics symbol parameter conditions min typ max unit v il standard io input low level voltage ?0.3 0.28*(v dd -2 v)+0.8 v v io ft (1) input low level voltage ?0.3 0.32*(v dd -2v)+0.75 v v v ih standard io input high level voltage 0.41*(v dd -2 v)+1.3 v v dd +0.3 v io ft (1) input high level voltage v dd > 2 v 0.42*(v dd -2 v)+1 v 5.5 v v dd 2 v 5.2 v hys standard io schmitt trigger voltage hysteresis (2) 200 mv io ft schmitt trigger voltage hysteresis (2) 5% v dd (3) mv i lkg input leakage current (4) v ss v in v dd standard i/os 1 a v in = 5 v i/o ft 3 r pu weak pull-up equivalent resistor (5) v in = v ss 30 40 50 k r pd weak pull-down equivalent resistor (5) v in = v dd 30 40 50 k c io i/o pin capacitance 5 pf 1. ft = five-volt tolerant. in order to sustain a voltage higher than v dd +0.3 the internal pull-up/pull-down resistors must be disabled. 2. hysteresis voltage between schmitt trigger switching levels. based on characteriza tion, not tested in production. 3. with a minimum of 100 mv. 4. leakage could be higher than max. if negativ e current is injected on adjacent pins. 5. pull-up and pull-down resistors are designed with a true resi stance in series with a switchable pmos/nmos. this pmos/nmos contribution to the series resistance is minimum (~10% order) . stm32f101x4, stm32f101x6 electrical characteristics doc id 15058 rev 5 53/79 all i/os are cmos and ttl compliant (no software configuration required). their characteristics cover more than the strict cmos-technology or ttl parameters. the coverage of these requirements is shown in figure 22 and figure 23 for standard i/os, and in figure 24 and figure 25 for 5 v tolerant i/os. figure 22. standard i/o input characteristics - cmos port figure 23. standard i/o input characteristics - ttl port a i17277 b v dd (v) 1. 3 0. 8 2 3 .6 inp u t r a nge not g ua r a nteed 1.59 1 2.7 v ih =0.41(v dd -2)+1. 3 3 0.7 cmo s s t a nd a rd re qu irement v ih =0.65v dd 3 . 3 v ih /v il (v) cmo s s t a nd a rd re qu irement v il =0. 3 5v dd v il = 0.2 8 (v dd ?2)+0. 8 1.25 1.96 1.71 1.71 1.59 1 1.08 1.08 v ilm a x v ihmin a i ) n p u t r a n g e n o t g u a r a n t e e d 6 ) ( 6 ) , 6 4 4 , r e q u i r e m e n t s 6 ) ( 6 6 ) ( 6 $ $ 6 ) , 6 $ $ 4 4 , r e q u i r e m e n t s 6 ) , 6 6 $ $ 6 7 ) , m a x 7 ) ( m i n electrical characteristics stm32f101x4, stm32f101x6 54/79 doc id 15058 rev 5 figure 24. 5 v tolerant i/o input characteristics - cmos port figure 25. 5 v tolerant i/o input characteristics - ttl port 6 $ $ # - / 3 s t a n d a r d r e q u i r e m e n t s 6 ) ( 6 $ $ # - / 3 s t a n d a r d r e q u i r m e n t 6 ) , 6 $ $ 6 ) ( 6 ) , 6 6 $ $ 6 ) n p u t r a n g e n o t g u a r a n t e e d a i b 6 ) ( 6 $ $ 6 ) , 6 $ $ n o t g u a r a n t e e d ) n p u t r a n g e 4 4 , r e q u i r e m e n t 6 ) ( 6 6 ) ( |